Slip Backflow of Polymers in Elastic Fractures for Subsurface Heat Recovery
Abstract
:1. Introduction
2. Problem Formulation
3. Solution
4. Results
4.1. Time Evolution of Fracture Aperture
4.2. Effect of the Friction Coefficient on the Fracture Opening
4.3. Pressure Distribution Inside the Fracture
5. Conclusions
- We employed the lubrication approximation, assuming the fracture aperture is significantly smaller than its characteristic length.
- We applied the linear Navier slip law to model the friction of the fracture walls.
- We utilized the Winkler model of elastic foundations to represent the elastic deformation of the pre-strained fracture walls.
- Our numerical results recover the semi-analytical solutions of the special case of Newtonian fluid and zero external pressure.
- When the external pressure is non-zero, the fracture aperture reaches the asymptotic value of in the late stages of hydraulic fracturing for both Newtonian and non-Newtonian fluids. The asymptotic value is obtained at early times for the shear-thinning fluids with larger values.
- The fluid rheological index () remarkably modifies the backflow propagation inside the fracture.
- The variation of slip number () does not have a significant impact on the overall physics of the problem.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Slip length (friction coefficient) [L] | |
Apparent viscosity of the carrier fluid [] | |
Shear stress acting on the fracture wall [] | |
Elastic modulus of the fracture walls [] | |
Time dependent fracture aperture [L] | |
Initial fracture aperture at the initial time step () [L] | |
Dimensionless slip number [-] | |
Fracture length [L] | |
Fracture spacing [L] | |
Power-law fluid consistency index [] | |
Power-law fluid index [-] | |
Pressure inside the fracture [] | |
Uniform external pressure [] | |
Fracture flow rate [] | |
Fluid velocity [] | |
Fracture width [L] | |
t | Fracture flow propagation time [T] |
EGS | Enhanced Geothermal Systems |
HDR | Hot Dry Rock |
ODE | Ordinary Differential Equation |
ST | Shear-thinning Fluid |
TIBT | Thermal Injection Backflow Test |
References
- van der Zwaan, B.; Longa, F.D. Integrated assessment projections for global geothermal energy use. Geothermics 2019, 82, 203–211. [Google Scholar] [CrossRef]
- Dalla Longa, F.; Nogueira, L.P.; Limberger, J.; van Wees, J.D.; van der Zwaan, B. Scenarios for geothermal energy deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Gong, H.; Wang, B.; Liang, H.; Luo, Z.; Cao, Y. Strategic analysis of China’s geothermal energy industry. Front. Eng. Manag. 2020, 8, 390–401. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. Impact of enhanced geothermal systems on US energy supply in the twenty-first century. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 1057–1094. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.; Morales, M.; D’Amico, S.; Liarte, I. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Kakati, A.; Bera, A.; Al-Yaseri, A. A review on advanced nanoparticle-induced polymer flooding for enhanced oil recovery. Chem. Eng. Sci. 2022, 262, 117994. [Google Scholar] [CrossRef]
- McLennan, J.; Walton, I.; Moore, J.; Brinton, D.; Lund, J. Proppant backflow: Mechanical and flow considerations. Geothermics 2015, 57, 224–237. [Google Scholar] [CrossRef]
- Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Liu, J.W.; Wei, K.H.; Xu, S.W.; Cui, J.; Ma, J.; Xiao, X.L.; Xi, B.D.; He, X.S. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Sci. Total Environ. 2021, 756, 144142. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Sanjuan, B.; Pinault, J.L.; Rose, P.; Gérard, A.; Brach, M.; Braibant, G.; Crouzet, C.; Foucher, J.C.; Gautier, A.; Touzelet, S. Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005. Geothermics 2006, 35, 622–653. [Google Scholar] [CrossRef]
- Kocabas, I. Geothermal reservoir characterization via thermal injection backflow and interwell tracer testing. Geothermics 2005, 34, 27–46. [Google Scholar] [CrossRef]
- Hermans, T.; Wildemeersch, S.; Jamin, P.; Orban, P.; Brouyère, S.; Dassargues, A.; Nguyen, F. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT. Geothermics 2015, 53, 14–26. [Google Scholar] [CrossRef]
- Jung, Y.; Pruess, K. A closed-form analytical solution for thermal single-well injection-withdrawal tests. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Horne, R.N. Effects of Water Injection into Fractured Geothermal Reservoirs: A Summary of Experience Worldwide; Technical Report; Stanford Geothermal Program, Interdisciplinary Research in Engineering and Earth Sciences, Stanford University: Stanford, CA, USA, 1982. [Google Scholar] [CrossRef]
- Axelsson, G.; Flovenz, O.G.; Hauksdottir, S.; Hjartarson, A.; Liu, J. Analysis of tracer test data, and injection-induced cooling, in the Laugaland geothermal field, N-Iceland. Geothermics 2001, 30, 697–725. [Google Scholar] [CrossRef]
- Shi, Y.; Song, X.; Shen, Z.; Wang, G.; Li, X.; Zheng, R.; Geng, L.; Li, J.; Zhang, S. Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells. Energy 2018, 163, 38–51. [Google Scholar] [CrossRef]
- Cui, G.; Ren, S.; Dou, B.; Ning, F. Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: The superiority and existing problems. Geosci. Front. 2021, 12, 101078. [Google Scholar] [CrossRef]
- Lenci, A.; Putti, M.; Di Federico, V.; Méheust, Y. A Lubrication-Based Solver for Shear-Thinning Flow in Rough Fractures. Water Resour. Res. 2022, 58, e2021WR031760. [Google Scholar] [CrossRef]
- Lenci, A.; Méheust, Y.; Putti, M.; Di Federico, V. Monte Carlo Simulations of Shear-Thinning Flow in Geological Fractures. Water Resour. Res. 2022, 58, e2022WR032024. [Google Scholar] [CrossRef]
- Tosco, T.; Sethi, R. Transport of Non-Newtonian Suspensions of Highly Concentrated Micro- and Nanoscale Iron Particles in Porous Media: A Modeling Approach. Environ. Sci. Technol. 2010, 44, 9062–9068. [Google Scholar] [CrossRef]
- Comba, S.; Dalmazzo, D.; Santagata, E.; Sethi, R. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J. Hazard. Mater. 2011, 185, 598–605. [Google Scholar] [CrossRef]
- Dejam, M. Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 2018, 189, 296–310. [Google Scholar] [CrossRef]
- Dana, A.; Zheng, Z.; Peng, G.G.; Stone, H.A.; Huppert, H.E.; Ramon, G.Z. Dynamics of viscous backflow from a model fracture network. J. Fluid Mech. 2018, 836, 828–849. [Google Scholar] [CrossRef]
- Lenci, A.; Chiapponi, L.; Longo, S.; Di Federico, V. Experimental investigation on backflow of power-law fluids in planar fractures. Phys. Fluids 2021, 33, 083111. [Google Scholar] [CrossRef]
- Zeighami, F.; Lenci, A.; Longo, S.; Di Federico, V. Backflow Dynamics of Newtonian Fluids in an Elastic Fracture with Slip Walls. Environ. Sci. Proc. 2022, 20, 21045. [Google Scholar] [CrossRef]
- Ferrás, L.; Nóbrega, J.; Pinho, F. Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip. J. Non-Newton. Fluid Mech. 2012, 175–176, 76–88. [Google Scholar] [CrossRef]
- MathWorks. MATLAB, version: 23.2.0.2391609 (R2023b); MathWorks: Portola Valley, CA, USA, 2023.
- Zeighami, F.; Lenci, A.; Di Federico, V. Drainage of power-law fluids from fractured or porous finite domains. J. Non-Newton. Fluid Mech. 2022, 305, 104832. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, L.; Wang, T.; Singh, K.; Wang, Z.L.; Chen, X. Can homogeneous slip boundary condition affect effective dispersion in single fractures with Poiseuille flow? J. Hydrol. 2020, 581, 124385. [Google Scholar] [CrossRef]
- Zhong, L.; Oostrom, M.; Truex, M.; Vermeul, V.; Szecsody, J. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 2013, 244–245, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Barbati, A.C.; Desroches, J.; Robisson, A.; McKinley, G.H. Complex Fluids and Hydraulic Fracturing. Annu. Rev. Chem. Biomol. 2016, 7, 415–453. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenci, A.; Zeighami, F.; Daprà, I.; Di Federico, V. Slip Backflow of Polymers in Elastic Fractures for Subsurface Heat Recovery. Energies 2023, 16, 7999. https://doi.org/10.3390/en16247999
Lenci A, Zeighami F, Daprà I, Di Federico V. Slip Backflow of Polymers in Elastic Fractures for Subsurface Heat Recovery. Energies. 2023; 16(24):7999. https://doi.org/10.3390/en16247999
Chicago/Turabian StyleLenci, Alessandro, Farhad Zeighami, Irene Daprà, and Vittorio Di Federico. 2023. "Slip Backflow of Polymers in Elastic Fractures for Subsurface Heat Recovery" Energies 16, no. 24: 7999. https://doi.org/10.3390/en16247999
APA StyleLenci, A., Zeighami, F., Daprà, I., & Di Federico, V. (2023). Slip Backflow of Polymers in Elastic Fractures for Subsurface Heat Recovery. Energies, 16(24), 7999. https://doi.org/10.3390/en16247999