Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review
Abstract
:1. Introduction
2. Review Methods
3. Description of the State of Knowledge
3.1. Sustainability in Forest-Biomass-Distribution Logistics
3.1.1. Technological and Business Considerations
3.1.2. Ecological Issues
3.1.3. Social Issues
3.2. Assessing Forest-Biomass-Distribution Logistics
3.2.1. Business Evaluations
3.2.2. Ecological Assessments
3.2.3. Social and Multivariate Assessments
3.3. Optimization of Forest-Biomass-Distribution Logistics
3.3.1. Business Optimization
3.3.2. Business, Ecological, and Social Optimization
3.3.3. Business, Ecological, and Social Optimization
4. Discussion
5. Conclusions
- “Economic considerations”: Investment and operating costs must be considered, as well as potential financial benefits. Incorporating forest renewable energy into the economy can benefit job creation and increase the sustainability of local communities.
- “Environmental impact”: Renewable energy sources, such as forest-based energy, can help reduce greenhouse gas emissions. However, the impact on local ecosystems needs to be carefully analyzed, especially in the context of tree cutting, its rate, and the potential for forest regeneration.
- “Social acceptance”: This aspect requires engaging and educating local communities and understanding their concerns and needs. It is important that communities understand the benefits of forest renewable energy and are involved in the decision-making process.
- “Policy and regulatory integration”: Effective policy and regulation can help balance different interests and encourage investment in sustainable energy sources.
- “Innovation and technology”: Developing renewable energy technologies can help increase efficiency and reduce the environmental impact.
- “Long-term planning”: A long-term approach that takes into account climate change, the needs of future generations, and potential changes in the economic environment is important for achieving a sustainable balance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Liu, Y.; Lin, B. Should China support the development of biomass power generation? Energy 2018, 163, 16–425. [Google Scholar] [CrossRef]
- Zhai, J.; Burke, I.T.; Stewart, D.I. Beneficial management of biomass combustion ashes. Renewable and Sustainable. Energy Rev. 2021, 151, 111555. [Google Scholar] [CrossRef]
- IEA Bioenergy. Potential Contribution of Bioenergy to the World’s Future Energy Demand. 2007. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Potential-Contribution-of-Bioenergy-to-the-Worlds-Future-Energy-Demand.pdf (accessed on 15 October 2023).
- Suttles, S.A.; Tyner, W.E.; Shively, G.; Sands, R.D.; Sohngen, B. Business effects of bioenergy policy in the United States and Europe: A general equilibrium approach focusing on forest biomass. Renew. Energy 2014, 69, 428–436. [Google Scholar] [CrossRef]
- Buchholz, T.; Mason, T.; Springsteen, B.; Gunn, J.; Saah, D. Carbon Life Cycle Assessment on California-Specific Wood Products Industries: Do Data Backup General Default Values for Wood Harvest and Processing? Forests 2021, 12, 177. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Barrette, J.; Paré, D.; Manka, F.; Guindon, L.; Bernier, P.; Titus, B. Forecasting the spatial distribution of logging residues in Canada’s managed forests. Can. J. For. Res. 2018, 48, 1470–1481. [Google Scholar] [CrossRef]
- Tomczak, K.; Latterini, F.; Smarul, N.; Stanula, Z.; Jelonek, T.; Kuźmiński, R.; Łakomy, P.; Tomczak, A. Moisture Content of Fresh Scots Pine Wood in Areas near Damage Caused by Harvester Head Feed Rollers. Forests 2023, 14, 1276. [Google Scholar] [CrossRef]
- Sánchez Lopez, J.; Curt, M.D.; Robert, N.; Fernández, J. Biomass Resources. Role Bioenergy Bioeconomy 2019, 25–111. [Google Scholar] [CrossRef]
- Paluš, H.; Parobek, J.; Moravčík, M.; Kovalčík, M.; Dzian, M.; Murgaš, V. Projecting Climate Change Potential of Harvested Wood Products under Different Scenarios of Wood Production and Utilization: Study of Slovakia. Sustainability 2020, 12, 2510. [Google Scholar] [CrossRef]
- Eliasson, L.; Eriksson, A.; Mohtashami, S. Analysis of factors affecting productivity and costs for a high-performance chip supply system. Appl. Energy 2017, 185, 497–505. [Google Scholar] [CrossRef]
- Stanula, Z.; Wieruszewski, M.; Mydlarz, K.; Adamowicz, K. Fuel use reduction and business savings from optimization of road transportation of coniferous roundwood. Energies 2023, 16, 5334. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tolis, A.I.; Tatsiopoulos, I.P. Combined Municipal Solid Waste and biomass system optimization for district energy applications. Waste Manag. 2014, 34, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Gold, S.; Seuring, S. Distribution logistics and logistics issues of bio-energy production. J. Clean. Prod. 2011, 19, 32–42. [Google Scholar] [CrossRef]
- Agustina, F.; Vanany, I.; Siswanto, N. Biomass Distribution logistics Design, Scheduling and Management: A Review of Literature. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok, Thailand, 16–19 December 2018; Volume 5, pp. 884–888. [Google Scholar] [CrossRef]
- Castro, D.M.; Parreiras, F.S. A review on multi-criteria decision-making for energy efficiency in automotive engineering. Appl. Comput. Inform. 2018, 17, 1016. [Google Scholar] [CrossRef]
- Ba, B.H.; Prins, C.; Prodhon, C. Models for optimization and performance evaluation of biomass distribution logistics: An Operations Research perspective. Renew. Energy 2016, 87, 977–989. [Google Scholar] [CrossRef]
- Cambero, C.; Sowlati, T. Assessment and optimization of forest biomass distribution logistics from business, social and ecological perspectives—A review of literature. Renew. Sustain. Energy Rev. 2014, 36, 62–73. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel distribution logistics optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2013, 66, 36–56. [Google Scholar] [CrossRef]
- Gital Durmaz, Y.; Bilgen, B. Multi-objective optimization of sustainable biomass distribution logistics network design. Appl. Energy 2020, 272, 115259. [Google Scholar] [CrossRef]
- De Meyer, A.; Cattrysse, D.; Rasinmäki, J.; Van Orshoven, J. Methods to optimize the design and management of biomass-for-bioenergy distribution logistics: A review. Renew. Sustain. Energy Rev. 2014, 31, 657–670. [Google Scholar] [CrossRef]
- Stupak, I.; Lattimore, B.; Titus, B.D.; Tattersall Smith, C. Criteria and indicators for sustainable forest fuel production and harvesting: A review of current standards for sustainable forest management. Biomass Bioenergy 2011, 35, 3287–3308. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. Problems of sustainable transport of large-sized roundwood. Sustainability 2020, 12, 2038. [Google Scholar] [CrossRef]
- Zeng, Y.; Cai, Y.; Huang, G.; Dai, J. A Review on Optimization Modeling of Energy Systems Scheduling and GHG Emission Mitigation under Uncertainty. Energies 2011, 4, 1624–1656. [Google Scholar] [CrossRef]
- Jeong, J.S. Biomass Feedstock and Climate Change in Agroforestry Systems: Participatory Location and Integration Scenario Analysis of Biomass Power Facilities. Energies 2018, 11, 1404. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, K.; Robert, N.; Cazzaniga, N.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; Report number: JRC122719; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, C.; Wang, S.; Zhang, L. Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal. Energies 2023, 16, 1553. [Google Scholar] [CrossRef]
- Jafri, Y.; Wetterlund, E.; Anheden, M.; Kulander, I.; Håkansson, Å.; Furusjö, E. Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. businesss, GHG emissions, technology maturity and production potentials. Energy 2019, 172, 1312–1328. [Google Scholar] [CrossRef]
- Tunå, P.; Hulteberg, C. Woody biomass-based transportation fuels—A comparative techno-business study. Fuel 2014, 117, 1020–1026. [Google Scholar] [CrossRef]
- Ben-Iwo, J.; Manovic, V.; Longhurst, P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sustain. Energy Rev. 2016, 63, 172–192. [Google Scholar] [CrossRef]
- Pena, N.; Sheehan, J. Biofuels for Transportation: A Joint Initiative of BEA International and the Climate Business Network. CDM Invest. Newsl. 2007, 3, 3–10. Available online: https://www.c2es.org/docUploads/Pena-CBNet.pd (accessed on 15 October 2023).
- Lerma-Arce, V.; Oliver-Villanueva, J.V.; Segura-Orenga, G. Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenergy 2017, 99, 90–96. [Google Scholar] [CrossRef]
- Coady, J.; Duquette, J. Quantifying the impacts of biomass driven combined heat and power grids in northern rural and remote communities. Renew. Sustain. Energy Rev. 2021, 148, 111296. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- Górna, A.; Wieruszewski, M.; Szabelska-Beręsewicz, A.; Stanula, Z.; Adamowicz, K. Biomass price prediction based on the example of Poland. Forests 2022, 13, 2179. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Stanula, Z.; Adamowicz, K. Energy use of woody biomass in Poland: Its resources and harvesting form. Energies 2022, 15, 6812. [Google Scholar] [CrossRef]
- Iribarren, D.; Susmozas, A.; Petrakopoulou, F.; Dufour, J. Ecological and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J. Clean. Prod. 2014, 69, 165–175. [Google Scholar] [CrossRef]
- Nikodinoska, N.; Buonocore, E.; Paletto, A.; Franzese, P.P. Wood-based bioenergy value chain in mountain urban districts: An integrated ecological accounting framework. Appl. Energy 2017, 186, 197–210. [Google Scholar] [CrossRef]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Petrović, B.; Zhang, X.; Eriksson, O.; Wallhagen, M. Life Cycle Cost Analysis of a Single-Family House in Sweden. Buildings 2021, 11, 215. [Google Scholar] [CrossRef]
- Hu, X.; He, Y.; Gao, L.; Umer, M.; Guo, Y.; Tan, Q.; Kang, L.; Fang, Z.; Shen, K.; Xia, T. Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests 2023, 14, 1258. [Google Scholar] [CrossRef]
- Western, J.M.; Cheng, A.S.; Anderson, N.M.; Motley, P. Examining the Social Acceptability of Forest Biomass Harvesting and Utilization from Collaborative Forest Landscape Restoration: A Case Study from Western Colorado, USA. J. For. 2017, 115, 530–539. [Google Scholar] [CrossRef]
- Egnell, G. Effects of slash and stump harvesting after final felling on stand and site productivity in Scots pine and Norway spruce. For. Ecol. Manag. 2016, 371, 42–49. [Google Scholar] [CrossRef]
- Akhtari, S.; Sowlati, T.; Day, K. Business feasibility of utilizing forest biomass in district energy systems—A review. Renew. Sustain. Energy Rev. 2014, 33, 117–127. [Google Scholar] [CrossRef]
- Coakley, S.; Petti, C. Impacts of the Invasive Impatiens glandulifera: Lessons Learned from One of Europe’s Top Invasive Species. Biology 2021, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, R.; Saulino, L.; Cavallo, C.; Allevato, E.; Pindozzi, S.; Cervelli, E.; Conti, P.; Mazzoleni, S.; Saracino, A. The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park. Fire 2021, 4, 95. [Google Scholar] [CrossRef]
- Dufossé, K.; Marie-Charlotte, M.; Augiseau, V.; Henrion, T.; Djelal, H. Quantification and Ecological Assessment of Wood Ash from Biomass Power Plants: Case Study of Brittany Region in France. Sustainability 2022, 14, 99. [Google Scholar] [CrossRef]
- Vanclay, F. International principles for social impact assessment. Impact Assess. Proj. Apprais. 2003, 21, 5–12. [Google Scholar] [CrossRef]
- McKay, H. Ecological, business, social and political drivers for increasing use of woodfuel as a renewable resource in Britain. Biomass Bioenergy 2006, 30, 308–315. [Google Scholar] [CrossRef]
- Schnorf, V.; Trutnevyte, E.; Bowman, G.; Burg, V. Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland. J. Clean. Prod. 2021, 293, 125971. [Google Scholar] [CrossRef]
- Perpiñá, C.; Alfonso, D.; Pérez-Navarro, A.; Peñalvo, E.; Vargas, C.; Cárdenas, R. Methodology based on geographic information systems for biomass logistics and transport optimisation. Renew. Energy 2009, 34, 555–565. [Google Scholar] [CrossRef]
- Moskalik, T.; Gendek, A. Production of Chips from Logging Residues and Their Quality for Energy: A Review of European Literature. Forests 2019, 10, 262. [Google Scholar] [CrossRef]
- Stolarski, J.; Wierzbicki, S.; Nitkiewicz, S.; Stolarski, M.J. Wood Chip Production Efficiency Depending on Chipper Type. Energies 2023, 16, 4894. [Google Scholar] [CrossRef]
- Xu, J.; Chang, S.; Yuan, Z.; Jiang, Y.; Liu, S.; Li, W.; Ma, L. Regionalized Techno-Business Assessment and Policy Analysis for Biomass Molded Fuel in China. Energies 2015, 8, 13846–13863. [Google Scholar] [CrossRef]
- Alizadeh, P.; Tabil, L.G.; Mupondwa, E.; Li, X.; Cree, D. Technobusiness Feasibility of Bioenergy Production from Wood Sawdust. Energies 2023, 16, 1914. [Google Scholar] [CrossRef]
- De, S.; Assadi, M. Impact of cofiring biomass with coal in power plants—A techno-business assessment. Biomass Bioenergy 2009, 33, 283–293. [Google Scholar] [CrossRef]
- Kazagic, A.; Music, M.; Smajevic, I.; Ademovic, A.; Redzic, E. Possibilities and Sustainability of “biomass for Power” Solutions in the Case of a Coal-Based Power Utility. Clean Technol. Environ. Policy 2016, 18, 1675–1683. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Van Le, Q.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Sonne, C.; Tabatabaei, M.; Lam, S.S.; Peng, W. An Overview on the Conversion of Forest Biomass into Bioenergy. Front. Energy Res. 2021, 9, 684234. [Google Scholar] [CrossRef]
- Huang, H.; Ramaswamy, S.; Al-Dajani, W.; Tschirner, U.; Cairncross, R.A. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and business analysis. Biomass Bioenergy 2009, 33, 234–246. [Google Scholar] [CrossRef]
- Elias, M.; Dees, J.; Cabiyo, B.; Saksa, P.; Sanchez, D.L. Financial Analysis of Innovative Wood Products and Carbon Finance to Support Forest Restoration in California. For. Prod. J. 2023, 73, 31–42. [Google Scholar] [CrossRef]
- Cebrucean, D.; Cebrucean, V.; Ionel, I. Modeling and Evaluation of a Coal Power Plant with Biomass Cofiring and CO2 Capture. In Recent Advances in Carbon Capture and Storage; Headquarters IntechOpen Limited 5 Princes Gate Court: London, UK, 2017. [Google Scholar] [CrossRef]
- Luo, H.; Niedzwiecki, L.; Arora, A.; Mościcki, K.; Pawlak-Kruczek, H.; Krochmalny, K.; Baranowski, M.; Tiwari, M.; Sharma, A.; Sharma, T.; et al. Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier. Energies 2020, 13, 3018. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Mokaya, R. Integrated Biomass Thermochemical Conversion for Clean Energy Production: Process Design and Business Analysis. J. Ecol. Chem. Eng. 2019, 7, 103093. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tatsiopoulos, I.P.; Tolis, A. An optimization model for multi-biomass tri-generation energy supply. Biomass Bioenergy 2009, 33, 223–233. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2009, 77, 59–69. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Wang, Z.; Pan, X. Comparison of China’s Biomass Combustion Power Generation with Different Installed Capacities. Energies 2022, 15, 1535. [Google Scholar] [CrossRef]
- Kadam, K.; Wooley, R.; Aden, A.; Nguyen, Q.; Yancey, M.; Ferraro, F. Softwood forest thinnings as a biomass source for ethanol production: A feasibility study for California. Biotechnol. Prog. 2000, 16, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Optimization and Analytics of Decarbonized Forest and Biomass Distribution Logistics; Graduate Theses, Dissertations, and Problem Reports; WVU Digital Publishing Institute: Morgantown, WV, USA, 2022; Volume 11434, Available online: https://researchrepository.wvu.edu/etd/11434 (accessed on 15 October 2023).
- Danon, G.; Furtula, M.; Mandić, M. Possibilities of implementation of CHP (combined heat and power) in the wood industry in Serbia. Energy 2013, 48, 169–176. [Google Scholar] [CrossRef]
- Gallagher, T.V.; Kantavichai, R.; Teeter, L.D. An Business Analysis of Incorporating Biomass Thinning into Loblolly Pine Plantations in Alabama. Open J. For. 2017, 7, 172–187. [Google Scholar] [CrossRef]
- Niquidet, K.; Stennes, B.; van Kooten, G.C. Bioenergy from Mountain Pine Beetle Timber and Forest Residuals: A Cost Analysis. Can. J. Agric. Bus. Rev. Can. D’agroeconomie 2012, 60, 195–210. [Google Scholar] [CrossRef]
- Brown, D.; Rowe, A.; Wild, P. Techno-business comparisons of hydrogen and synthetic fuel production using forest residue feedstock. Int. J. Hydrog. Energy 2014, 39, 12551–12562. [Google Scholar] [CrossRef]
- Abdelaziz, O.Y.; Hulteberg, C.P. Physicochemical characterisation of technical lignins for their potential valorisation. Waste and Biomass Valorization 2017, 8, 859–869. [Google Scholar] [CrossRef]
- Klöpffer, W.; Grahl, B. Life Cycle Assessment (LCA); Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12: Weinheim, Germany, 2014. [Google Scholar] [CrossRef]
- Chen, C.X.; Pierobon, F.; Ganguly, I. Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix. Sustainability 2019, 11, 1278. [Google Scholar] [CrossRef]
- Hofmeister, T.B.; Kristjansdottir, T.; Time, B.; Wiberg, A.H. Life Cycle GHG Emissions from a Wooden Load-Bearing Alternative for a ZEB Office Concept; SINTEF Academic Press: Oslo, Norway, 2015. [Google Scholar]
- ISO 14040; Ecological Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Genève, Switzerland, 2006.
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment: Theory and Practice; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Distribution logistics. Forests 2020, 11, 1127. [Google Scholar] [CrossRef]
- Tabata, T.; Okuda, T. Life cycle assessment of woody biomass energy utiliza-tion: Case study in Gifu Prefecture, Japan. Energy 2012, 45, 944–951. [Google Scholar] [CrossRef]
- Pokhrel, G.; Hongmei, G.; Gardner, D.J.; O’Neill, S. Life Cycle Assessment (LCA) of Wood Flour and Pellets for Manufacturing Wood-Plastic Composites (WPCs). Recent Prog. Mater. 2022, 4, 2385. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.M.; Wang, J. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan. Energies 2015, 8, 3258–3271. [Google Scholar] [CrossRef]
- Bahramian, M.; Yetilmezsoy, K. Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy Build. 2020, 219, 109917. [Google Scholar] [CrossRef]
- Zhong, Z.W.; Song, B.; Zaki, M.B.M. Life-cycle assessment of flash pyrolysis of wood waste. J. Clean Prod. 2010, 18, 1177–1183. [Google Scholar] [CrossRef]
- Taskhiri, M.S.; Garbs, M.; Geldermann, J. Sustainable logistics network for wood flow considering cascade utilisation. J. Clean. Prod. 2016, 110, 25–39. [Google Scholar] [CrossRef]
- Froese, R.E.; Shonnard, D.R.; Miller, C.A.; Koers, K.P.; Johnson, D.M. An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Biomass Bioenergy 2010, 34, 251–262. [Google Scholar] [CrossRef]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Duczkowska, A.; Kulińska, E.; Plutecki, Z.; Rut, J. Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System. Energies 2022, 15, 4268. [Google Scholar] [CrossRef]
- Sreejith, C.C.; Muraleedharan, C.; Arun, P. Life cycle assessment of producer gas derived from coconut shell and its comparison with coal gas: An Indian perspective. Int. J. Energy Ecol. Eng. 2013, 4, 1–22. [Google Scholar] [CrossRef]
- Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Bi, X.; Melin, S. Life cycle assessment of base–load heat sources for district heating system options. Int. J. Life Cycle Assess. 2011, 16, 212–223. [Google Scholar] [CrossRef]
- Sathre, R.; González-García, S. Life cycle assessment (LCA) of wood-based building materials. Eco-Effic. Constr. Build. Mater. 2014, 51, 311–337. [Google Scholar] [CrossRef]
- Goryunov, A.G.; Goryunova, N.N.; Ogunlana, A.O.; Manenti, F. Production of energy from biomass: Near or distant future prospects? Chem. Eng. Trans. 2016, 52, 1219–1224. [Google Scholar] [CrossRef]
- Pa Sadaghiani, S.; Mafakheri, F.; Chen, Z. Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada. Energies 2023, 16, 5697. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, H.; Liu, X.; Wang, M.; Wang, J. Review in life cycle assessment of biomass conversion through pyrolysis-issues and recommendations. Green Chem. Eng. 2022, 3, 304–312. [Google Scholar] [CrossRef]
- Fan, J.; Kalnes, T.N.; Alward, M.; Klinger, J.; Sadehvandi, A.; Shonnard, D.R. Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew. Energy 2011, 36, 632–641. [Google Scholar] [CrossRef]
- Cambero, C.; Hans Alexandre, M.; Sowlati, T. Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada. Resour. Conserv. Recycl. 2015, 105, 59–72. [Google Scholar] [CrossRef]
- Eriksson, O.; Finnveden, G.; Ekvall, T.; Björklund, A. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion. Energy Policy 2007, 35, 1346–1362. [Google Scholar] [CrossRef]
- Puettmann, M.E.; Lippke, B. Woody biomass substitution for thermal energy at softwood lumber mills in the US in land Northwest. For. Prod. J. 2012, 62, 273–279. [Google Scholar] [CrossRef]
- Padilla-Rivera, A.; Barrette, J.; Blanchet, P.; Thiffault, E. Ecological Performance of Eastern Canadian Wood Pellets as Measured Through Life Cycle Assessment. Forests 2017, 8, 352. [Google Scholar] [CrossRef]
- Barahmand, Z.; Eikeland, M.S. A Scoping Review on Ecological, Business, and Social Impacts of the Gasification Processes. Environments 2022, 9, 92. [Google Scholar] [CrossRef]
- Abbas, D.; Handler, R.M. Life-cycle assessment of forest harvesting and transportation operations in Tennessee. J. Clean. Prod. 2018, 176, 512–520. [Google Scholar] [CrossRef]
- Kalinci, Y.; Hepbasli, A.; Dincer, I. Life cycle assessment of hydrogen production from biomass gasification systems. Int. J. Hydrog. Energy 2012, 37, 14026–14039. [Google Scholar] [CrossRef]
- Cespi, D.; Passarini, F.; Ciacci, L.; Vassura, I.; Castellani, V.; Collina, E.; Morselli, L. Heating systems LCA: Comparison of biomass-based appliances. Int. J. Life Cycle Assess. 2013, 19, 89–99. [Google Scholar] [CrossRef]
- Guest, G.; Bright, R.M.; Cherubini, F.; Michelsen, O.; Strømman, A.H. Life cycle assessment of biomass-based combined heat and power plants. J. Ind. Ecol. 2011, 5, 908–921. [Google Scholar] [CrossRef]
- Petrovic, B.; Myhren, J.A.; Zhang, X.; Wallhagen, M.; Eriksson, O. Life cycle assessment of a wooden single-family house in Sweden. Appl. Energy 2019, 251, 113253. [Google Scholar] [CrossRef]
- Dashtpeyma, M.; Ghodsi, R. Forest Biomass and Bioenergy Distribution logistics Resilience: A Systematic Literature Review on the Barriers and Enablers. Sustainability 2021, 13, 6964. [Google Scholar] [CrossRef]
- Steubing, B.; Zah, R.; Ludwig, C. Life cycle assessment of SNG from wood for heating, electricity, and transportation. Biomass Bioenergy 2011, 35, 2950–2960. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Bosner, A.; Porsinsky, T.; Stankic, I. Forestry and life cycle assessment. In Global Perspectives on Sustainable Forest Management; Okia, C., Ed.; InTech: Rijeka, Croatia, 2012; pp. 139–160. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Reece, P. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 1–32. [Google Scholar] [CrossRef]
- Woo, H.; Acuna, M.; Cho, S.; Park, J. Assessment Techniques in Forest Biomass along the Timber Distribution logistics. Forests 2019, 10, 1018. [Google Scholar] [CrossRef]
- Grünberg, J.; Ghaffariyan, M.R.; Jourgholami, M.E.; Labelle, E.R.; Kaakkurivaara, N.; Renato Cesar Gonçalves, R.R.; Kühmaier, M. Criteria for Assessing the Sustainability of Logging Operations—A Systematic Review. Curr. For. Rep. 2023, 9, 350–369. [Google Scholar] [CrossRef]
- Werhahn-Mees, W.; Palosuo, T.; Garcia-Gonzalo, J.; Röser, D.; Lindner, M. Sustainability impact assessment of increasing resource use intensity in forest bioenergy production chains. Glob. Chang. Biol. Bioenergy 2011, 3, 91–106. [Google Scholar] [CrossRef]
- Karvonen, J.; Halder, P.; Kangas, J.; Leskinen, P. Indicators and tools for assessing sustainability impacts of the forest bioeconomy. For. Ecosyst. 2017, 4, 2. [Google Scholar] [CrossRef]
- Min, S.; Zacharia, Z.G.; Smith, C.D. Defining Distribution logistics Management: In the Past, Present, and Future. J. Bus. Logist. 2019, 40, 44–55. [Google Scholar] [CrossRef]
- Kamalakkannan, S.; Kulatunga, A.K. Optimization of eco-design decisions using a parametric life cycle assessment. Sustain. Prod. Consum. 2011, 27, 1297–1316. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kiełbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Koirala, A.; Kizha, A.R.; De Hoop, C.F.; Roth, B.E.; Han, H.-S.; Hiesl, P.; Abbas, D.; Gautam, S.; Baral, S.; Bick, S.; et al. Annotated Bibliography of the Global Literature on the Secondary Transportation of Raw and Comminuted Forest Products (2000–2015). Forests 2018, 9, 415. [Google Scholar] [CrossRef]
- Akay, A.E.; Serin, H.; Sessions, J.; Bilici, E.; Pak, M. Evaluating the effects of improving forest road standards on business value of forest products. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 245–258. [Google Scholar] [CrossRef]
- Bollinger, L.A.; Marquant, J.; Sulzer, M. Optimization-based scheduling of local energy systems-bridging the research-practice ap. In IOP Conference Series: Earth and Ecological Science; IOP Publishing: Bristol, UK, 2019; Volume 323, p. 012077. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Ouyang, Y. Reliable Biomass Distribution logistics Design under Feedstock Seasonality and Probabilistic Facility Disruptions. Energies 2017, 10, 1895. [Google Scholar] [CrossRef]
- Elia, J.A.; Balibanz, R.C.; Xiao, X.; Floudas, C.A. Optimal energy supply network determination and life cycle analysis for hybrid coal, biomass, and natural gas to liquid (CBGTL) plants using carbon-based hydrogen production. Comput. Chem. Eng. 2011, 35, 1399–1430. [Google Scholar] [CrossRef]
- Kim, J.; Realff, M.J.; Lee, J.H. Optimal design and global sensitivity analysis of biomass distribution logistics networks for biofuels under uncertainty. Comput. Chem. Eng. 2011, 35, 1738–1751. [Google Scholar] [CrossRef]
- Batista, R.M.; Converti, A.; Pappalardo, J.; Benachour, M.; Sarubbo, L.A. Tools for Optimization of Biomass-to-Energy Conversion Processes. Processes 2023, 11, 854. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Turbański, W.; Mydlarz, K.; Sydor, M. Business Efficiency of Pine Wood Processing in Furniture Production. Forests 2023, 14, 688. [Google Scholar] [CrossRef]
- Deka, T.J.; Osman, A.I.; Baruah, D.C.; Rooney, D.W. Methanol fuel production, utilization, and techno-economy: A review. Environ. Chem. Lett. 2022, 20, 3525–3554. [Google Scholar] [CrossRef]
- Atashbar, N.Z.; Labadie, N.; Prins, C. Modeling and optimization of biomass distribution logistics: A review and a critical look. IFAC-PapersOnLine 2016, 49, 604–615. [Google Scholar] [CrossRef]
- Safarian, S. Climate Impact Comparison of Biomass Combustion and Pyrolysis with Different Applications for Biochar Based on LCA. Energies 2023, 16, 5541. [Google Scholar] [CrossRef]
- Yagi, K.; Nakata, T. Business analysis on small-scale forest biomass gasification considering geographical resources distribution and technological characteristics. Biomass Bioenergy 2011, 35, 2883–2892. [Google Scholar] [CrossRef]
- Helal, M.A.; Anderson, N.; Wei, Y.; Thompson, M. A Review of Biomass-to-Bioenergy Distribution logistics Research Using Bibliometric Analysis and Visualization. Energies 2023, 16, 1187. [Google Scholar] [CrossRef]
- Campbell, R.M.; Anderson, N.M. Comprehensive comparative business evaluation of woody biomass energy from silvicultural fuel treatments. J. Ecol. Manag. 2019, 250, 109422. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Scherman, O. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Piedra-Jimenez, F.; Tassin, N.G.; Novas, J.M.; Rodriguez, M.A. GDP-based approach for optimal design of forest biorefinery distribution logistics considering circularity and conversion facilities co-location. Comput. Chem. Eng. 2022, 163, 107834. [Google Scholar] [CrossRef]
- Vesterlund, M.; Dahl, J.; Lindblom, B.; Sandberg, J. A new method for modeling district heating systems. In Proceedings of the International Conference on Applied Energy, Suzhou, China, 5–8 July 2012. Paper ID: ICAE2012-A10201. [Google Scholar]
- Truong, N.L.; Gustavsson, L. Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales. Appl. Energy 2013, 104, 623–632. [Google Scholar] [CrossRef]
- Stec, S.; Szymańska, E.J.; Stec-Rusiecka, J.; Puacz-Olszewska, J. Transformation of the Polish Heating Sector Based on an Example of Select Heat Energy Companies Supplying Energy to Local Government Units. Energies 2023, 16, 7550. [Google Scholar] [CrossRef]
- Kong, J.; Ronnqvist, M.; Frisk, M. Modeling an Integrated Market for Sawlogs, Pulpwood and Forest Bioenergy. SSRN Electron. J. 2011, 42, 1935884. [Google Scholar] [CrossRef]
- Nurek, T.; Gendek, A.; Roman, K.; Dąbrowska, M. The Impact of Fractional Composition on the Mechanical Properties of Agglomerated Logging Residues. Sustainability 2020, 12, 6120. [Google Scholar] [CrossRef]
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Managing the moisture content of wood biomass for the optimisation of Ireland’s transport supply strategy to bioenergy markets and competing industries. Energy 2015, 86, 354–368. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev. 2018, 94, 587–599. [Google Scholar] [CrossRef]
- Akhtari, S.; Sowlati, T.; Day, K. Optimal flow of regional forest biomass to a district heating system. Int. J. Energy Res. 2013, 38, 954–964. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue distribution logistics costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Shabani, N.; Sowlati, T. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl. Energy 2013, 104, 353–361. [Google Scholar] [CrossRef]
- Bixby, R.E. Solving real-world linear programs: A decade and more of progress. Oper. Res. 2002, 50, 3–15. [Google Scholar] [CrossRef]
- Berry, D.M. The essential similarity and differences between mathematical modeling and programming. Sci. Comput. Program. 2013, 78, 1208–1211. [Google Scholar] [CrossRef]
- Ezquerro, M.; Pardos, M.; Diaz-Balteiro, L. Sustainability in Forest Management Revisited Using Multi-Criteria Decision-Making Techniques. Sustainability 2019, 11, 3645. [Google Scholar] [CrossRef]
- Deb, K.; Deb, K. Multi-objective Optimization. Search Methodol. 2013, 403–449. [Google Scholar] [CrossRef]
- Kucukvar, M.; Egilmez, G.; Tatari, O. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building. Sustainability 2016, 8, 89. [Google Scholar] [CrossRef]
- Ewertowska, A.; Galán-Martín, A.; Guillén-Gosálbez, G.; Gavaldá, J.; Jiménez, L. Assessment of the ecological efficiency of the electricity mix of the top European economies via data envelopment analysis. J. Clean. Prod. 2016, 116, 13–22. [Google Scholar] [CrossRef]
- Abdul Razik, A.H.; Khor, C.S.; Elkamel, A. A model-based approach for biomass-to-bioproducts distribution logistics network scheduling optimization. Food Bioprod. Process. 2019, 118, 293–305. [Google Scholar] [CrossRef]
- Yang, H.; Dou, X.; Pan, F.; Wu, Q.; Li, C.; Zhou, B.; Hao, L. Optimal scheduling of local biomass-based integrated energy system considering anaerobic co-digestion. Appl. Energy 2022, 316, 119075. [Google Scholar] [CrossRef]
- Farajiamiri, M.; Meyer, J.C.; Walther, G. Multi-objective optimization of renewable fuel distribution logistics regarding cost, land use, and water use. Appl. Energy 2023, 349, 121652. [Google Scholar] [CrossRef]
- Helo, P.; Rouzafzoon, J. An Agent-Based Simulation and Logistics Optimization Model for Managing Uncertain Demand in Forest Distribution logistics. Distrib. Logist. Anal. 2023, 4, 100042. [Google Scholar] [CrossRef]
- Sacchelli, S.; Bernetti, I.; De Meo, I.; Fiori, L.; Paletto, A.; Zambelli, P.; Ciolli, M. Matching socio-business and ecological efficiency of wood-residues energy chain: A partial equilibrium model for a case study in Alpine area. J. Clean Prod. 2014, 66, 431–442. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Laínez-Aguirre, J.M.; Bojarski, A.D.; Puigjaner, L. Optimization of pre-treatment selection for the use of woody waste in co-combustion plants. Chem. Eng. Res. Des. 2014, 92, 1539–1562. [Google Scholar] [CrossRef]
- Santos, A.; Carvalho, A.; Barbosa-Póvoa, A.P.; Marques, A.; Amorim, P. Assessment and optimization of sustainable forest wood distribution logistics—A systematic literature review. For. Policy Bus. 2019, 105, 112–135. [Google Scholar] [CrossRef]
- Zhilyaev, D.; Binnekamp, R.; Wolfert, A.M.R. Best Fit for Common Purpose: A Multi-Stakeholder Design Optimization Methodology for Construction Management. Buildings 2022, 12, 527. [Google Scholar] [CrossRef]
- Husgafvel, R.; Sakaguchi, D. Circular Economy Development in the Wood Construction Sector in Finland. Sustainability 2023, 15, 7871. [Google Scholar] [CrossRef]
- Zengin, H.; Asan, U.; Destan, S.; Unal, M.E.; Yesil, A.; Betingger, P.; Degermenchi, A.S. Modeling Harvest Scheduling in Multifunctional Scheduling of Forest for Longterm Water Yield Optimization. Nat. Resour. Model. 2015, 28, 1111. [Google Scholar] [CrossRef]
- Jørgensen, A.; Le Bocq, A.; Nazakina, L.; Hauschild, M.Z. Methodologies for social life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 96–103. [Google Scholar] [CrossRef]
- Avelin, A.; Skvaril, J.; Aulin, R.; Odlare, M.; Dahlquist, E. Forest Biomass for Bioenergy production—Comparison of Different Forest Species. Energy Procedia 2014, 61, 1820–1823. [Google Scholar] [CrossRef]
- Cabral, M.; Fonseca, T.F.; Cerveira, A. Optimization of Forest Management in Large Areas Arising from Grouping of Several Management Bodies: An Application in Northern Portugal. Forests 2022, 13, 471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanula, Z.; Wieruszewski, M.; Zydroń, A.; Adamowicz, K. Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review. Energies 2023, 16, 7997. https://doi.org/10.3390/en16247997
Stanula Z, Wieruszewski M, Zydroń A, Adamowicz K. Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review. Energies. 2023; 16(24):7997. https://doi.org/10.3390/en16247997
Chicago/Turabian StyleStanula, Zygmunt, Marek Wieruszewski, Adam Zydroń, and Krzysztof Adamowicz. 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review" Energies 16, no. 24: 7997. https://doi.org/10.3390/en16247997
APA StyleStanula, Z., Wieruszewski, M., Zydroń, A., & Adamowicz, K. (2023). Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review. Energies, 16(24), 7997. https://doi.org/10.3390/en16247997