A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk
Abstract
:1. Introduction
- (1)
- The hyper-parameters of SVM are initialized by the Hammersley sequence, which ensures a better initial solution at the beginning of the iteration.
- (2)
- A novel nonlinear factor control strategy is designed to make SVM hyper-parameters explore the parameter space globally with a greater chance, which helps to find the global optimal solution.
- (3)
- An adaptive Gauss–Cauchy mutation strategy is proposed to perturb the local optimal solutions to help them jump out of the potential local optimum, which can improve global optimization performance.
2. Outlier Data Distribution in Wind Turbines
2.1. Wind Speed–Power Curve
2.2. Characteristics of Outlier Data Distribution
3. Principle of the IHHO-SVM Wind Power Outlier Detection Model
3.1. Support Vector Machine
3.2. Harris Hawks Optimization Algorithm
3.2.1. Exploration
3.2.2. Transition from Exploration to Exploitation
3.2.3. Exploitation
- 1.
- Soft Besiege
- 2.
- Hard Besiege
- 3.
- Soft Besiege with Progressive Rapid Dives
- 4.
- Hard Besiege with Progressive Rapid Dives
3.3. Improved Harris Hawks Optimization (IHHO)
3.3.1. Hammersley Sequence Initialization Populations
- 1.
- Determine any natural number n by a polynomial of the given prime p:
- 2.
- Reverse the coefficients in order and mirror them to the right of the decimal point, then calculate their value.
- 3.
- Set the dimension to d and obtain the values of the Hammersley sequence.
3.3.2. Nonlinear Factor Control Mode
3.3.3. Adaptive Gaussian–Cauchy Perturbation Strategy
3.4. IHHO-SVM Wind Power Outlier Detection Model
4. Experiment and Result Analysis
4.1. Experimental Environment and Dataset
4.2. Evaluation Index
4.3. Experiments and Discussion
4.3.1. Experiment 1
4.3.2. Experiment 2
4.3.3. Experiment 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vargas, S.A.; Esteves, G.R.T.; Maçaira, P.M.; Bastos, B.Q.; Cyrino Oliveira, F.L.; Souza, R.C. Wind Power Generation: A Review and a Research Agenda. J. Clean. Prod. 2019, 218, 850–870. [Google Scholar] [CrossRef]
- Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C.; Mujeeb, A. Data-Driven Probabilistic Machine Learning in Sustainable Smart Energy/Smart Energy Systems: Key Developments, Challenges, and Future Research Opportunities in the Context of Smart Grid Paradigm. Renew. Sustain. Energy Rev. 2022, 160, 112128. [Google Scholar] [CrossRef]
- Sundarapandi Edward, I.E.; Ponpandi, R. Challenges, Strategies and Opportunities for Wind Farm Incorporated Power Systems: A Review with Bibliographic Coupling Analysis. Env. Sci. Pollut Res. 2023, 30, 11332–11356. [Google Scholar] [CrossRef] [PubMed]
- Dessouky, S.S.; Abdellatif, W.S.E.; Abdelwahab, S.A.M.; Ali, M.A. Maximum Power Point Tracking Achieved of DFIG-Based Wind Turbines Using Perturb and Observant Method. In Proceedings of the 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 18–20 December 2018; pp. 1121–1125. [Google Scholar]
- Wang, S.; Huang, Y.; Li, L.; Liu, C. Wind Turbines Abnormality Detection through Analysis of Wind Farm Power Curves. Measurement 2016, 93, 178–188. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to Wind Power Curve Modeling: A Review and Discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [Google Scholar] [CrossRef]
- Morrison, R.; Liu, X.; Lin, Z. Anomaly Detection in Wind Turbine SCADA Data for Power Curve Cleaning. Renew. Energy 2022, 184, 473–486. [Google Scholar] [CrossRef]
- Boukerche, A.; Zheng, L.; Alfandi, O. Outlier Detection: Methods, Models, and Classification. ACM Comput. Surv. 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Shen, X.; Fu, X.; Zhou, C. A Combined Algorithm for Cleaning Abnormal Data of Wind Turbine Power Curve Based on Change Point Grouping Algorithm and Quartile Algorithm. IEEE Trans. Sustain. Energy 2019, 10, 46–54. [Google Scholar] [CrossRef]
- Wang, Y.; Infield, D.G.; Stephen, B.; Galloway, S.J. Copula-Based Model for Wind Turbine Power Curve Outlier Rejection. Wind. Energy 2014, 17, 1677–1688. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, L.; Wang, W.; Sun, H.; Ju, Y.; Tang, Y. Data-Driven Correction Approach to Refine Power Curve of Wind Farm Under Wind Curtailment. IEEE Trans. Sustain. Energy 2018, 9, 95–105. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Ying, Z.; Zhang, C.; Wang, J. Online Cleaning Method of Power Grid Energy Anomaly Data Based on Improved Random Forest. J. Phys. Conf. Ser. 2021, 2108, 012067. [Google Scholar] [CrossRef]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. Big Data Cogn. Comput. 2021, 5, 1. [Google Scholar] [CrossRef]
- Qiu, Y.; Dong, T.; Lin, D.; Zhao, B.; Cao, W.; Jiang, F. Fault Diagnosis for Lithium-Ion Battery Energy Storage Systems Based on Local Outlier Factor. J. Energy Storage 2022, 55, 105470. [Google Scholar] [CrossRef]
- Zeng, A.; Yan, L.; Huang, Y.; Ren, E.; Liu, T.; Zhang, H. Intelligent Detection of Small Faults Using a Support Vector Machine. Energies 2021, 14, 6242. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Rahmani, A.M.; Vo, B.; Bidaki, M.; Masdari, M.; Zangakani, M. Improving Security Using SVM-Based Anomaly Detection: Issues and Challenges. Soft Comput. 2021, 25, 3195–3223. [Google Scholar] [CrossRef]
- Lesouple, J.; Baudoin, C.; Spigai, M.; Tourneret, J.-Y. Generalized Isolation Forest for Anomaly Detection. Pattern Recognit. Lett. 2021, 149, 109–119. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, W.; Min, Y. Raw Wind Data Preprocessing: A Data-Mining Approach. IEEE Trans. Sustain. Energy 2015, 6, 11–19. [Google Scholar] [CrossRef]
- Hu, C.; Albertani, R. Wind Turbine Event Detection by Support Vector Machine. Wind. Energy 2021, 24, 672–685. [Google Scholar] [CrossRef]
- Turkoz, M.; Kim, S.; Son, Y.; Jeong, M.K.; Elsayed, E.A. Generalized Support Vector Data Description for Anomaly Detection. Pattern Recognit. 2020, 100, 107119. [Google Scholar] [CrossRef]
- Chen, B.; Yu, S.; Yu, Y.; Zhou, Y. Acoustical Damage Detection of Wind Turbine Blade Using the Improved Incremental Support Vector Data Description. Renew. Energy 2020, 156, 548–557. [Google Scholar] [CrossRef]
- Benmahamed, Y.; Kherif, O.; Teguar, M.; Boubakeur, A.; Ghoneim, S.S.M. Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier. Energies 2021, 14, 2970. [Google Scholar] [CrossRef]
- Jeong, K.; Choi, S.B.; Choi, H. Sensor Fault Detection and Isolation Using a Support Vector Machine for Vehicle Suspension Systems. IEEE Trans. Veh. Technol. 2020, 69, 3852–3863. [Google Scholar] [CrossRef]
- Yu, W.; Yu, R.; Li, C. An Information Granulated Based SVM Approach for Anomaly Detection of Main Transformers in Nuclear Power Plants. Sci. Technol. Nucl. Install. 2022, 2022, e3931374. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle Swarm Optimization Algorithm: An Overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Zeng, B.; Guo, J.; Zhu, W.; Xiao, Z.; Yuan, F.; Huang, S. A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM. Energies 2019, 12, 4170. [Google Scholar] [CrossRef]
- Ahmed, Q.I.; Attar, H.; Amer, A.; Deif, M.A.; Solyman, A.A.A. Development of a Hybrid Support Vector Machine with Grey Wolf Optimization Algorithm for Detection of the Solar Power Plants Anomalies. Systems 2023, 11, 237. [Google Scholar] [CrossRef]
- Nong, Y.; Chen, Z.; Huang, C.; Zhou, Z.; Pan, J.; Liang, D.; Wei, Y.; Li, Z.; Lu, Y. Support Vector Machine Classification Based on Improved Harris Hawk Optimization Algorithm. J. Phys. Conf. Ser. 2022, 2219, 012050. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Tripathy, B.K.; Reddy Maddikunta, P.K.; Pham, Q.-V.; Gadekallu, T.R.; Dev, K.; Pandya, S.; ElHalawany, B.M. Harris Hawk Optimization: A Survey onVariants and Applications. Comput. Intell. Neurosci. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
Dataset | Sample Size | Minimum (m/s) | Maximum (m/s) | Mean (m/s) | Variance | Standard Deviation |
---|---|---|---|---|---|---|
1 | 10,000 | 0 | 25.20 | 8.85 | 24.96 | 4.99 |
2 | 2000 | 0 | 17.00 | 5.95 | 13.44 | 3.66 |
3 | 2000 | 0.35 | 18.43 | 8.51 | 11.61 | 3.41 |
4 | 2000 | 0 | 14.12 | 6.78 | 7.70 | 2.77 |
5 | 2000 | 0 | 16.55 | 6.01 | 14.25 | 3.77 |
Dataset | Model | F1 Score(%) | ||||||
---|---|---|---|---|---|---|---|---|
Outlier Ratio | Mean Value | Standard Deviation | ||||||
5% | 10% | 15% | 20% | 25% | ||||
2 | SVM | 82.61 | 87.05 | 84.95 | 84.92 | 85.23 | 84.95 | 1.58 |
HHO-SVM | 92.00 | 92.93 | 94.20 | 93.64 | 93.76 | 93.31 | 0.86 | |
IHHO-SVM | 94.23 | 95.27 | 94.99 | 94.37 | 94.66 | 94.70 | 0.18 | |
3 | SVM | 90.09 | 87.32 | 88.40 | 89.40 | 89.61 | 88.96 | 1.11 |
HHO-SVM | 96.61 | 96.44 | 95.70 | 95.50 | 94.95 | 95.84 | 0.69 | |
IHHO-SVM | 97.15 | 96.77 | 96.34 | 96.04 | 95.48 | 96.36 | 0.64 | |
4 | SVM | 91.33 | 91.08 | 90.23 | 89.32 | 89.99 | 90.39 | 0.82 |
HHO-SVM | 96.29 | 95.12 | 96.51 | 95.42 | 95.74 | 95.82 | 0.58 | |
IHHO-SVM | 97.05 | 96.07 | 97.16 | 96.61 | 96.28 | 96.63 | 0.47 |
Model | Precision (%) | Recall (%) | F1 Score(%) |
---|---|---|---|
IF | 83.03 | 51.89 | 63.86 |
LOF | 85.11 | 54.16 | 66.20 |
SVM | 91.56 | 89.48 | 90.51 |
GWO-SVM | 95.31 | 95.21 | 95.22 |
PSO-SVM | 95.24 | 94.08 | 94.66 |
HHO-SVM | 95.70 | 95.51 | 95.60 |
IHHO-SVM | 95.76 | 96.94 | 96.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Qin, J.; Song, S. A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk. Energies 2023, 16, 7998. https://doi.org/10.3390/en16247998
Huang J, Qin J, Song S. A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk. Energies. 2023; 16(24):7998. https://doi.org/10.3390/en16247998
Chicago/Turabian StyleHuang, Jingtao, Jin Qin, and Shuzhong Song. 2023. "A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk" Energies 16, no. 24: 7998. https://doi.org/10.3390/en16247998
APA StyleHuang, J., Qin, J., & Song, S. (2023). A Novel Wind Power Outlier Detection Method with Support Vector Machine Optimized by Improved Harris Hawk. Energies, 16(24), 7998. https://doi.org/10.3390/en16247998