Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models
Abstract
:1. Introduction
2. Methodology
2.1. Preparation
2.2. Literature Search and Selection
2.3. Data Analysis and Reporting
3. Results and Discussion of Hydrogen and Aviation in Computable General Equilibrium Models
3.1. Hydrogen
3.1.1. General Information
3.1.2. Model Characteristics
Modeling Framework
Temporal Dimension
Geographical Focus
Data Sources
3.1.3. Hydrogen Focus Topics
Hydrogen Type
Production Technology
Application Technology
Sectoral Application
Hydrogen Supply Chain
3.1.4. Macroeconomic Evaluation
Policy Instruments
Indicators
3.1.5. Key Takeaways and Research Gaps
Hydrogen Cost Competitiveness
Macroeconomic Contribution of Hydrogen
Hydrogen Applications
Sustainable Hydrogen
3.2. Aviation
3.2.1. General Information
3.2.2. Model Characteristics
Modeling Framework
Temporal Dimension
Geographical Focus
Data Sources
3.2.3. Aviation Focus Topics
Sectoral Focus
Type of Disruption
Fuel and Propulsion Technology
Aviation Supply Chain
3.2.4. Macroeconomic Evaluation
Policy Instruments
Indicators
3.2.5. Key Takeaways and Research Gaps
Macroeconomic Relevance of Aviation
Sustainable Aviation Technologies
Long-Term Scenarios
Holistic Perspective on Air Transportation
4. Macroeconomic Research Agenda on Hydrogen-Powered Aviation
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reference | Year of Publication | Journal Affiliation |
---|---|---|
Tatarewicz et al. [149] | 2021 | Energies |
Ren et al. [147] | 2021 | Applied Energy |
Espegren et al. [148] | 2021 | International Journal of Hydrogen Energy |
Lee [156] | 2020 | International Journal of Hydrogen Energy |
Mayer et al. [157] | 2019 | Journal of Cleaner Production |
Lee [151] | 2016 | International Journal of Hydrogen Energy |
Lee [155] | 2014 | International Journal of Hydrogen Energy |
Silva et al. [161] | 2014 | Energy Procedia |
Lee [168] | 2012 | International Journal of Hydrogen Energy |
Lee and Hung [158] | 2012 | International Journal of Hydrogen Energy |
Wang [150] | 2011 | International Journal of Hydrogen Energy |
Wang [167] | 2011 | Journal of Power Sources |
Bae and Cho [160] | 2010 | Energy Economics |
Sandoval et al. [153] | 2009 | Journal of Transport Economics and Policy |
Lee et al. [154] | 2009 | Renewable Energy |
Jokisch and Mennel [152] | 2009 | Transport Reviews |
Lee and Lee [159] | 2008 | International Journal of Hydrogen Energy |
Lee and Lee [174] | 2008 | Energy and Fuels |
Reference | Year of Publication | Journal Affiliation |
---|---|---|
Njoya and Ragab [199] | 2022 | Sustainability (Switzerland) |
Straubinger et al. [197] | 2022 | Transportation Research Part D: Transport and Environment |
Betarelli Junior et al. [189] | 2021 | Transport Policy |
Solaymani [188] | 2021 | Energy |
Zhang and Tong [185] | 2021 | Transport Policy |
Zhao et al. [186] | 2021 | Science of the Total Environment |
Cui et al. [187] | 2021 | Transport Policy |
Straubinger et al. [190] | 2021 | Transportation Research Part C: Emerging Technologies |
Njoya and Nikitas [196] | 2020 | Journal of Transport Geography |
Du et al. [203] | 2020 | Journal of Management Science and Engineering |
Njoya [195] | 2020 | Research in Transportation Economics |
Dai et al. [193] | 2018 | Renewable and Sustainable Energy Reviews |
Zhou et al. [202] | 2018 | Resources, Conservation and Recycling |
Liu et al. [207] | 2018 | Applied Energy |
Reimer and Zheng [200] | 2017 | Renewable and Sustainable Energy Reviews |
Chen et al. [209] | 2017 | Transportation Research Part A: Policy and Practice |
Choi et al. [194] | 2017 | Energy Policy |
Rose et al. [205] | 2017 | Risk Analysis |
Broin and Guivarch [208] | 2017 | Transportation Research Part D: Transport and Environment |
Wu et al. [206] | 2016 | Applied Energy |
Pham et al. [201] | 2015 | Tourism Management |
Forsyth et al. [191] | 2014 | Tourism Management |
Winchester et al. [204] | 2013 | Transportation Research Part A: Policy and Practice |
Some et al. [198] | 2013 | SAE Technical Papers |
Lennox [192] | 2012 | Tourism Economics |
Harback et al. [184] | 2009 | 9th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, Aircraft Noise and Emissions Reduction Symposium (ANERS) |
Rose et al. [183] | 2009 | Peace Economics, Peace Science and Public Policy |
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, P.Z.V.A., Pirani, S., Connors, C., Péan, S., Berger, A.B., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Ahmed, F.; Ali, I.; Kousar, S.; Ahmed, S. The environmental impact of industrialization and foreign direct investment: Empirical evidence from Asia-Pacific region. Environ. Sci. Pollut. Res. 2022, 29, 29778–29792. [Google Scholar] [CrossRef] [PubMed]
- Climate Watch. Climate Watch Historical GHG Emissions; World Resources Institute: Washington, DC, USA, 2022; Available online: https://www.climatewatchdata.org/ghg-emissions (accessed on 28 September 2022).
- IEA. World Energy Outlook 2021; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 28 September 2022).
- ATAG. Facts and Figures; Air Transport Action Group: Geneva, Switzerland, 2020; Available online: https://www.atag.org/facts-figures.html (accessed on 28 September 2022).
- Gössling, S.; Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Glob. Environ. Chang. 2020, 65, 102194. [Google Scholar] [CrossRef]
- Gnadt, A.R.; Speth, R.L.; Sabnis, J.S.; Barrett, S.R. Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog. Aerosp. Sci. 2019, 105, 1–30. [Google Scholar] [CrossRef]
- IATA. Resolution on the Industry’s Commitment to Reach Net Zero Carbon Emissions by 2050. Available online: https://www.iata.org/contentassets/dcd25da635cd4c3697b5d0d8ae32e159/iata-agm-resolution-on-net-zero-carbon-emissions.pdf (accessed on 28 September 2022).
- Staack, I.; Sobron, A.; Krus, P. The potential of full-electric aircraft for civil transportation: From the Breguet range equation to operational aspects. CEAS Aeronaut. J. 2021, 12, 803–819. [Google Scholar] [CrossRef]
- Deane, J.; Pye, S. Europe’s ambition for biofuels in aviation—A strategic review of challenges and opportunities. Energy Strategy Rev. 2018, 20, 1–5. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on potential use of hydrogen in aviation applications. Int. J. Sustain. Aviat. 2016, 2, 74–100. [Google Scholar] [CrossRef]
- Cabrera, E.; de Sousa, J.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Donateo, T.; Ficarella, A.; Spedicato, L.; Arista, A.; Ferraro, M. A new approach to calculating endurance in electric flight and comparing fuel cells and batteries. Appl. Energy 2017, 187, 807–819. [Google Scholar] [CrossRef]
- Barke, A.; Thies, C.; Popien, J.-L.; Melo, S.P.; Cerdas, F.; Herrmann, C.; Spengler, T.S. Life cycle sustainability assessment of potential battery systems for electric aircraft. Procedia CIRP 2021, 98, 660–665. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels. Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Wang, Y.; Zhang, J.; Wang, H. Synthesis of High-Density Aviation Biofuels from Biomass-Derived Cyclopentanone. Energy Fuels 2021, 35, 6691–6699. [Google Scholar] [CrossRef]
- IEA. Renewables 2018—Analysis and Forecasts to 2023. Available online: https://iea.blob.core.windows.net/assets/79e1943b-9401-478f-9f60-5e8c2bff9342/Market_Report_Series_Renewables_2018.pdf (accessed on 28 September 2022).
- Prussi, M.; O’Connell, A.; Lonza, L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 2019, 130, 105371. [Google Scholar] [CrossRef]
- Larsson, J.; Elofsson, A.; Sterner, T.; Åkerman, J. International and national climate policies for aviation: A review. Clim. Policy 2019, 19, 787–799. [Google Scholar] [CrossRef]
- Weng, Y.; Chang, S.; Cai, W.; Wang, C. Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China. Appl. Energy 2019, 236, 514–525. [Google Scholar] [CrossRef]
- Koizumi, T. Biofuels and food security. Renew. Sustain. Energy Rev. 2015, 52, 829–841. [Google Scholar] [CrossRef]
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. R. Soc. A 2020, 476, 20200351. [Google Scholar] [CrossRef]
- Winnefeld, C.; Kadyk, T.; Bensmann, B.; Krewer, U.; Hanke-Rauschenbach, R. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications. Energies 2018, 11, 105. [Google Scholar] [CrossRef]
- Clean Sky 2 JU and FCH JU 2. Hydrogen-Powered Aviation. A Fact-Based Study of Hydrogen Technology Economics and Climate Impact by 2050. Available online: https://cleansky.paddlecms.net/sites/default/files/2021-10/20200507_Hydrogen-Powered-Aviation-report.pdf (accessed on 28 September 2022).
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen Storage Technologies for Future Energy Systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis—A review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Zhao, G.; Nielsen, E.R.; Troncoso, E.; Hyde, K.; Romeo, J.S.; Diderich, M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. Int. J. Hydrog. Energy 2019, 44, 9517–9528. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrog. Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 14 October 2022).
- Shakeri, N.; Zadeh, M.; Bremnes Nielsen, J. Hydrogen Fuel Cells for Ship Electric Propulsion: Moving Toward Greener Ships. IEEE Electrif. Mag. 2020, 8, 27–43. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 2021, 3, 474–489. [Google Scholar] [CrossRef]
- de las Nieves Camacho, M.; Jurburg, D.; Tanco, M. Hydrogen fuel cell heavy-duty trucks: Review of main research topics. Int. J. Hydrog. Energy 2022, 47, 29505–29525. [Google Scholar] [CrossRef]
- Bhaskar, A.; Assadi, M.; Somehsaraei, H.N. Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies 2020, 13, 758. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zuo, H.; Wang, J.; Xue, Q.; Ren, B.; Yang, F. The production and application of hydrogen in steel industry. Int. J. Hydrog. Energy 2021, 46, 10548–10569. [Google Scholar] [CrossRef]
- Rambhujun, N.; Salman, M.S.; Wang, T.; Pratthana, C.; Sapkota, P.; Costalin, M.; Aguey-Zinsou, K.-F. Renewable hydrogen for the chemical industry. MRS Energy Sustain. 2020, 7, 33. [Google Scholar] [CrossRef]
- Ostadi, M.; Paso, K.G.; Rodriguez-Fabia, S.; Øi, L.E.; Manenti, F.; Hillestad, M. Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies 2020, 13, 4859. [Google Scholar] [CrossRef]
- Dodds, P.E.; Staffell, I.; Hawkes, A.D.; Li, F.; Grünewald, P.; McDowall, W.; Ekins, P. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrog. Energy 2020, 40, 2065–2083. [Google Scholar] [CrossRef]
- Longoria, G.; Lynch, M.; Curtis, J. Green hydrogen for heating and its impact on the power system. Int. J. Hydrog. Energy 2021, 46, 26725–26740. [Google Scholar] [CrossRef]
- Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40. [Google Scholar] [CrossRef]
- Airbus. Exploring Hydrogen—The Impact Challenges and Options. FAST Magazine, September 2021. Available online: https://aircraft.airbus.com/sites/g/files/jlcbta126/files/2021-11/FAST-article-Exploring-hydrogen-September2021.pdf (accessed on 6 January 2023).
- Lufthansa. Redesigned A320 Unveiled—Hydrogen Aviation Lab Is Taking Shape. Available online: https://www.lufthansa-technik.com/press-releases/-/asset_publisher/Xix57wMv0mow/content/pressrelease_hydrogen-aviation-lab_oct2022?p_p_auth=2OzsAdAF&_101_INSTANCE_LMQlVvc4xSJw_redirect=%2F (accessed on 6 January 2023).
- Suewatanakul, S.; Porcarelli, A.; Olsson, A.; Grimler, H.; Chiche, A.; Mariani, R.; Lindbergh, G. Conceptual Design of a Hybrid Hydrogen Fuel Cell/Battery Blended-Wing-Body Unmanned Aerial Vehicle—An Overview. Aerospace 2022, 9, 275. [Google Scholar] [CrossRef]
- Schröder, M.; Becker, F.; Kallo, J.; Gentner, C. Optimal operating conditions of PEM fuel cells in commercial aircraft. Int. J. Hydrog. Energy 2021, 46, 33218–33240. [Google Scholar] [CrossRef]
- Schmidt, P.; Batteiger, V.; Roth, A.; Weindorf, W.; Raksha, T. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. Chem. Ing. Tech. 2018, 90, 127–140. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. Estimation of Liquid Hydrogen Fuels in Aviation. Aerospace 2022, 9, 564. [Google Scholar] [CrossRef]
- Gunasekar, P.; Manigandan, S.; TR, P.K. Hydrogen as the futuristic fuel for the aviation and aerospace industry—Review. Aircr. Eng. Aerosp. Technol. 2020, 93, 410–416. [Google Scholar] [CrossRef]
- Nicolay, S.; Karpuk, S.; Liu, Y.; Elham, A. Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. Int. J. Hydrog. Energy 2021, 46, 32676–32694. [Google Scholar] [CrossRef]
- Nam, G.-D.; Vuong, L.D.; Sung, H.-J.; Lee, S.J.; Park, M. Conceptual Design of an Aviation Propulsion System Using Hydrogen Fuel Cell and Superconducting Motor. IEEE Trans. Appl. Supercond. 2021, 31, 5700306. [Google Scholar] [CrossRef]
- Gomez, A.; Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerosp. Sci. Technol. 2019, 95, 105438. [Google Scholar] [CrossRef]
- Prewitz, M.; Bardenhagen, A.; Beck, R. Hydrogen as the fuel of the future in aircrafts—Challenges and opportunities. Int. J. Hydrog. Energy 2020, 45, 25378–25385. [Google Scholar] [CrossRef]
- Huete, J.; Pilidis, P. Parametric study on tank integration for hydrogen civil aviation propulsion. Int. J. Hydrog. Energy 2021, 46, 37049–37062. [Google Scholar] [CrossRef]
- Hoelzen, J.; Flohr, M.; Silberhorn, D.; Mangold, J.; Bensmann, A.; Hanke-Rauschenbach, R. H2-powered aviation at airports—Design and economics of LH2 refueling systems. Energy Convers. Manag. X 2022, 14, 100206. [Google Scholar] [CrossRef]
- Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 111564. [Google Scholar] [CrossRef]
- Hoelzen, J.; Silberhorn, D.; Zill, T.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure—Review and research gaps. Int. J. Hydrog. Energy 2022, 47, 3108–3130. [Google Scholar] [CrossRef]
- Nakano, Y.; Sano, F.; Akimoto, K. Impacts of decarbonization technologies in air transport on the global energy system. Transp. Res. Part D Transp. Environ. 2022, 110, 103417. [Google Scholar] [CrossRef]
- Silberhorn, D.; Dahlmann, K.; Görtz, A.; Linke, F.; Zanger, J.; Rauch, B.; Hartmann, J. Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts. Appl. Sci. 2022, 12, 5950. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts. Int. J. Hydrog. Energy 2017, 42, 10722–10738. [Google Scholar] [CrossRef]
- Barke, A.; Bley, T.; Thies, C.; Weckenborg, C.; Spengler, T.S. Are Sustainable Aviation Fuels a Viable Option for Decarbonizing Air Transport in Europe? An Environmental and Economic Sustainability Assessment. Appl. Sci. 2022, 12, 597. [Google Scholar] [CrossRef]
- Gronau, S.; Hoelzen, J.; Mueller, T.; Hanke-Rauschenbach, R. Hydrogen-powered aviation in Germany: A macroeconomic perspective and methodological approach of fuel supply chain integration into an economy-wide dataset. Int. J. Hydrog. Energy 2023, 48, 5347–5376. [Google Scholar] [CrossRef]
- Kovac, A.; Paranos, M.; Marcius, D. Hydrogen in energy transition: A review. Int. J. Hydrog. Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Stamopoulos, D.; Dimas, P.; Sebos, I.; Tsakanikas, A. Does Investing in Renewable Energy Sources Contribute to Growth? A Preliminary Study on Greece’s National Energy and Climate Plan. Energies 2021, 14, 8537. [Google Scholar] [CrossRef]
- Lee, I.; Jang, S.; Chung, Y.; Seo, H. Economic spillover from renewable energy industries: An input-output analysis. Int. J. Green Energy 2021, 19, 809–817. [Google Scholar] [CrossRef]
- Wietschel, M.; Seydel, P. Economic impacts of hydrogen as an energy carrier in European countries. Int. J. Hydrog. Energy 2007, 32, 3201–3211. [Google Scholar] [CrossRef]
- Bezdek, R.H. The hydrogen economy and jobs of the future. Renew. Energy Environ. Sustain. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Econ. Model. 2017, 61, 439–447. [Google Scholar] [CrossRef]
- Nasirov, S.; Girard, A.; Pena, C.; Salazar, F.; Simon, F. Expansion of renewable energy in Chile: Analysis of the effects on employment. Energy 2021, 226, 120410. [Google Scholar] [CrossRef]
- Stangarone, T. South Korean efforts to transition to a hydrogen economy. Clean Technol. Environ. Policy 2021, 23, 509–516. [Google Scholar] [CrossRef]
- Murshed, M.; Mahmood, H.; Alkhateeb, T.T.; Bassim, M. The Impacts of Energy Consumption, Energy Prices and Energy Import-Dependency on Gross and Sectoral Value-Added in Sri Lanka. Energies 2020, 13, 6565. [Google Scholar] [CrossRef]
- Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. Renew. Sustain. Energy Rev. 2018, 96, 226–239. [Google Scholar] [CrossRef]
- Högselius, P.; Kaijser, A. Energy dependence in historical perspective: The geopolitics of smaller nations. Energy Policy 2019, 127, 438–444. [Google Scholar] [CrossRef]
- Schmidt, J.; Gruber, K.; Klingler, M.; Klöckl, C.; Camargo, L.R.; Regner, P.; Wetterlund, E. A new perspective on global renewable energy systems: Why trade in energy carriers matters. Energy Environ. Sci. 2019, 12, 2022–2029. [Google Scholar] [CrossRef]
- Van de Graaf, T.; Overland, I.; Scholten, D.; Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 2020, 70, 101667. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global hydrogen development—A technological and geopolitical overview. Int. J. Hydrog. Energy 2022, 47, 7016–7048. [Google Scholar] [CrossRef]
- Gherasim, D.-P. A Guide to Solve EU’s Hydrogen Dilemmas. Ifri, Notes de l’Ifri. Available online: https://www.ifri.org/sites/default/files/atoms/files/gherasim_eu_hydrogen_dilemnas_2022.pdf (accessed on 4 October 2022).
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Pouya, S. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Yusaf, T.; Fernandes, L.; Talib, A.R.A.; Altarazi, Y.S.M.; Alrefae, W.; Kadirgama, K.; Ramasamy, D.; Jayasuriya, A.; Brown, G.; Mamat, R.; et al. Sustainable Aviation—Hydrogen Is the Future. Sustainability 2022, 14, 548. [Google Scholar] [CrossRef]
- Bruce, S.; Temminghoff, M.; Hayward, J.; Palfreyman, D.; Munnings, C.; Burke, N.; Creasey, S. Opportunities for Hydrogen in Aviation; CSIRO: Canberra, Australia, 2020; Available online: https://www.csiro.au/-/media/Do-Business/Files/Futures/Boeing-Opportunities-for-hydrogen-in-commercial-aviation.pdf (accessed on 4 October 2022).
- Nicolini, M.; Tavoni, M. Are renewable energy subsidies effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Hájek, M.; Zimmermannová, J.; Helman, K.; Rozenský, L. Analysis of carbon tax efficiency in energy industries of selected EU countries. Energy Policy 2019, 134, 110955. [Google Scholar] [CrossRef]
- Kok, R. Six years of CO2-based tax incentives for new passenger cars in The Netherlands: Impacts on purchasing behavior trends and CO2 effectiveness. Transp. Res. Part A Policy Pract. 2015, 77, 137–153. [Google Scholar] [CrossRef]
- Blanchard, O. On the future of macroeconomic models. Oxf. Rev. Econ. Policy 2018, 34, 43–54. [Google Scholar] [CrossRef]
- Murphy, C. Decisions in Designing an Australian Macroeconomic Model. Econ. Rec. 2020, 96, 252–270. [Google Scholar] [CrossRef]
- Lee, D.-H. Econometric assessment of bioenergy development. Int. J. Hydrog. Energy 2017, 42, 27701–27717. [Google Scholar] [CrossRef]
- Harting, P. Macroeconomic stabilization and long-term growth: The role of policy design. Macroecon. Dyn. 2021, 25, 924–969. [Google Scholar] [CrossRef]
- Dou, W.W.; Lo, A.W.; Muley, A.; Uhlig, H. Macroeconomic Models for Monetary Policy: A Critical Review from a Finance Perspective. Annu. Rev. Financ. Econ. 2020, 12, 95–140. [Google Scholar] [CrossRef]
- Naseem, S. Macroeconomic Determinants of Saudi Arabia’s Inflation 2000–2016: Evidence and Analysis. Int. J. Econ. Financ. Issues 2018, 8, 137–141. Available online: https://www.econjournals.com/index.php/ijefi/article/view/6499 (accessed on 5 October 2022).
- Yevdokimov, Y.; Melnyk, L.; Lyulyov, O.; Panchenko, O.; Kubatko, V. Economic freedom and democracy: Determinant factors in increasing macroeconomic stability. Probl. Perspect. Manag. 2018, 16, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Weili, L.; Bibi, B.; Sumaira Khan, I. Innovations, energy consumption and carbon dioxide emissions in the global world countries: An empirical investigation. J. Environ. Sci. Econ. 2022, 1, 12–25. [Google Scholar] [CrossRef]
- Batool, S.; Iqbal, J.; Ali, A.; Perveen, B. Causal Relationship between Energy Consumption, Economic Growth, and Financial Development: Evidence from South Asian Countries. J. Environ. Sci. Econ. 2022, 1, 61–76. [Google Scholar] [CrossRef]
- Raihan, A.; Voumik, L.C. Carbon Emission Dynamics in India Due to Financial Development, Renewable Energy Utilization, Technological Innovation, Economic Growth, and Urbanization. J. Environ. Sci. Econ. 2022, 1, 36–50. [Google Scholar] [CrossRef]
- Wallenius, H. Optimizing macroeconomic policy: A review of approaches and applications. Eur. J. Oper. Res. 1982, 10, 221–228. [Google Scholar] [CrossRef]
- Wu, L.; Gong, Z. Can national carbon emission trading policy effectively recover GDP losses? A new linear programming-based three-step estimation approach. J. Clean. Prod. 2021, 287, 125052. [Google Scholar] [CrossRef]
- Freire-González, J.; Decker, C.A.; Hall, J.W. A Linear Programming Approach to Water Allocation during a Drought. Water 2018, 10, 363. [Google Scholar] [CrossRef]
- Wolsky, A.M. Disaggregating Input-Output Models. Rev. Econ. Stat. 1984, 66, 283–291. [Google Scholar] [CrossRef]
- Albino, V.; Izzo, C.; Kühtz, S. Input–output models for the analysis of a local/global supply chain. Int. J. Prod. Econ. 2002, 78, 119–131. [Google Scholar] [CrossRef]
- Yamada, M.; Fujikawa, K.; Umeda, Y. Scenario input–output analysis on the diffusion of fuel cell vehicles and alternative hydrogen supply systems. J. Econ. Struct. 2019, 8, 4. [Google Scholar] [CrossRef]
- Chun, D.; Woo, C.; Seo, H.; Chung, Y.; Hong, S.; Kim, J. The role of hydrogen energy development in the Korean economy: An input–output analysis. Int. J. Hydrog. Energy 2014, 39, 7627–7633. [Google Scholar] [CrossRef]
- Klijs, J.; Peerlings, J.; Heijman, W. Usefulness of non-linear input–output models for economic impact analyses in tourism and recreation. Tour. Econ. 2015, 21, 931–956. [Google Scholar] [CrossRef]
- Cardenete, M.A.; López-Cabaco, R. How modes of transport perform differently in the economy of Andalusia. Transp. Policy 2018, 66, 9–16. [Google Scholar] [CrossRef]
- Forsyth, P. Martin Kunz Memorial Lecture. Tourism benefits and aviation policy. J. Air Transp. Manag. 2006, 12, 3–13. [Google Scholar] [CrossRef]
- Lofgren, H.; Harris, R.L.; Robinson, S. A Standard Computable General Equilibrium (CGE) Model in GAMS, 5th ed.; International Food Policy Research Institute: Washington, DC, USA, 2002. [Google Scholar]
- Robson, E.N.; Wijayaratna, K.P.; Dixit, V.V. A review of computable general equilibrium models for transport and their applications in appraisal. Transp. Res. Part A 2018, 116, 31–53. [Google Scholar] [CrossRef]
- Hu, H.; Dong, W.; Zhou, Q. A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model. Energy Policy 2021, 156, 112460. [Google Scholar] [CrossRef]
- O’Ryan, R.; Nasirov, S.; Álvarez-Espinosa, A. Renewable energy expansion in the Chilean power market: A dynamic general equilibrium modeling approach to determine CO2 emission baselines. J. Clean. Prod. 2020, 247, 119645. [Google Scholar] [CrossRef]
- Gronau, S.; Winter, E.; Grote, U. Papyrus, Forest Resources and Rural Livelihoods: A Village Computable General Equilibrium Analysis from Northern Zambia. Nat. Resour. 2018, 9, 268–296. [Google Scholar] [CrossRef]
- Keuning, S.J.; de Ruuter, W.A. Guidelines ot the Construction of a Social Accounting Matrix. Rev. Income Wealth 1988, 34, 71–100. [Google Scholar] [CrossRef]
- Robinson, S.; Yunez-Naude, A.; Hinojosa-Ojeda, R.; Lewis, J.D.; Devarajan, S. From stylized to applied models: Building multisector CGE models for policy analysis. N. Am. J. Econ. Financ. 1999, 10, 5–38. [Google Scholar] [CrossRef]
- Dwyer, L. Computable general equilibrium modelling: An important tool for tourism policy analysis. Tour. Hosp. Manag. 2015, 21, 111–126. [Google Scholar] [CrossRef]
- Shahraki, H.S.; Bachmann, C. Designing computable general equilibrium models for transportation applications. Transp. Rev. 2018, 38, 737–764. [Google Scholar] [CrossRef]
- Babiker, M.; Gurgel, A.; Paltsev, S.; Reilly, J. Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison. Econ. Model. 2009, 26, 1341–1354. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Ghosh, J. COVID-19 and the Paris Agreement target: A CGE analysis of alternative economic recovery scenarios for India. Energy Econ. 2021, 103, 105539. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Wu, W. The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China. Energy Econ. 2021, 94, 105086. [Google Scholar] [CrossRef]
- Mayer, J.; van der Gaast, W.; Bachner, G.; Spijker, E. Qualitative and quantitative risk assessment of expanding photovoltaics in the Netherlands. Environ. Innov. Soc. Transit. 2020, 35, 357–368. [Google Scholar] [CrossRef]
- Zhang, X.; Shinozuka, M.; Tanaka, Y.; Kanamori, Y.; Masui, T. How ICT can contribute to realize a sustainable society in the future: A CGE approach. Environ. Dev. Sustain. 2022, 24, 5614–5640. [Google Scholar] [CrossRef] [PubMed]
- Costantini, V.; Sforna, G. A dynamic CGE model for jointly accounting ageing population, automation and environmental tax reform. European Union as a case study. Econ. Model. 2020, 87, 280–306. [Google Scholar] [CrossRef]
- Anderson, E. The impact of trade liberalisation on poverty and inequality: Evidence from CGE models. J. Policy Model. 2020, 42, 1208–1227. [Google Scholar] [CrossRef]
- Xu, J.; Wei, W. Would carbon tax be an effective policy tool to reduce carbon emission in China? Policies simulation analysis based on a CGE model. Appl. Econ. 2022, 54, 115–134. [Google Scholar] [CrossRef]
- Paul, J.; Criado, A.R. The art of writing literature review: What do we know and what do we need to know? Int. Bus. Rev. 2020, 29, 101717. [Google Scholar] [CrossRef]
- Van Wee, B.; Banister, D. How to Write a Literature Review Paper? Transp. Rev. 2016, 36, 278–288. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Q. 2002, 26, 13–23. [Google Scholar] [CrossRef]
- Fredershausen, S.; Lechte, H.; Willnat, M.; Witt, T.; Harnischmacher, C.; Lembcke, T.-B.; Kolbe, L. Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation. Sustainability 2021, 13, 11652. [Google Scholar] [CrossRef]
- Lame, G. Systematic Literature Reviews: An Introduction; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; Volume 1, pp. 1633–1642. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Wickramasinghe, K.; Naranpanawa, A. Systematic literature review on computable general equilibrium applications in tourism. Tour. Econ. 2021, 28, 1647–1668. [Google Scholar] [CrossRef]
- Bardazzi, E.; Bosello, F. Critical reflections on Water-Energy-Food Nexus in Computable General Equilibrium models: A systematic literature review. Environ. Model. Softw. 2021, 145, 105201. [Google Scholar] [CrossRef]
- Apostolou, D.; Xydis, G. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renew. Sustain. Energy Rev. 2019, 113, 109292. [Google Scholar] [CrossRef]
- Pereira, B.A.; Lohmann, G.; Houghton, L. Innovation and value creation in the context of aviation: A Systematic Literature Review. J. Air Transp. Manag. 2021, 94, 102076. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Verwiebe, P.A.; Seim, S.; Burges, S.; Schulz, L.; Müller-Kirchenbauer, J. Modeling Energy Demand—A Systematic Literature Review. Energies 2021, 14, 7859. [Google Scholar] [CrossRef]
- Šumakaris, P.; Korsakiene, R.; Šceulovs, D. Determinants of Energy Efficient Innovation: A Systematic Literature Review. Energies 2021, 14, 7777. [Google Scholar] [CrossRef]
- Melo, S.P.; Barke, A.; Cerdas, F.; Thies, C.; Mennenga, M.; Spengler, T.S.; Herrmann, C. Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools. Sustainability 2020, 14, 5663. [Google Scholar] [CrossRef]
- Mottahedi, A.; Sereshki, F.; Ataei, M.; Qarahasanlou, A.N.; Barabadi, A. The Resilience of Critical Infrastructure Systems: A Systematic Literature Review. Energies 2021, 14, 1571. [Google Scholar] [CrossRef]
- Maldonado-Correa, J.; Martín-Martínez, S.; Artigao, E.; Gómez-Lázaro, E. Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. Energies 2020, 13, 3132. [Google Scholar] [CrossRef]
- Calvo-Rubio, L.-M.; Ufarte-Ruiz, M.-J. Artificial intelligence and journalism: Systematic review of scientific production in Web of Science and Scopus (2008–2019). Commun. Soc. 2021, 34, 159–176. [Google Scholar] [CrossRef]
- Korczak, K.; Kochanski, M.; Skoczkowski, T. Mitigation options for decarbonization of the non-metallic minerals industry and their impacts on costs, energy consumption and GHG emissions in the EU—Systematic literature review. J. Clean. Prod. 2022, 358, 132006. [Google Scholar] [CrossRef]
- Bourcet, C. Empirical determinants of renewable energy deployment:A systematic literature review. Energy Econ. 2020, 85, 104563. [Google Scholar] [CrossRef]
- Akhatova, A.; Kranzl, L.; Schipfer, F.; Heendeniya, C.B. Agent-Based Modelling of Urban District Energy System Decarbonisation—A Systematic Literature Review. Energies 2022, 15, 554. [Google Scholar] [CrossRef]
- Nadgouda, S.G.; Kathe, M.V.; Fan, L.-S. Cold gas efficiency enhancement in a chemical looping combustion system using staged H2 separation approach. Int. J. Hydrog. Energy 2017, 42, 4751–4763. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Ji, X.; Wu, G.; Lin, J.; Zhang, J.; Su, P. Reconsider policy allocation strategies: A review of environmental policy instruments and application of the CGE model. J. Environ. Manag. 2022, 323, 116176. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Lu, P.; Liu, X.; Hossain, M.S.; Fang, Y.; Hanaoka, T.; Glynn, J. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality. Appl. Energy 2021, 298, 117209. [Google Scholar] [CrossRef]
- Espegren, K.; Damman, S.; Pisciella, P.; Graabak, I.; Tomasgard, A. The role of hydrogen in the transition from a petroleum economy to a low-carbon society. Int. J. Hydrog. Energy 2021, 46, 23125–23138. [Google Scholar] [CrossRef]
- Tatarewicz, I.; Lewarski, M.; Skwierz, S.; Krupin, V.; Jeszke, R.; Pyrka, M.; Sekula, M. The role of beccs in achieving climate neutrality in the european union. Energies 2021, 14, 7842. [Google Scholar] [CrossRef]
- Wang, G. The role of hydrogen cars in the economy of California. Int. J. Hydrog. Energy 2011, 36, 1766–1774. [Google Scholar] [CrossRef]
- Lee, D.-H. Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan. Int. J. Hydrog. Energy 2016, 41, 4333–4346. [Google Scholar] [CrossRef]
- Jokisch, S.; Mennel, T. Hydrogen in passenger transport: A macroeconomic analysis. Transp. Rev. 2009, 29, 415–438. [Google Scholar] [CrossRef]
- Sandoval, R.; Karplus, V.J.; Paltsev, S.; Reilly, J.M. Modelling prospects for Hydrogen-powered transportation until 2100. J. Transp. Econ. Policy 2009, 43, 291–316. Available online: http://www.jstor.org/stable/40599972 (accessed on 6 October 2022).
- Lee, D.-H.; Hsu, S.-S.; Tso, C.-T.; Su, A.; Lee, D.-J. An economy-wide analysis of hydrogen economy in Taiwan. Renew. Energy 2009, 34, 1947–1954. [Google Scholar] [CrossRef]
- Lee, D.-H. Development and environmental impact of hydrogen supply chain in Japan: Assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen. Int. J. Hydrog. Energy 2014, 39, 19294–19310. [Google Scholar] [CrossRef]
- Lee, D.-H. Efficiency and economic benefit of dark-fermentative biohydrogen production in Asian circular economies: Evaluation using soft-link methodology with data envelopment analysis (DEA) and computable general equilibrium model (CGE). Int. J. Hydrog. Energy 2020, 45, 3688–3698. [Google Scholar] [CrossRef]
- Mayer, J.; Bachner, G.; Steininger, K.W. Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. J. Clean. Prod. 2019, 210, 1517–1533. [Google Scholar] [CrossRef]
- Lee, D.-H.; Hung, C.-P. Toward a clean energy economy: With discussion on role of hydrogen sectors. Int. J. Hydrog. Energy 2012, 37, 15753–15765. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lee, D.-J. Hydrogen economy in Taiwan and biohydrogen. Int. J. Hydrog. Energy 2008, 33, 1607–1618. [Google Scholar] [CrossRef]
- Bae, J.H.; Cho, G.-L. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea. Energy Econ. 2010, 32 (Suppl. 1), S57–S66. [Google Scholar] [CrossRef]
- Silva, C.M.; Ferreira, A.F.; Bento, J.P. Impact of Hydrogen in the Road Transport Sector for Portugal 2010–2050. Energy Procedia 2014, 58, 207–214. [Google Scholar] [CrossRef]
- Fortes, P.; Pereira, R.; Pereira, A.; Seixas, J. Integrated technological-economic modeling platform for energy and climate policy analysis. Energy 2014, 73, 716–730. [Google Scholar] [CrossRef]
- Krook-Riekkola, A.; Berg, C.; Ahlgren, E.O.; Söderholm, P. Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model. Energy 2017, 141, 803–817. [Google Scholar] [CrossRef]
- Yusaf, T.; Laimon, M.; Alrefae, W.; Kadirgama, K.; Dhahad, H.A.; Ramasamy, D.; Kamarulzaman, M.K.; Yousif, B. Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach. Appl. Sci. 2022, 12, 781. [Google Scholar] [CrossRef]
- Hanley, E.S.; Deane, J.; Gallachóir, B.Ó. The role of hydrogen in low carbon energy futures—A review of existing perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Maestre, V.M.; Ortiz, A.; Ortiz, I. Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renew. Sustain. Energy Rev. 2021, 152, 111628. [Google Scholar] [CrossRef]
- Wang, G. Advanced vehicles: Costs, energy use, and macroeconomic impacts. J. Power Sources 2011, 196, 530–540. [Google Scholar] [CrossRef]
- Lee, D.-H. Toward the clean production of hydrogen: Competition among renewable energy sources and nuclear power. Int. J. Hydrog. Energy 2012, 37, 15726–15735. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; O’Neill, B.C.; Cheateau, J. Methods for including income distribution in global CGE models for long-term climate change research. Energy Econ. 2015, 51, 530–543. [Google Scholar] [CrossRef]
- Ghaith, Z.; Kulshreshtha, S.; Natcher, D.; Cameron, B.T. Regional Computable General Equilibrium models: A review. J. Policy Model. 2021, 43, 710–724. [Google Scholar] [CrossRef]
- Kar, S.K.; Sinha, A.S.K.; Bansal, R.; Shabani, B.; Harichandan, S. Overview of hydrogen economy in Australia. Wires Energy Environ. 2022, 12, e457. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J. Environ. Manag. 2018, 209, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Plötz, P. Hydrogen technology is unlikely to play a major role in sustainable road transport. Nat. Electron. 2022, 5, 8–10. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lee, D.-J. Biofuel economy and hydrogen competition. Energy Fuels 2008, 22, 177–181. [Google Scholar] [CrossRef]
- Mabugu, R.; Robichaud, V.; Maisonnave, H.; Chitiga, M. Impact of fiscal policy in an intertemporal CGE model for South Africa. Econ. Model. 2013, 31, 775–782. [Google Scholar] [CrossRef]
- Pang, J.; Timilsina, G. How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model. Renew. Sustain. Energy Rev. 2021, 145, 111034. [Google Scholar] [CrossRef]
- Talebian, H.; Herrera, O.E.; Mérida, W. Policy effectiveness on emissions and cost reduction for hydrogen supply chains: The case for British Columbia. Int. J. Hydrog. Energy 2021, 46, 998–1011. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Wang, R.R.; Zhao, Y.Q.; Babich, A.; Senk, D.; Fan, X.Y. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 2021, 329, 129797. [Google Scholar] [CrossRef]
- Mortensen, A.W.; Mathiesen, B.V.; Hansen, A.B.; Pedersen, S.L.; Grandal, R.D.; Wenzel, H. The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system—A study on the Danish energy system. Appl. Energy 2020, 275, 115331. [Google Scholar] [CrossRef]
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jäger-Waldau, A. Green hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 2021, 228, 113649. [Google Scholar] [CrossRef]
- Rose, A.Z.; Oladosu, G.; Lee, B.; Asay, G.B. The economic impacts of the september 11 terrorist attacks: A computable general equilibrium analysis. Peace Econ. Peace Sci. Public Policy 2009, 15, 4. [Google Scholar] [CrossRef]
- Harback, K.; Wojcik, L.; Callaham, M.B.; Drexler, J. Bringing an economy-wide perspective to NextGen benefits analysis. In Proceedings of the 9th AIAA Aviation Technology Integration and Operations (ATIO) Conference Aircraft Noise and Emissions Reduction Symposium (ANERS), Hilton Head, SC, USA,, 21–23 September 2009; pp. 2009–7061. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, Q. The economic impacts of traffic consumption during the COVID-19 pandemic in China: A CGE analysis. Transp. Policy 2021, 114, 330–338. [Google Scholar] [CrossRef]
- Zhao, X.; Taheripour, F.; Malina, R.; Staples, M.D.; Taylor, W.E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 2021, 779, 146238. [Google Scholar] [CrossRef]
- Cui, Q.; He, L.; Liu, Y.; Zheng, Y.; Wei, W.; Yang, B.; Zhou, M. The impacts of COVID-19 pandemic on China’s transport sectors based on the CGE model coupled with a decomposition analysis approach. Transp. Policy 2021, 103, 103–115. [Google Scholar] [CrossRef]
- Solaymani, S. Which government supports are beneficial for the transportation subsectors. Energy 2021, 235, 121349. [Google Scholar] [CrossRef]
- Betarelli Junior, A.A.; Faria, W.R.; Peoque, A.L.; Perobelli, F.S. COVID-19, public agglomerations and economic effects: Assessing the recovery time of passenger transport services in Brazil. Transp. Policy 2021, 110, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Straubinger, A.; Verhoef, E.T.; de Groot, H.L. Will urban air mobility fly? The efficiency and distributional impacts of UAM in different urban spatial structures. Transp. Res. Part C Emerg. Technol. 2021, 127, 103124. [Google Scholar] [CrossRef]
- Forsyth, P.; Dwyer, L.; Spurr, R.; Pham, T. The impacts of Australia’s departure tax: Tourism versus the economy? Tour. Manag. 2014, 40, 126–136. [Google Scholar] [CrossRef]
- Lennox, J. Impacts of high oil prices on tourism in New Zealand. Tour. Econ. 2012, 18, 781–800. [Google Scholar] [CrossRef]
- Dai, H.; Xie, Y.; Lie, J.; Masui, T. Aligning renewable energy targets with carbon emissions trading to achieve China’s INDCs: A general equilibrium assessment. Renew. Sustain. Energy Rev. 2018, 82, 4121–4131. [Google Scholar] [CrossRef]
- Choi, Y.; Liu, Y.; Lee, H. The economy impacts of Korean ETS with an emphasis on sectoral coverage based on a CGE approach. Energy Policy 2017, 109, 835–844. [Google Scholar] [CrossRef]
- Njoya, E.T. An analysis of the tourism and wider economics impacts of price-reducing reforms in air transport services in Egypt. Res. Transp. Econ. 2020, 79, 100795. [Google Scholar] [CrossRef]
- Njoya, E.T.; Nikitas, A. The role of air transport in employment creation and inclusive growth in the Global South: The case of South Africa. J. Transp. Geogr. 2020, 85, 102738. [Google Scholar] [CrossRef]
- Straubinger, A.; Verhoef, E.T.; de Groot, H.L. Going electric: Environmental and welfare impacts of urban ground and air transport. Transp. Res. Part D Transp. Environ. 2022, 102, 103145. [Google Scholar] [CrossRef]
- Some, A.; Dandres, T.; Gaudreault, C. Using a specific environmental tool to assess the impacts of biofuels transport policies. In Proceedings of the SAE 2013 AeroTech Congress and Exhibition AEROTECH, Montreal, QC, Canada, 24–26 September 2013; SAE Technical Papers. Volume 7, p. 100869. [Google Scholar] [CrossRef]
- Njoya, E.T.; Ragab, A.M. Economic Impacts of Public Air Transport Investment: A Case Study of Egypt. Sustainability 2022, 14, 2651. [Google Scholar] [CrossRef]
- Reimer, J.J.; Zheng, X. Economic analysis of an aviation bioenergy supply chain. Renew. Sustain. Energy Rev. 2017, 77, 945–954. [Google Scholar] [CrossRef]
- Pham, T.; Jago, L.; Spurr, R.; Marshall, J. The Dutch Disease effects on tourism—The case of Australia. Tour. Manag. 2015, 46, 610–622. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, W.; Li, M.; Liu, W. Exploring the impacts of a low-carbon policy instrument: A case of carbon tax on transportation in China. Resour. Conserv. Recycl. 2018, 139, 307–314. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Zhang, Z.; Southworth, F. The rebound effect on energy efficiency improvements in China’s transportation sector: A CGE analysis. J. Manag. Sci. Eng. 2020, 5, 249–263. [Google Scholar] [CrossRef]
- Winchester, N.; McConnachie, D.; Wollersheim, C.; Waitz, I.A. Economic and emissions impacts of renewable fuel goals for aviation in the US. Transp. Res. Part A Policy Pract. 2013, 58, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.; Avetisyan, M.; Rosoff, H.; Burns, W.J.; Slovic, P.; Chan, O. The Role of Behavioral Responses in the Total Economic Consequences of Terrorist Attacks on U.S. Air Travel Targets. Risk Anal. 2017, 37, 1403–1418. [Google Scholar] [CrossRef]
- Wu, R.; Dai, H.; Geng, Y.; Xie, Y.; Masui, T.; Tian, X. Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai. Appl. Energy 2016, 184, 1114–1122. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Dai, H.; Wilson, J.; Xie, Y.; Wu, R.; Yu, Z. Regional impacts of launching national carbon emissions trading market: A case study of Shanghai. Appl. Energy 2018, 230, 232–240. [Google Scholar] [CrossRef]
- Broin, Ó.E.; Guivarch, C. Transport infrastructure costs in low-carbon pathways. Transp. Res. Part D Transp. Environ. 2017, 55, 389–403. [Google Scholar] [CrossRef]
- Chen, Z.; Rose, A.Z.; Prager, F.; Chatterjee, S. Economic consequences of aviation system disruptions: A reduced-form computable general equilibrium analysis. Transp. Res. Part A Policy Pract. 2017, 95, 207–226. [Google Scholar] [CrossRef]
- Wise, M.; Muratori, M.; Kyle, P. Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis. Transp. Res. Part D Transp. Environ. 2017, 52, 244–253. [Google Scholar] [CrossRef]
- Wang, Z.; Kamali, F.P.; Osseweijer, P.; Posada, J.A. Socioeconomic effects of aviation biofuel production in Brazil: A scenarios-based Input-Output analysis. J. Clean. Prod. 2019, 230, 1036–1050. [Google Scholar] [CrossRef]
- Fuentes-Saguar, P.D.; Mainar-Causape, A.J.; Ferrari, E. The Role of Bioeconomy Sectors and Natural Resources in EU Economies: A Social Accounting Matrix-Based Analysis Approach. Sustainability 2017, 9, 2383. [Google Scholar] [CrossRef]
- Linz, M. Scenarios for the aviation industry: A Delphi-based analysis for 2025. J. Air Transp. Manag. 2012, 22, 28–35. [Google Scholar] [CrossRef]
- Lu, J.-L.; Wang, C.-Y. Investigating the impacts of air travellers’ environmental knowledge on attitudes toward carbon offsetting and willingness to mitigate the environmental impacts of aviation. Transp. Res. Part D Transp. Environ. 2018, 59, 96–107. [Google Scholar] [CrossRef]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrog. Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Falcone, P.M.; Hiete, M.; Sapio, A. Hydrogen economy and sustainable development goals: Review and policy insights. Curr. Opin. Green Sustain. Chem. 2021, 31, 100506. [Google Scholar] [CrossRef]
- Hancock, L.; Wollersheim, L. EU Carbon Diplomacy: Assessing Hydrogen Security and Policy Impact in Australia and Germany. Energies 2021, 14, 8103. [Google Scholar] [CrossRef]
- IRENA. Global Hydrogen Trade to Meet the 1.5 °C Climate Goal: Part III—Green Hydrogen Cost and Potential; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/May/IRENA_Global_Hydrogen_Trade_Costs_2022.pdf?rev=00ea390b555046118cfe4c448b2a29dc (accessed on 1 November 2022).
- Chiaramonti, D. Sustainable Aviation Fuels: The challenge of decarbonization. Energy Procedia 2019, 158, 1202–1207. [Google Scholar] [CrossRef]
Applied to | Category | Subcategory |
---|---|---|
Hydrogen and aviation | General information | Year of publication |
Journal affiliation | ||
Hydrogen and aviation | Model characteristics | Modeling framework |
Temporal dimension | ||
Geographical focus | ||
Data sources | ||
Hydrogen | Hydrogen focus topics | Hydrogen type |
Production technology | ||
Application technology | ||
Sectoral application | ||
Hydrogen supply chain | ||
Aviation | Aviation focus topics | Sectoral focus |
Type of disruption | ||
Fuel and propulsion technology | ||
Aviation supply chain | ||
Hydrogen and aviation | Macroeconomic evaluation | Policy instruments |
Indicators |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, T.; Gronau, S. Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models. Energies 2023, 16, 1439. https://doi.org/10.3390/en16031439
Mueller T, Gronau S. Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models. Energies. 2023; 16(3):1439. https://doi.org/10.3390/en16031439
Chicago/Turabian StyleMueller, Tobias, and Steven Gronau. 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models" Energies 16, no. 3: 1439. https://doi.org/10.3390/en16031439