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Abstract: Electric vehicles in a short time will make up the majority of the fleet of vehicles used in
general. This state of affairs will generate huge sets of data, which can be further investigated. The
paper presents a methodology for the analysis of electric vehicle data, with particular emphasis on
the energy consumption parameter. The prepared database contains data for 123 electric vehicles
for analysis. Data analysis was carried out in a Python environment with the use of the dabl API
library. Presentation of the results was made on the basis of data classification for continuous and
categorical features vs. target parameters. Additionally, a heatmap Pearson correlation coefficient
was performed to correlate the energy consumption parameter with the other parameters studied.
Through the data classification for the studied dataset, it can be concluded that there is no correlation
against energy consumption for the parameter charging speed; in contrast, for the parameters range
and maximum velocity, a positive correlation can be observed. The negative correlation with the
parameter energy consumption is for the parameter acceleration to 100 km/h. The methodology
presented to assess data from electric vehicles can be scalable for another dataset to prepare data for
creating machine learning models, for example.

Keywords: electric vehicles; e-mobility; data analytics; Python; energy consumption

1. Introduction

The world policy on the aspect of environmental care is moving towards climate
neutrality and also considering the transport and mobility sector [1]. In the European
Union context, the development of transport is currently conditioned by a package of
policy initiatives for state governments (i.e., the European Green Deal). Its goals are to
achieve full climate neutrality for Europe by 2050 [2]. This scenario includes a number of
measures that need to be implemented to reduce greenhouse gas emissions [3,4]. One such
measure is the use of electric vehicles (EVs) [5]. They allow the reduction of emissions from
road transport, which is one of the main emitters of carbon dioxide in the atmosphere. Road
transport accounts for one-fourth of total greenhouse gas emissions from anthropogenic
sources [6,7]. Another such measure is investment in the development of charging infras-
tructure [8]. Equally important is the conversion of public transport propulsion systems
from conventional internal combustion engines to fully electric ones [9]. Another goal of
the European Union’s transport policy is to reach a level of 60% of electric vehicle sales in
the general vehicle sales market by 2030 [10].

The EV market has recently undergone dynamic changes in accordance with the
growing demand and technological advancement of the vehicles that are sold [11,12].
Until recently, the availability of electric vehicles was low, and the demand itself was
relatively low. However, recently, the market demand for electric vehicles has increased.
This may have been helped by government programs that supported and subsidized the
purchase of electric vehicles [13–15]. As a result, the EV market has become competitive
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with conventional vehicles. The development of the technology used in EVs has undergone
a huge transformation [16]. Today, more and newer vehicles have longer range and faster
vehicle charging stages [17,18].

Several articles in the literature have investigated the electric vehicle (EV) market
considering whether it has overcome critical mass constraints and can achieve long-term
sustainable equilibria without subsidies. Countries such as Norway [19,20], which has a
clean energy system with a high share of hydropower and is implementing policies that will
reduce the sale of new cars with internal combustion engines to the limit by 2050, highlight
the importance of zero emissions vehicles in the future transport system. Other studies
have deepened a systematic classification of charging options, considering 27 countries in
the European Union together with Great Britain, Norway, and Switzerland [21–23]. The
results show a wide variation in charging costs between different countries and different
charging options, suggesting different policy options to reduce charging costs. The results
reveal that the charging costs at these stations are competitive with the fuel costs at typical
usage rates [24].

The energy consumption of electric vehicles refers to the amount of energy that is used
by the vehicle propulsion system [25]. This parameter depends on a number of vehicle
factors, including vehicle size, weight and aerodynamics, vehicle efficiency, driver’s driving
style, and driving conditions [26]. Since electric vehicles do not lose energy, for example,
due to friction of the internal combustion engine components, their efficiency is relatively
high and is about 70–80%, while for internal combustion vehicles it is 15–20% [27–29].
The energy consumption of electric vehicles is also very sensitive to weather conditions.
Winter conditions and low temperatures can greatly reduce the performance of this param-
eter [30,31]. The sensitivity of this parameter is also exemplified by driving style, where a
driver who drives aggressively over long distances may have higher energy consumption
than a driver who drives more efficiently over short distances [32,33]. It is important to
consider the energy consumption of an electric vehicle compared to another type of vehicle,
which ultimately calculates the total cost of owning such a vehicle and its potential impact
on the improvement of the environment.

Several studies have taken into consideration a number of parameters that characterize
the benefits and criticalities of the use of electric vehicles. A study conducted by Skuza and
Jurecki [34] indicates that one of the most sought-after aspects of an electric vehicle is its
energy consumption. This parameter is particularly important for electric vehicle users
who drive them in real conditions. Other parameters such as temperature, traffic conditions,
or the properties of an electric vehicle are closely related to energy consumption [35]. A
headwind component can also produce a criticality; in fact, the greater the wind, the greater
the energy required by the vehicle to overcome resistance to movement. In turn, weather
conditions are related to other factors such as the use of auxiliary systems. Studies have
shown that heating a vehicle is more energy intensive than cooling the interior. Analysis
of other factors, such as vehicle load, battery weight, and driver’s driving style, shows
variability in energy consumption [36,37]. It is important to emphasize that both increasing
load and increasing battery weight increase battery energy consumption. Several studies
have identified and evaluated factors that influence energy consumption comparatively,
i.e., comparing different factors and calculating which of them has an influence on vehicle
energy consumption [38–40]. It should be emphasized that route planning is energy efficient
for electric vehicles (EVs) according to [41]. In fact, knowing the cost of each link in the
road networks plays a key role in the energy-optimal route planning process. This depends
not only on the speed of the vehicle but also on the type of road. Another study by Yi and
Bauer [42] simultaneously considered the effects of wind speed, rolling resistance, parasitic
power, and temperature, highlighting the sensitivity of EV energy consumption to these
four environmental variables, which vary greatly with vehicle operating conditions. The
problem of the range of EVs was also analyzed by Mediouni et al. [43], who proposed a
hybrid approach that takes into account driving behavior, road conditions, the natural
environment, and additional weight, with real data collected using a city car.
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Several programming languages can be used to study electric vehicle data, one of the
most popular and accessible being Python. It contains many ready-made libraries that
enable a quick and efficient study of electric vehicles. In the work described, the API library
dabl was used to classify data by continuous and categorical features with respect to the
target parameter. The target parameter in the work was energy consumption.

Additionally, a heatmap Pearson correlation coefficient was performed to correlate
the energy consumption parameter with the other parameters studied. The purpose of the
study was to create a comprehensive methodology to process data from electric vehicles,
with a particular focus as a target parameter for energy consumption. The developed
analysis can be used, for example, to select a set of best predictors to create machine
learning models. They also provide some recommendations for further work in the context
of datasets for electric vehicles.

2. Methodology
2.1. Overall Description

The general scheme of the work is shown in Figure 1. The work assumed the anal-
ysis of selected parameters of electric vehicles, which can be accessed from basic vehicle
catalog data. The selected research parameters are as follows: release year, acceleration to
100 (km/h), max velocity (km/h), range (km), energy consumption (Wh/km), charging
speed (km/h), drivetrain type, plug type, and price (EUR). The work created a set of at-
tributes for 124 electric vehicle models. The Python programming environment was used to
process these data. Python is a general programming language and is used in many applica-
tions, including data analysis and artificial intelligence [44,45]. Its main characteristics are
its simplicity and flexibility of writing code and the fact that it has many libraries that can
be used, which reduces the importance of time spent preparing the program code [46,47].
The dabl API Python library was used to perform exploratory data analysis (EDA). The
dabl tool was used to create visualizations regarding continuous and categorical features vs.
target parameter. The target parameter in the study was the energy consumption parameter
(Wh/km). The Pearson correlation coefficient was also used to correlate other parameters
with the target parameter.
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The study focused on the analysis of the energy consumption parameter as a target
and its correlation with the other attributes parameters to see which other studied most
affect this parameter and to show the analytical capabilities of the tools used.

Figure 2 shows a scatter plot for the all attributes studied for energy consumption of
the 123 EVs analyzed.
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The general assumptions of the work include the following:

• Creation of a database for selected catalog parameters of electric vehicles;
• Using the Python environment to analyze the data for the target parameter en-

ergy consumption: uploading the data, validating the records, processing the data,
visualization;

• Calculating Pearson’s correlation coefficient and creating a heatmap to better illus-
trate the results of the impact of selected parameters for target parameter energy
consumption;

• Writing out recommendations for data analysis for electric vehicles, which can be used
to further develop, for example, computational models using artificial intelligence
methods.

2.2. Dataset

The dataset is the most important element that contributes to the accuracy of perform-
ing data analysis. In data analysis, the dataset is used to answer assumed hypotheses or to
identify trends and clusters in a data series [48,49]. The quality of the dataset is extremely
important, and it is necessary to ensure that all data records are properly stored and then
processed according to the assumed attributes [50]. When choosing and creating a dataset,
the following principles should be taken into account: relevance, quality, representativeness,
format, and preprocessing [51,52].

The dataset considered was an EV dataset that contained 1982 records. A total of
selected attributes of 123 EV models was analyzed. The research parameters are as follows.
manufacturer, model, release year, acceleration to 100 (km/h), max velocity (km/h), range
(km), energy consumption (Wh/km), charging speed (km/h), rapid charge availability,
drivetrain type, plug type, car body, segment, number of seats, and price (EUR). The
selected parameters are shown in percentages in the pie charts in Figure 3.
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Figure 3 shows selected parameters of the dataset of the investigated EVs. The first
parameter analyzed shown in the graphic is the release year. This parameter refers to the
first manufactured electric vehicle made available for sale. The oldest vehicle analyzed was
a 2010 vehicle, while it is also possible to observe vehicles produced in the years 2014, 2016,
2017, and 2019. The largest number of vehicles analyzed are in the range of 2019–2023, and
the largest number of electric vehicles worldwide were also produced in these years [53].
Additionally, a certain set of vehicles are currently under production and sale, and these
vehicles accounted for 17% of the total number of all EVs examined.
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Another parameter taken into consideration was the type of drivetrain. The following
types of drivetrains are used in electric vehicles: front-wheel drive (FWD), rear-wheel drive
(RWD), and all-wheel drive (AWD). FWD is characterized by the fact that the power of the
powertrain is transferred to the front wheels of the vehicle [54], while RWD is characterized
by the fact that the power is transferred to the rear wheels of the vehicle [55]. AWD is
characterized by the fact that the vehicle drives the power transmitted to all wheels [56].

For the dataset studied, the largest number of vehicles had an AWD system, accounting
for 44% of the total data.

For the number of seats for vehicle passengers, the largest number of data records for
this parameter was 5 seats (73%).

The next parameter is the vehicle segment. In the automotive industry, a segment
refers to a category of vehicles that have similar features and characteristics [57]. The largest
number of vehicles surveyed were classified in the C segment.

The car body was another parameter studied. The largest number of vehicles surveyed
in the analyzed dataset were SUVs. In recent years, SUVs (sport utility vehicles) have
gained popularity as a type of body for electric vehicles [58,59]. This state of affairs is
caused by the fact that the driving range of new electric vehicles has increased. SUVs,
although they are larger and weigh more, also have more space to store batteries, allowing
them to increase the range of the vehicle [60,61].

The last parameter analyzed in Figure 3 was the plug type. The plug type of an electric
vehicle (EV) refers to the type of connector and charging protocol that is used to charge
the EV’s battery. There are several types of plugs that are used to charge EVs, including
the following.

Type 1: This is a common plug type that is used in North America and parts of
Asia [62];

Type 2: This is a common plug type that is used in Europe and other parts of the
world [63,64];

CHAdeMO: This is a plug type that is used primarily in Japan and other parts of
Asia [65,66].

The specific plug type used for EV charging depends on the EV model and the charging
infrastructure available in a given region. Most of the examined vehicles had type 2 CCS.

The selection of the selected vehicles used the popularity of the models to reflect as
much as possible the statistical sample of EVs used worldwide.

2.3. Data Processing

Data processing aims at collecting and manipulating data in order to obtain useful
information from their analysis. For data processing, we can distinguish the following steps:
data collection, data cleaning, data integration, data transformation, and visualization [67].
Data cleaning aims to identify and correct incorrect attributes for saved data records, e.g.,
removing empty fields or removing duplicate data [68]. Data integration combines data
from various sources and prepares the data for further analysis [69]. Data transformation
and visualization cause data to be properly converted at the beginning to the required
specificity of the data format, and then visualizations are created [70–72]. A flowchart is
shown in Figure 4 for the activities performed.

The selected catalog EV parameters were saved in an excel spreadsheet and then
saved as a .csv file, which was imported into the Github data repository. The next steps for
cleaning operations and data handling are described below. Data processing is an important
step in the data analysis process as it helps ensure that data is accurate, consistent, and
ready for analysis. Data processing can be performed manually step by step to implement
the points described above, or it can be performed with the use of specialized tools that
allow some automation [73].
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In the first data processing step, the collected data was compiled into an .xls file, then
converted to a .csv file and uploaded to the data repository on the GitHub platform. Github
is a platform that provides tools for software development. It is a web hosting service
designed to implement programming projects [74]. This service has been operating since
2008. Github provides free program hosting and private repositories [75]. For the described
case, the Github platform was used as a data repository for the EV data.

The next step of data processing used the dabl library tool.
Dabl (Data Analysis Baseline Library) is a Python library that provides a set of tools

and utilities for data analysis and machine learning. The dabl library was created to
simplify and speed up the data preparation for further analysis. This library allows data
cleaning, preselection of the best-fitting model, and evaluation of this model [76]. The main
advantage of this library is the attempt to standardize the data analysis. This library is
often used together with others, e.g., pandas, NumPy, and skikit-learn [77,78].

The dabl tool was used to perform visualizations for: target distribution, continuous
feature vs. target, and categorical feature vs. target. Visualization analysis was presented
based on the parameter energy consumption. Additional analysis of the data studied was
performed on Pearson’s correlation coefficient.

For the most important functions of the dabl library, we can list the codes presented in
Algorithm 1.

Algorithm 1: Data processing of EVs in dabl

1. pip install dabl #install dabl package
2. from dabl import plot #import the plotting tool.
3. import matplotlib.pyplot as plt #importing the plot tool
4. import pandas as pd #importing a library for data analysis
5. df = pd.read_csv(‘location of EVs dataset’) #indicate location of EVs dataset
6. df.dtypes #define data types for analyzed columns
7. titanic_clean = dabl.clean(titanic, verbose = 0) #cleaning data
8. types = dabl.detect_types(titanic_clean) #cleaning data
9. plot(df, ‘Energy consumption (Wh/km)’) #creating visualization

The code snippets presented above can be used for further replication to create data
analysis for other datasets. Algorithm 1 briefly explains some steps to process the data for
the EV database under study. The algorithm recalls the functions that are used to install the
dabl library packages; then the steps for importing tools to prepare charts are presented.
The initial step is to identify the data source in csv format. A convenient way to save
data, and one also used in this work, is to import a ready-made database into a Github
data repository. Such a file requires prior preparation, while its raw path is needed for
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further processing. Subsequently, such data can be appropriately processed with a call to
the desired functions of the dabl library. For example, an important step is to check the
correctness of data writing and its appropriate cleaning. For this purpose, you can call the
function titanic_clean, which provides a lot of information that relates to various columns
for the data. The results of calling this cleaning function allow us to find incomplete data
records or those that identify the wrong type of data, which may interfere with further
analysis. Sometimes the use of inappropriate characters, such as “-”, can cause incorrect
identification of the type of data, which limits further analysis of such a set as, for example,
a sequence of numbers. The cleaning function also quickly identifies columns that are
identified as useless.

In further analysis, it can be noticed that certain parameters from the calculation are
excluded, for example, Pearson’s correlation coefficient. Such a state of affairs conditions the
recording of certain columns of data parameters; for example, there were some deficiencies
for data catalogs, e.g., for the charging speed parameter, and therefore the data could not
be qualified for analysis for continuous data.

3. Results and Discussion
3.1. Results of Data Analysis

The dabl tool imported input files for the data records under study with the target
parameter, which was energy consumption. Detailed analysis of the data attributes makes
it possible to see which parameters affect the size of others and whether the data used
for analysis is continuous data or data that are specific to classification. This is especially
helpful with larger datasets since by generating simple charts or looking at the data it is not
possible to classify such data. The data distribution for the energy consumption parameter
is shown in Figure 5.
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Based on Figure 5, it can be observed that the highest frequency is shown in the data
for the range of 160–175 Wh/km. The rest of the data is in the range from 175–270 Wh/km,
with the trend of data frequency decreasing to a level of about 230 Wh/km, while the
subsequent ranges are characterized by no visible trend. The average value of the energy
consumption parameter based on the work of Hao and Ho [79] is about 170–200 Wh/km,
which confirms a certain statistical sample which is included in the analysis of the work.

In the next step, the data cleaning command was applied. The dabl tool attempts to
identify the type of data and detect potential data quality problems. The purpose of this
cleaning process is to get the quality right for visualizing the results.

In the actual part of the work, exploratory data analysis (EDA) was performed on
the data. Exploratory data analysis (EDA) allows analysis and summary of datasets to
find certain relationships between data parameters [80–82]. The dabl tool selected four
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parameters that have the greatest impact on the target parameter. The analysis of these
parameters as continuous feature vs. target is shown in Figure 6.
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In data analysis, a continuous feature is a type of feature that can take on any value
within a range or scale. Continuous features are typically used to describe characteristics
or attributes of an entity that have a numerical value [83]. Based on Figure 6, it is possible
to analyze the influence of the studied feature as a continuous feature on the energy
consumption parameter. Data were presented as scatter plots and certain groups of data
were clustered, for example, plug type or drivetrain type. This state of affairs makes it
possible not only to analyze the influence of the parameters as a total dataset but also to
analyze in detail certain groups of data on the parameter studied.

The main conclusions based on Figure 6 are as follows:

• The parameters studied are characterized by the low presence of outliers, which could
affect the quality of further analysis.

• For three of the parameters studied (price (EUR), range (km), and release year), addi-
tional clusters were created for data against the plug-type parameter.

• For two of the parameters studied (acceleration to 100 (km/h) and charging speed
(km/h)), additional clusters were created for the data against the parameter drive-
train type.

• Positive, negative, and no correlation instances can be observed for the data.
• Positive correlations against energy consumption occur for the parameters range (km),

price (EUR), and release year.
• A negative correlation with energy consumption occurs for the acceleration parameter

to 100 km/h.



Energies 2023, 16, 1437 10 of 18

• No correlation against energy consumption is for the parameter charging speed (km/h).
• EVs with AWD have the best acceleration at 100 km/h for the analyzed set of vehicles.
• For the newer vehicles in the EV data series, an increasing trend in energy consumption

can be observed, especially for the group of vehicles that have Type 2 CCS.

Based on the dabl library’s automatically created series of graphs presenting the
parameters as above as a function of continuous feature vs. energy consumption as target,
we can observe, for example, attributes that have insufficient weight for analysis, e.g., Type
1 charging. The library itself also has some drawbacks in the form of graph generation
and the selection of appropriate categorical-type data to reflect the desired analytical effect;
e.g., in the presented graphs in Figure 6 it can be seen, for example, the presentation
of the results of the charging speed parameter categorized against the drivetrain type.
Therefore, we additionally reworked the database to create an additional graph presenting,
for example, charging speed as a function with the type from charger as a categorical
clustering of data.

In the next step, categorical feature vs. target parameter analysis was undertaken. In
data analysis, a categorical feature is a type of feature that can take on a limited number of
values, which are usually categories or labels. Categorical features are commonly used to
describe characteristics or attributes of an entity that does not have a numerical value [84].
In data analysis, it is common to use categorical features as predictors or independent
variables in a model and to use the target as the dependent variable [85]. The results for the
categorical feature vs. target parameter data presentation are shown in Figure 7.

Based on Figure 7, it is possible to observe the influence of categorical features as
researched parameters on the target parameters, i.e., energy consumption. The data were
classified in terms of manufacturer, max velocity (km/h), drivetrain type, plug type, card
body, segment, and seat parameters. The data were visualized and indicate the minimum,
maximum, mean, and standard deviation values. The main conclusions based on Figure 7
are as follows:

• The highest energy consumption characterizes the analyzed vehicles of the manufac-
turer Audi, also for Tesla, looking at the maximum value, one can observe its highest
value relative to the rest of the manufacturers.

• The smallest energy consumption is characterized by the vehicles of the manufacturers
Renault, Volkswagen, and Kia.

• The highest energy consumption is attributed to the parameter max. velocity for
speeds higher than 180 km/h and for the maximum value for max velocity 140 km/h.

• The highest energy consumption for average values relative to the drivetrain type
parameter occurs for AWD vehicles.

• The largest energy consumption relative to the car body parameter occurs for EVs of
the SUV, pickup, and SPV types, while the smallest occurs for hatchback vehicles.

• The largest energy consumption relative to the segment parameter occurs for the E
and N vehicle classes.

• For the number of seats parameter, the largest energy consumption for the surveyed
vehicles occurs for 6 seats, while the smallest occurs for 4 and 2 seats.

For categorical feature vs. energy consumption, it is also worth noting that taking into
account, for example, the variable number of seats could limit and reduce the predictive
capabilities of a future AI model since this parameter has little variation. In this case, to
create a robust AI model, it is recommended additionally to examine the variance of the
variables for each analyzed variable, which can be used as an explanatory variable for the
future machine learning model.

Pearson’s correlation coefficient was determined to verify the correlation of all the
studied with each other. Pearson’s correlation is a statistical measure of the linear relation-
ship between two continuous variables [86,87]. It is a measure of the strength and direction
of the association between variables, and ranges from −1 to 1 [88].
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Pearson’s correlation coefficient (r) is calculated based on Formula (1) [89].

r =
n ∑ xy − (∑ x ∑ y)√

n ∑ x2 − (∑ x)2
√

n ∑ y2 − (∑ y)2
(1)

where
n—number of paired values of x and y.
The results of the Pearson correlation coefficient calculation for the numerical parame-

ters are shown in Figure 8.
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The variables shown in Figure 8, their mutual correlation, do not include comparisons
for all analyzed parameters because some variables were classified as categorical and
therefore the coefficient was not calculated. An alternative method to check the correlation
for all variables regardless of their type could be to use a predictive power score, and
this is a recommendation for further work. However, the calculated Pearson’s correlation
coefficient gives some insight into the parameters potential use of the studied as future
explanatory variables for AI models. The results of the Pearson correlation coefficient
in Figure 8 are shown as a correlation heatmap. A correlation heatmap is a graphical
representation of the relationship between variables in a dataset. It is a type of visualization
that is used to understand the strength and direction of associations between variables and
is often used in data analysis and machine learning [90]. Based on the results of Figure 8,
the following correlations can be observed for the parameter energy consumption of the
studied parameter compared to the rest of the parameters:

• The highest correlation value with respect to energy consumption is found for the
price (EUR) and equals 0.4.

• The next parameters with the highest correlation with the energy consumption param-
eter are max. velocity (0.38), range (0.35), and seats (3.0).

• The negative correlation against the energy consumption parameter is for the accelera-
tion to 100 km/h parameter and is −0.41.

3.2. Discussion

The EV data evaluation and analysis methodology presented in the article allows for
a comprehensive classification of a given dataset. Developed visualizations of parameter
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variation against the target parameter allow us to better understand the data and, if
necessary, to clean it and supplement it with missing information. The analysis of the
graphs together with Pearson’s correlation coefficient analysis is helpful, for example, in
selecting a set of best predictors for further data analysis, such as in preparing a machine
learning model. However, the presented approach using the dabl library and, in addition,
the Pearson correlation coefficient must take into account additional factors that may
contribute to the selection of the best set of predictors. For example, a limitation of the use
of Pearson’s correlation coefficient is that it can only apply to categorical data, and this
limitation is evident in the results for the parameters tested. In addition, it is also worth
adding to the algorithms a function that checks the variance for variables because, for
example, such a parameter as the number of seats is characterized by low variance, which
would adversely affect the created future model. Future creation of a machine learning
model should be performed against a previous data check and classification against the
data series for regression and classification models. In terms of the dataset analyzed from
the analysis, one can see the potential for creating machine learning models. For example,
for classification data, a model can be created that will automatically create data clusters
for the car body parameter, creating a set of segment-specific data. Classification models,
based on the class label, predict the result based on input data [91,92], for the case under
study, for the parameters such as energy consumption or range. Based on the resulting data
analysis, it is also possible to create a regression model that would estimate, for example,
the range of a vehicle based on its year of manufacture, type of drivetrain, or charging
speed. Regression models are widely used for data from electric vehicles [93,94].

The performance of the EV data analysis presented in the paper and the possible
creation of potential machine learning models can be helpful for the analysis of a large
datasets for EVs. It is possible to predict, for example, future ranges of electric vehicles
based on historical and current data for these vehicles.

Examples of other works that analyze data from electric vehicles could be, for example,
the work by Lv et al. [95], where the authors collect data from a network of electric vehicles
for analysis using K-means and fuzzy theory to create a fuzzy mean clustering algorithm
theory (FCM). Another example of a work is the study by Sadeghianpourhamami et al. [96],
where the authors perform a quantification of electric vehicle flexibility based on a large-
scale real-world dataset. In this work, three behavioral clusters are identified based on
vehicle arrival and departure data. Another work using electric vehicle data analysis
is [97], which aimed to identify electric vehicle market share through panel data analysis
based on time series data from 2011 to 2015 in 31 countries. The authors selected the five
most influential independent variables that are expected to affect electric vehicle adoption.
Another interesting paper is [98], in which the authors analyze vehicle data based on the
public EV charging infrastructure network in the city of Amsterdam. This work is based on
an analysis of the actual usage patterns of the public charging infrastructure in the city of
Amsterdam, based on more than 109,000 charging sessions.

There are still few works that describe the problem of analyzing the energy consump-
tion parameter in relation to the analysis of datasets from electric vehicles. Examples of
such works include the work by Basso et al. [99], which presents an energy model that in-
cludes topography, speed, acceleration, and powertrain efficiency. This work also presents
a method to calculate the energy cost coefficients for the road network. Another work that
examines the topic of energy consumption in relation to the construction parameters of EVs
is the work by Zhao et al. [100]. The authors of this work propose an effective and scientific
method for the construction of a representative driving cycle for electric vehicles (EV).
However, the subject matter of the paper itself is exclusively related to the construction of a
driving cycle for electric vehicles.

Given the methodology developed and a review of the available literature, it can be
observed that there are a small number of articles describing the use of data for electric
vehicles in terms of energy consumption parameters. The methodology developed for
dealing with the use and analysis of such data can be helpful for analyzing even larger
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datasets as the methods and tools used can be scalable for other cases. Such information
and data can be used to create, for example, national reports based on vehicles in use.

4. Conclusions

The paper presents methodologies for creating analysis for electric vehicle databases
using the Python environment and the Dabl library. Analysis of data from these vehicles
offers the potential to create, for example, machine learning models which can be used, for
example, to classify the data or to create regression models for further prediction of, for
example, vehicle utilization, or against the analyzed parameter of energy consumption.

The presented methodology for data analysis for electric vehicles for selected parame-
ters allows:

• Analysis of the variability of the parameters under study for the entire dataset, which
improves the process of understanding the data.

• Analyzing the impact of the correlation of the selected target parameter against the
parameters describing it, in order to find patterns and, for example, appropriate
clusters of data for further analysis.

• Selection of appropriate parameters, i.e., the best predictors for a given explanatory
variable in order to create machine learning models.

• For the studied parameter energy consumption, there is a high correlation with other
parameters, e.g., the range of an electric vehicle or its maximum speed.

• For the examined parameter energy consumption, there is a negative correlation with
respect to the parameter acceleration to 100 km/h.

• There is no correlation with energy consumption for the parameter charging speed.
• The highest values of correlations with the energy consumption parameter are as

follows: max. velocity (0.38), range (0.35), and seats (3.0).

A limitation and at the same time an indication for further work on the topic is the
expansion of the current database to include more EV models. However, the very purpose
of the work was to show a methodology for processing EVs data that produces results as
quickly as possible, which helps to better understand the data and possibly gather the best
set of predictors that can be used for further analysis. A limitation of the work is also the
lack of variance calculation for the variables studied. The value of the parameters variance
for the studied case would give additional value added to the set of best possible predictors.
The use of Pearson’s correlation coefficient also does not give a complete view, in particular,
for categorical data analysis, so in this case further recommendations assume the use of
another indicator, which could be, for example, a predictive power score.

In terms of further work, it is also possible to use other libraries that are dedicated to
data analysis and can also give effective results to a good extent. It is also possible to create
your own libraries, which would be exclusively dedicated to, for example, the analysis of
data from electric vehicles and could be combined with ready-made databases that can be
updated on an ongoing basis.
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Nomenclature

AC Alternating current
AWD All-wheel drive
CCS Combined charging system
DC Direct current
EDA Exploratory data analysis
EV Electric vehicle
FWD Front-wheel drive
RWD Rear-wheel drive
SUV Sport utility vehicle
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94. Mądziel, M.; Jaworski, A.; Kuszewski, H.; Woś, P.; Campisi, T.; Lew, K. The Development of CO2 Instantaneous Emission Model
of Full Hybrid Vehicle with the Use of Machine Learning Techniques. Energies 2022, 15, 142. [CrossRef]

95. Lv, Z.; Qiao, L.; Cai, K.; Wang, Q. Big data analysis technology for electric vehicle networks in smart cities. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 1807–1816. [CrossRef]

96. Sadeghianpourhamami, N.; Refa, N.; Strobbe, M.; Develder, C. Quantitive analysis of electric vehicle flexibility: A data-driven
approach. Int. J. Electr. Power Energy Syst. 2018, 95, 451–462. [CrossRef]

97. Kim, S.; Lee, J.; Lee, C. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption? Sustainability 2017, 9, 1783.
[CrossRef]

98. Van den Hoed, R.; Helmus, J.R.; De Vries, R.; Bardok, D. Data analysis on the public charge infrastructure in the city of Amsterdam.
World Electr. Veh. J. 2013, 6, 829–838. [CrossRef]

99. Basso, R.; Kulcsár, B.; Egardt, B.; Lindroth, P.; Sanchez-Diaz, I. Energy consumption estimation integrated into the electric vehicle
routing problem. Transp. Res. Part D Transp. Environ. 2019, 69, 141–167. [CrossRef]

100. Zhao, X.; Ye, Y.; Ma, J.; Shi, P.; Chen, H. Construction of electric vehicle driving cycle for studying electric vehicle energy
consumption and equivalent emissions. Environ. Sci. Pollut. Res. 2020, 27, 37395–37409. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.asoc.2022.109920
http://doi.org/10.3102/1076998619832248
http://doi.org/10.3390/e23101368
http://doi.org/10.35940/ijitee.L3591.1081219
http://doi.org/10.1002/mas.21602
http://doi.org/10.3390/en14175510
http://doi.org/10.3390/asi4010018
http://doi.org/10.1109/TFUZZ.2019.2949765
http://doi.org/10.1016/j.enconman.2018.12.103
http://doi.org/10.1080/02664763.2022.2137477
http://doi.org/10.3390/fi14030079
http://doi.org/10.37394/232024.2022.2.19
http://doi.org/10.3390/rs12071135
http://doi.org/10.1016/j.rser.2019.03.040
http://doi.org/10.3390/en15010142
http://doi.org/10.1109/TITS.2020.3008884
http://doi.org/10.1016/j.ijepes.2017.09.007
http://doi.org/10.3390/su9101783
http://doi.org/10.3390/wevj6040829
http://doi.org/10.1016/j.trd.2019.01.006
http://doi.org/10.1007/s11356-020-09094-4

	Introduction 
	Methodology 
	Overall Description 
	Dataset 
	Data Processing 

	Results and Discussion 
	Results of Data Analysis 
	Discussion 

	Conclusions 
	References

