The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study
Abstract
:1. Introduction
1.1. Literature Review
1.2. Key Contributions of This Work
2. Materials and Methods
2.1. The City of Turin as a Case Study
2.2. Estimation of Biomethane Demand for Urban Buses
2.3. Biomethane Production
2.4. Estimation of Emissions Savings
2.5. Comparison of Alternative Scenarios
3. Results
3.1. Calculation of Biomethane Consumption in Urban Buses
3.2. Biomethane Potential Demand for Urban Buses
3.3. Biomethane Production Potential
3.4. Estimation of CO2 Emission Savings
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNG | compressed natural gas |
EU | European Union |
GPS | Global Positioning System |
JRC | Joint Research Centre |
LNG | liquefied natural gas |
MSW | municipal solid waste |
RED | Renewable Energy Directive |
TTW | tank-to-wheels |
WTT | well-to-tank |
WTW | well-to-wheels |
References
- Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Galmarini, S. EU effect: Exporting emission standards for vehicles through the global market economy. J. Environ. Manag. 2016, 183, 959–971. [Google Scholar] [CrossRef]
- Park, J.; Shin, M.; Lee, J.; Lee, J. Estimating the effectiveness of vehicle emission regulations for reducing NOx from light-duty vehicles in Korea using on-road measurements. Sci. Total Environ. 2021, 767, 144250. [Google Scholar] [CrossRef]
- Thiel, C.; Nijs, W.; Simoes, S.; Schmidt, J.; van Zyl, A.; Schmid, E. The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation. Energy Policy 2016, 96, 153–166. [Google Scholar] [CrossRef]
- Noussan, M.; Hafner, M.; Tagliapietra, S. Policies to Decarbonize the Transport Sector. In The Future of Transport between Digitalization and Decarbonization: Trends, Strategies and Effects on Energy Consumption; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–112. [Google Scholar] [CrossRef]
- Rodman Oprešnik, S.; Seljak, T.; Vihar, R.; Gerbec, M.; Katrašnik, T. Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies. Energies 2018, 11, 2160. [Google Scholar] [CrossRef]
- Olawepo, J.O.; Chen, L.W.A. Health Benefits from Upgrading Public Buses for Cleaner Air: A Case Study of Clark County, Nevada and the United States. Int. J. Environ. Res. Public Health 2019, 16, 720. [Google Scholar] [CrossRef]
- Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Li, J.; Feng, X. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ. 2014, 99, 1–9. [Google Scholar] [CrossRef]
- Rosero, F.; Fonseca, N.; López, J.M.; Casanova, J. Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses. Appl. Energy 2021, 282, 116195. [Google Scholar] [CrossRef]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.; Lonza, L. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Topal, O.; Nakir, I. Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City. Energies 2018, 11, 2369. [Google Scholar] [CrossRef]
- Lajunen, A.; Lipman, T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 2016, 106, 329–342. [Google Scholar] [CrossRef]
- Kivekäs, K.; Lajunen, A.; Vepsäläinen, J.; Tammi, K. City Bus Powertrain Comparison: Driving Cycle Variation and Passenger Load Sensitivity Analysis. Energies 2018, 11, 1755. [Google Scholar] [CrossRef]
- Muñoz, P.; Franceschini, E.A.; Levitan, D.; Rodriguez, C.R.; Humana, T.; Correa Perelmuter, G. Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses. Energy Convers. Manag. 2022, 257, 115412. [Google Scholar] [CrossRef]
- Lee, S.; Yi, U.H.; Jang, H.; Park, C.; Kim, C. Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane. Energy 2021, 220, 119766. [Google Scholar] [CrossRef]
- Bordelanne, O.; Montero, M.; Bravin, F.; Prieur-Vernat, A.; Oliveti-Selmi, O.; Pierre, H.; Papadopoulo, M.; Muller, T. Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline. J. Nat. Gas Sci. Eng. 2011, 3, 617–624. [Google Scholar] [CrossRef]
- Goulding, D.; Power, N. Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel? Renew. Energy 2013, 53, 121–131. [Google Scholar] [CrossRef]
- Madhusudhanan, A.K.; Na, X.; Boies, A.; Cebon, D. Modelling and evaluation of a biomethane truck for transport performance and cost. Transp. Res. Part Transp. Environ. 2020, 87, 102530. [Google Scholar] [CrossRef]
- Gustafsson, M.; Svensson, N. Cleaner heavy transports—Environmental and economic analysis of liquefied natural gas and biomethane. J. Clean. Prod. 2021, 278, 123535. [Google Scholar] [CrossRef]
- Sales Silva, S.T.; Barros, R.M.; Silva dos Santos, I.F.; Maria de Cassia Crispim, A.; Tiago Filho, G.L.; Silva Lora, E.E. Technical and economic evaluation of using biomethane from sanitary landfills for supplying vehicles in the Southeastern region of Brazil. Renew. Energy 2022, 196, 1142–1157. [Google Scholar] [CrossRef]
- Keogh, N.; Corr, D.; O’Shea, R.; Monaghan, R. The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles. Appl. Energy 2022, 323, 119590. [Google Scholar] [CrossRef]
- Singh, P.; Kalamdhad, A.S. Biomethane plants based on municipal solid waste and wastewater and its impact on vehicle sector in India—An Environmental-economic-resource assessment. Environ. Technol. Innov. 2022, 26, 102330. [Google Scholar] [CrossRef]
- Chan Gutiérrez, E.; Wall, D.M.; O’Shea, R.; Novelo, R.M.; Gómez, M.M.; Murphy, J.D. An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J. Clean. Prod. 2018, 196, 852–862. [Google Scholar] [CrossRef]
- Nadaleti, W.C.; Martins, R.; Lourenço, V.; Przybyla, G.; Bariccatti, R.; Souza, S.; Manzano-Agugliaro, F.; Sunny, N. A pioneering study of biomethane and hydrogen production from the wine industry in Brazil: Pollutant emissions, electricity generation and urban bus fleet supply. Int. J. Hydrogen Energy 2021, 46, 19180–19201. [Google Scholar] [CrossRef]
- Rajak, U.; Verma, T.N.; Allamraju, K.V.; Kumar, R.; Le, Q.H.; Pugazhendhi, A. Effects of different biofuels and their mixtures with diesel fuel on diesel engine performance and exhausts. Sci. Total Environ. 2023, 903, 166501. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.H.; Tsolakis, A.; Alagumalai, A.; Mahian, O.; Lam, S.S.; Pan, J.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. Use of hydrogen in dual-fuel diesel engines. Prog. Energy Combust. Sci. 2023, 98, 101100. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Nayak, S.K.; Le, H.S.; Kowalski, J.; Deepanraj, B.; Duong, X.Q.; Truong, T.H.; Tran, V.D.; Cao, D.N.; Nguyen, P.Q.P. Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode. Int. J. Hydrogen Energy 2023, 49, 868–909. [Google Scholar] [CrossRef]
- Vadivelu, T.; Ramanujam, L.; Ravi, R.; Vijayalakshmi, S.K.; Ezhilchandran, M. An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen. Energies 2023, 16, 415. [Google Scholar] [CrossRef]
- Dahlgren, S.; Ammenberg, J. Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability 2021, 13, 1273. [Google Scholar] [CrossRef]
- Mutter, A. Obduracy and Change in Urban Transport—Understanding Competition Between Sustainable Fuels in Swedish Municipalities. Sustainability 2019, 11, 6092. [Google Scholar] [CrossRef]
- Agenzia della Mobilità Piemontese. Indagine 2022 Sulla Mobilità delle Persone e Sulla Qualità dei Trasporti Nella Regione Piemonte. 2023. Available online: https://mtm.torino.it/wp-content/uploads/2023/07/IMQ_2022_Risultati_04-10-2023.pdf (accessed on 27 October 2023).
- ISTAT. Ambiente Urbano—Anno 2021, Tavole Mobilità Urbana. 2023. Available online: https://www.istat.it/it/archivio/286822 (accessed on 28 October 2023).
- Legambiente. Mal’Aria di Città. Cambio di Passo Cercasi. 2023. Available online: https://www.legambiente.it/wp-content/uploads/2021/11/Rapporto_Malaria_2023.pdf (accessed on 28 October 2023).
- Noussan, M.; Negro, V.; Prussi, M.; Chiaramonti, D. The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy. Appl. Energy 2024, 355, 122322. [Google Scholar] [CrossRef]
- Dutto, A. Tesi di Laurea Magistrale—Analisi dei Dati di Consumo ai Fini Della Diagnosi Energetica del Sito Virtuale di GTT. Master’s Thesis, Politecnico di Torino, Turin, Italy, 2019. [Google Scholar]
- GTT. Parco Veicoli—Schede Tecniche. 2021. Available online: https://www.gtt.to.it/cms/risorse/gruppo/veicoli/parco_veicoli_tpl.pdf (accessed on 29 October 2023).
- GSE. Atlaimpianti. 2023. Available online: https://atla.gse.it/atlaimpianti/project/Atlaimpianti_Internet.html (accessed on 15 October 2023).
- European Biogas Association. Biomethane Map 2021. 2023. Available online: https://www.europeanbiogas.eu/biomethane-map-2021/ (accessed on 28 October 2023).
- GSE. Biometano—Graduatoria Bando 1 DM 15/09/2022. 2023. Available online: https://www.gse.it/servizi-per-te/attuazione-misure-pnrr/produzione-di-biometano/graduatorie (accessed on 28 October 2023).
- Barbera, E.; Menegon, S.; Banzato, D.; D’Alpaos, C.; Bertucco, A. From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context. Renew. Energy 2019, 135, 663–673. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. An economic analysis of biogas-biomethane chain from animal residues in Italy. J. Clean. Prod. 2019, 230, 888–897. [Google Scholar] [CrossRef]
- Prussi, M.; Yugo, M.; Prada, L.D.; Padella, M.; Edwards, R.; Lonza, L. JEC Well-to-Tank Report v5; Scientific Analysis or Review, Policy Assessment, Technical Guidance KJ-NA-30269-EN-N (Online); Publications Office of the European Union: Luxembourg, 2020. [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast)—Document 32018L2001. 2018. Available online: http://data.europa.eu/eli/dir/2018/2001/oj (accessed on 4 July 2023).
- Chiabrando, A. Il Contributo Degli Allevamenti al Bilancio Energetico Torinese. 2023. Available online: https://www.youtube.com/playlist?list=PLw_2BybgDghLtQ5lgr94q7Lf2kpj3Onz- (accessed on 28 October 2023).
- European Commission. Biomethane Country Fiche—Italy. 2023. Available online: https://energy.ec.europa.eu/system/files/2023-09/Biomethane_fiche_IT_web.pdf (accessed on 28 October 2023).
- Noussan, M.; Campisi, E.; Jarre, M. Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers. Sustainability 2022, 14, 10652. [Google Scholar] [CrossRef]
- Cignini, F.; Genovese, A.; Ortenzi, F.; Valentini, S.; Caprioli, A. Performance and Emissions Comparison between Biomethane and Natural Gas Fuel in Passenger Vehicles. E3S Web Conf. 2020, 197, 08019. [Google Scholar] [CrossRef]
- IVECO. IVECO BUS Unveils the URBANWAY Hybrid CNG 18-m Long, the Ideal Urban Transport Solution for Sustainable Mobility. 2022. Available online: https://www.ivecogroup.com/media/brand_press_releases/2022/EMEA-(English)/Iveco-Bus/iveco_bus_unveils_the_urbanway_hybrid_cng_18-m_long_the_ideal_urban_transport_solution_for_sustainable_mobility (accessed on 8 November 2023).
- Rotunno, P.; Lanzini, A.; Leone, P. Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renew. Energy 2017, 102, 417–432. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ribichini, M.; Tsagarakis, K.P. Biomethane as an energy resource for achieving sustainable production: Economic assessments and policy implications. Sustain. Prod. Consum. 2023, 35, 13–27. [Google Scholar] [CrossRef]
- Cignini, F.; Genovese, A.; Ortenzi, F.; Valentini, S.; Caprioli, A. Performance and Emissions Comparison between Biomethane and Natural Gas Fuel in Passenger Vehicles: Results of the third testing campaign. J. Phys. Conf. Ser. 2022, 2385, 012061. [Google Scholar] [CrossRef]
Type | Model | Length (m) | Passengers | Fuel Cons. (kg/km) | Fleet |
---|---|---|---|---|---|
1 | IRISBUS CITELIS | 18 | 147 | 0.64 | 4 |
2 | IRISBUS 491E.18.31 | 18 | 143 | 0.67 | 94 |
3 | IVECO 491E.12.24 | 12 | 90 | 0.60 | 82 |
4 | IRISBUS 491E.12.27 | 12 | 94 | 0.56 | 87 |
Type | Engine Power (kW; CV) | Engine Size (cm3) | Max Torque (Nm) | Empty Weight (t) | Full Weight (t) |
---|---|---|---|---|---|
1 | 243 kW (330 CV) | 7790 | 1100 (@1100 rpm) | 18.20 | 30.00 |
2 | 228 kW (310 CV) | 9500 | 1200 (@1200 rpm) | 18.29 | 27.95 |
3 | 177 kW (240 CV) | 9500 | 1020 (@1200 rpm) | 12.52 | 18.58 |
4 | 200 kW (270 CV) | 7790 | 1100 (@1100 rpm) | 12.60 | 18.99 |
Gpkm | Diesel | Fossil Gas | Biomethane | Electric |
---|---|---|---|---|
Scenario 0 | 2.5 | 1.1 | - | 0.1 |
Scenario 1 | 2.5 | - | 1.1 | 0.1 |
Scenario 2 | - | - | 3.6 | 0.1 |
Scenario 3 | - | - | 0.7 | 3.0 |
GWh | Diesel | Fossil Gas | Biomethane | Electric |
---|---|---|---|---|
Scenario 0 | 121.9 | 86.4 | - | 1.4 |
Scenario 1 | 121.9 | - | 86.4 | 1.4 |
Scenario 2 | - | - | 292.0 | 1.4 |
Scenario 3 | - | - | 57.0 | 42.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noussan, M. The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study. Energies 2023, 16, 7995. https://doi.org/10.3390/en16247995
Noussan M. The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study. Energies. 2023; 16(24):7995. https://doi.org/10.3390/en16247995
Chicago/Turabian StyleNoussan, Michel. 2023. "The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study" Energies 16, no. 24: 7995. https://doi.org/10.3390/en16247995
APA StyleNoussan, M. (2023). The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study. Energies, 16(24), 7995. https://doi.org/10.3390/en16247995