Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation
Abstract
:1. Introduction
2. Concept of Adsorption Chiller for Cold Transportation
2.1. Working Processes and Thermal Cycles
2.2. Solid Sorbent Selection
3. Methodology
- (1)
- The CAAC system is operated at steady conditions;
- (2)
- The isentropic efficiency of the pump is 0.8;
- (3)
- The isentropic efficiency of the compressor is 0.75;
- (4)
- The heat and pressure losses in the components (except for the pipelines) are neglected;
- (5)
- Ammonia liquid is transported by a straight pipe without pipe rise. Only the frictional head loss is considered. The length of the pipelines is preliminarily set as 2 km for a performance comparison with absorption systems [7]. The absolute roughness is 0.06 mm.
- (6)
- The heat-source temperatures range from 60 °C to 85 °C while the evaporation temperature is selected from 0 °C to 20 °C.
Energy and Exergy of CAAC
4. Results and Discussion
4.1. Thermodynamic Analysis
4.2. Thermal Analysis Based on the Tested Sorption Capacity
5. Conclusions
- (1)
- The coefficient of performance of the compression-assisted adsorption chiller using sodium bromide–ammonia ranges from 0.425 to 0.459 without considering cold transportation. Additionally, the exergy efficiency of the compression-assisted adsorption chiller without cold transportation increases from 0.22 to 0.31. For different working pairs, the coefficient of performance and exergy efficiency of the compression-assisted adsorption chiller with cold transportation ranges from 0.447 to 0.436 and from 0.42 to 0.546, respectively.
- (2)
- For various operation conditions, the testing sorption capacity of ammonium chloride–ammonia ranges from 0.6 to 0.867. The coefficient of performance of the compression-assisted adsorption chiller for cold transportation in the real testing performance is decreased when compared with the aforementioned theoretical thermal performance. For various working conditions, the coefficient of performance of the compression-assisted adsorption chiller with cold transportation ranges from 0.4 to 0.56.
- (3)
- Lithium bromide–water absorption could be the most effective way for cold and heat transportation to occur if the heat source is appropriate. Ammonia–water absorption is better to be used for freezing working conditions and domestic heating but has a high thermal-driving temperature. For the adsorption type, it would be suitable for the situation when the heat-source temperature is low, e.g., lower than 60 °C, and there is a need for freezing applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |
Cp | Specific heat (kJ·kg−1·K−1) |
CAAC | Compression-assisted adsorption chiller |
COP | Coefficient of performance |
E | Exergy (kJ) |
ENG | Expanded natural graphite |
HTS | High-temperature salt |
h | Enthalpy (kJ·kg−1) |
k | The adiabatic index |
LTS | Low-temperature salt |
M | Mass of composite sorbent (kg) |
MTS | Middle-temperature salt |
m | Mass of ammonia (kg) |
P | Pressure (Pa) |
Q | Heat (kg) |
R | Gas constant (J·mol−1·K−1) |
T | Temperature (°C) |
V | Flow rate (kg·s−1) |
w | Work input (kJ·kg−1) |
X | Sorption capacity (kg·kg−1) |
Greek symbols | |
ΔH | Reaction enthalpy of sorbent (J·mol−1) |
∆S | Reaction entropy of sorbent (J·mol−1·K−1) |
Ψ | Global conversion rate |
Subscripts | |
a | Adsorbent |
am | Ammonia |
c | Condensation |
com | Compression |
en | Energy |
eva | Evaporation |
ex | Exergy |
h | Heat |
i | Ideal |
in | Input |
ma | Mass |
s | Sensible |
out | Output |
p | Pump |
r | Reaction |
re | Reactor |
rea | Real |
tot | Total |
References
- Zhang, W.Y.; Mehari, A.; Zhang, X.J.; Roskilly, A.; Jiang, L. Ammonia-based sorption thermal battery: Concepts, thermal cycles, applications, and perspectives. Energy Storage Mater. 2023, 62, 102930. [Google Scholar] [CrossRef]
- Hirsch, P.; Grochowski, M.; Duzinkiewicz, K. Decision support system for design of long distance heat transportation system. Energy Build. 2018, 173, 378–388. [Google Scholar] [CrossRef]
- Chiu, J.N.; Flores, J.C.; Martin, V.; Lacarrière, B. Industrial surplus heat transportation for use in district heating. Energy 2016, 110, 139–147. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Xu, X.; Zhang, S. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures. J. Mol. Liq. 2020, 319, 114360. [Google Scholar] [CrossRef]
- Nakul, S.; Arunachala, U.C. Status, trends and significance of parabolic trough technology in the changing heat transportation scenario. Sol. Energy 2019, 187, 57–81. [Google Scholar] [CrossRef]
- Feng, T.; Ji, J.; Zhang, X. Research progress of phase change cold energy storage materials used in cold chain logistics of aquatic products. J. Energy Storage 2023, 60, 106568. [Google Scholar] [CrossRef]
- Gao, J.T.; Xu, Z.Y.; Chiu, J.N.W.; Su, C.; Wang, R.Z. Feasibility and economic analysis of solution transportation absorption system for long-distance thermal transportation under low ambient temperature. Energy Convers. Manag. 2019, 196, 793–806. [Google Scholar] [CrossRef]
- Şahan, N.; Mazman, M.; Kaypmaz, C.; Beyhan, B.; Paksoy, H. Flexible phase change material packages for green transportation vehicles. J. Power Sources 2023, 576, 233147. [Google Scholar] [CrossRef]
- Qi, T.; Ji, J.; Zhang, X.; Liu, L.; Xu, X.; Ma, K.; Gao, Y. Research progress of cold chain transport technology for storage fruits and vegetables. J. Energy Storage 2022, 56, 105958. [Google Scholar] [CrossRef]
- Lovegrove, K.; Luzzi, A.; Soldiani, I.; Kreetz, H. Developing ammonia based thermochemical energy storage for dish power plants. Sol. Energy 2004, 76, 331–337. [Google Scholar] [CrossRef]
- Jo, Y.K.; Kim, J.-K.; Lee, S.G.; Kang, Y.T. Development of type 2 solution transportation absorption system for utilizing LNG cold energy. Int. J. Refrig. 2007, 30, 978–985. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, R.; Luo, L.; Xia, Z.; Lin, P. Transportation of low-grade thermal energy over long distance by ammonia-water absorption. Chin. Sci. Bull. 2009, 54, 948–957. [Google Scholar] [CrossRef]
- Kang, Y.; Akisawa, A.; Sambe, Y.; Kashiwagi, T. Absorption heat pump systems for solution transportation at ambient temperature—STA cycle. Energy 2000, 25, 355–370. [Google Scholar] [CrossRef]
- Dou, P.; Jia, T.; Chu, P.; Dai, Y.; Shou, C. Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle. Energy 2022, 243, 123125. [Google Scholar] [CrossRef]
- Lin, P.; Wang, R.Z.; Xia, Z.Z.; Ma, Q. Experimental investigation on heat transportation over long distance by ammonia–water absorption cycle. Energy Convers. Manag. 2009, 50, 2331–2339. [Google Scholar] [CrossRef]
- Akisawa, A.; Watanabe, F.; Enoki, K.; Takei, T. Performance of thermal energy transportation based on absorption heat pump cycle over 200m distance—Solution transportation absorption chiller. Appl. Therm. Eng. 2017, 127, 1200–1205. [Google Scholar] [CrossRef]
- Han, B.-C.; Cheng, W.-L.; Li, Y.-Y.; Nian, Y.-L. Thermodynamic analysis of heat driven Combined Cooling Heating and Power system (CCHP) with energy storage for long distance transmission. Energy Convers. Manag. 2017, 154, 102–117. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, Y.; Shi, W.; Fan, Y.; Wang, R.; Zhang, X.; Roskilly, A. Compression-assisted adsorption thermal battery based on composite sorbent for heat supply in alpine cold region. J. Energy Storage 2023, 63, 107033. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, T. Energy and exergy analyses of ammoniated salts based thermochemical sorption heat storage system. J. Energy Storage 2022, 52, 104670. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, T.; Yu, N.; Wang, C.Y. Experimental investigation on a strontium chloride/ammonia sorption heat storage system. Appl. Therm. Eng. 2023, 219, 119478. [Google Scholar] [CrossRef]
- Bao, H.; Wang, Y.; Charalambous, C.; Lu, Z.; Wang, L.; Wang, R.; Roskilly, A.P. Chemisorption cooling and electric power cogeneration system driven by low grade heat. Energy 2014, 72, 590–598. [Google Scholar] [CrossRef]
- El-Ghetany, H.H.; Omara, M.A.; Abdelhady, R.G.; Abdelaziz, G.B. Design of silica gel/water adsorption chiller powered by solar energy for air conditioning applications. J. Energy Storage 2023, 63, 107055. [Google Scholar] [CrossRef]
- Pan, Q.W.; Liu, L.; Wang, B.; Xu, J.; Ge, T.S. Design and experimental study on a small-scale silica gel/water adsorption chiller with heat and mass recovery scheme for solar energy use. Sol. Energy 2023, 252, 91–100. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.H.; Yoon, S.H. Transient modeling of a chemisorption heat pump using ammonia with expanded graphite–NaBr. Appl. Therm. Eng. 2023, 234, 121233. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, W. A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature. Appl. Energy 2021, 282, 116068. [Google Scholar] [CrossRef]
- Wu, W.; Ding, Z.; Sui, Y.; Leung, M. Comparative dynamic performance of hybrid absorption thermal batteries using H2O/1,3-dimethylimidazolium dimethylphosphate. Energy Convers. Manag. 2021, 228, 113690. [Google Scholar] [CrossRef]
- Gao, P.; Hu, H.; Jin, S.; Wang, S.; Chen, Y.; Wu, W.; Yang, Q.; Zhu, F.; Wang, L. Solar-driven compression-assisted desorption chemisorption refrigeration/cold energy storage system. Energy Convers. Manag. 2022, 258, 115474. [Google Scholar] [CrossRef]
- Godefroy, A.; Perier-Muzet, M.; Mazet, N. Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration. Appl. Energy 2019, 255, 113751. [Google Scholar] [CrossRef]
- Godefroy, A.; Perier-Muzet, M.; Mazet, N. Novel hybrid thermochemical cycles for low-grade heat storage and autothermal power generation: A thermodynamic study. Appl. Energy 2020, 270, 115111. [Google Scholar] [CrossRef]
- Jiang, L.; Roskilly, A.P. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: A review. Int. J. Heat Mass Transf. 2019, 130, 1206–1225. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.W.; Jin, Z.Q.; Wang, R.Z.; Dai, Y.J. Effective thermal conductivity and permeability of compact compound ammoniated salts in the adsorption/desorption process. Int. J. Therm. Sci. 2013, 71, 103–110. [Google Scholar] [CrossRef]
- Wang, R.Z.; Wang, L.W.; Wu, J.Y. Adsorption Refrigeration Technology—Theory and Application; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Yu, Y.; Wang, L.W.; An, G.L. Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. Int. J. Heat Mass Transf. 2018, 117, 125–131. [Google Scholar] [CrossRef]
- Jiang, L.; Roskilly, A.P.; Wang, R.Z.; Wang, L.W.; Lu, Y. Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration. Appl. Energy 2017, 204, 767–779. [Google Scholar] [CrossRef]
- Sajid, M.U.; Bicer, Y. Performance Assessment of Spectrum Selective Nanofluid-Based Cooling for a Self-Sustaining Greenhouse. Energy Technol. 2021, 9, 2000875. [Google Scholar] [CrossRef]
- Yan, T.; Wang, R.Z.; Li, T.X. Experimental investigation on thermochemical heat storage using manganese chloride/ammonia. Energy 2018, 143, 562–574. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.W.; Wang, R.Z. Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int. J. Therm. Sci. 2014, 81, 68–75. [Google Scholar] [CrossRef]
- Xie, X.; Jin, S.; Gao, P.; Wu, W.; Yang, Q.; Wang, L. Ammonia-based hybrid chemisorption-compression heat pump for high-temperature heating. Appl. Therm. Eng. 2023, 232, 121081. [Google Scholar] [CrossRef]
Salt | Reaction NH3 Number | Desorption Temperature (°C) | ΔH (J·mol−1) | ΔS (J·mol−1·K−1) | Max. Sorption Quantity (kg·kg−1) | Ref. |
---|---|---|---|---|---|---|
NaBr | 5.25/0 | 53.5 | 38,500 | 142.9 | 0.867 | [33] |
BaCl2 | 8/0 | 54 | 37,665 | 227.25 | 0.653 | [34] |
NH4Cl | 3/0 | 47.5 | 27,678 | 201.3 | 0.954 | [34] |
Working Process | Desorption | Transportation and Throttling | Adsorption | Compression |
---|---|---|---|---|
Temperature of ammonia (°C) | 60 (25) | 25 to 10 | 10 (25) | 25 to 60 |
Pressure of ammonia (bar) | 11.51 | 11.51 to 6.07 | 6.07 | 6.07 to 11.51 |
Type | The Minimum Driving Temperature | Working Mode | System Pressure | COP | Working Condition | Initial System Investment | Ref. |
---|---|---|---|---|---|---|---|
LiBr-H2O absorption | About 80 °C | Heating and cooling | Low | 0.48 | Air conditioning and dehumidification | Low | [7] |
NH3-H2O absorption | About 120 °C | Heating and cooling | High | 0.52 | Air conditioning and freezing | Low | [7] |
NH4Cl-NH3 adsorption | About 60 °C | Cooling | High | 0.4 | Air conditioning and freezing | 1.5–2 times higher | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Jin, S.; Zhang, W.; Xia, G.; Liu, B.; Jiang, L. Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation. Energies 2023, 16, 7963. https://doi.org/10.3390/en16247963
Yu M, Jin S, Zhang W, Xia G, Liu B, Jiang L. Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation. Energies. 2023; 16(24):7963. https://doi.org/10.3390/en16247963
Chicago/Turabian StyleYu, Meng, Suke Jin, Wenyun Zhang, Guangyue Xia, Baoqin Liu, and Long Jiang. 2023. "Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation" Energies 16, no. 24: 7963. https://doi.org/10.3390/en16247963
APA StyleYu, M., Jin, S., Zhang, W., Xia, G., Liu, B., & Jiang, L. (2023). Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation. Energies, 16(24), 7963. https://doi.org/10.3390/en16247963