A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland
Abstract
:1. Introduction
- With regard to passenger transport—the development and promotion of public transport, application of alternative sources of energy in the public means of transport, construction of infrastructures integrating individual and public transport (e.g., Park and Ride), development and promotion of bicycle transport, and the promotion of travelling on foot;
- With regard to cargo transport—the application of alternative sources of energy in vehicles used in parcel/courier deliveries and first/last mile deliveries, application of drones for transporting small, light parcels, and the application of public transport vehicles for cargo carriage (cargo hitching).
- RQ1. Is it possible to propose an alternative cargo delivery system within the Szczecin agglomeration?
- RQ2. Does the application of rail transport as an alternative cargo delivery system in the agglomeration make it possible to reduce the external costs generated by transport?
- RQ3. Does the application of rail transport as an alternative cargo delivery system in the agglomeration make it possible to achieve other effects related to the transport system or quality of life in the Szczecin agglomeration?
2. Literature Review
- Linear and nodal transport infrastructure;
- Passenger (private and public) transport;
- Urban deliveries.
3. Methodology
- Official statistical data regarding the Szczecin agglomeration, including the cities of Szczecin and Police [108];
- Official quantitative and qualitative data regarding the road transport infrastructure in the Szczecin agglomeration [109];
- Official quantitative and qualitative data regarding the rail transport infrastructure in the Szczecin agglomeration [110];
- Average costs per category for the individual means of road and rail transport [111];
- Provisions of the Act of 11 January 2018 on Electromobility and Alternative Fuels (AEAF) adopted by the Polish Parliament [112];
4. Studying the Effects of Shifting Cargoes from Road to Rail Transport in the Delivery System in the Szczecin Agglomeration in Poland
4.1. Characteristics of the Existing Delivery System of Cargoes from Grupa Azoty Zakłady Chemiczne Police S.A.
4.2. Defining the Research Area and Research Assumptions
- GAZCP is equipped with its own railway siding, which enables loading their cargoes;
- Within the area of the Szczecin agglomeration, many investment projects connected with upgrading the railway network are being carried out, which will contribute to improving the rail TS capacity in the studied areas and will increase safety.
- DSV0: the base delivery system (the currently used one)—cargoes are transported on semi-trailers by means of HGVs;
- DSV1: the alternative delivery system (the proposed one)—cargoes are transported on semi-trailers by means of intermodal trains.
- The maximum carrying capacity of 1 semi-trailer is 24 tonnes;
- Each shipper strives to load the semi-trailer/means of transport to the maximum;
- 1 HGV carries 1 semi-trailer at a time, i.e., 24 tonnes of cargo;
- 1 intermodal train carries 25 semi-trailers at a time, i.e., 600 tonnes of cargo (the assumption was adopted based on the data obtained from carriers operating these kinds of transport in Poland);
- To ensure data comparability, the concept of the delivery cycle (DC) was introduced in the analysis. It denotes an operating cycle of the analysed means of transport in both variants (DSV0, DSV1) necessary to move a specific amount of cargo;
- 1 DC is a cycle during which 600 tonnes of cargo is transported;
- The road distance between GAZCP and SK is 36 km (return trip 72 km) [116];
- The rail distance between GAZCP and SD is 39 km (return trip 78 km) [117];
- the railway route between GAZCP and SD is fully provided with electric traction; therefore, the delivery system may be operated with electric trains, which may foster energy transition in the examined area.
4.3. Estimating the Effects Ensuing from Application of a Rail-Based Delivery System in the Szczecin Agglomeration
- Estimation of External Costs in Variant DSV0 (road vehicles)
- Deliveries from GAZCP to SK (and back) are made by way of diesel-powered HGVs;
- Carrying capacity of 1 HGV = 24 tonnes;
- Completion of 1 DC requires the use of 25 HGVs;
- Average external cost per 1 HGV = 0.042 EUR/tkm [111].
- ECDSV0—external costs generated by HGVs per 1 DC (EUR);
- WDSV0—weight of cargo carried by 1 HGV (tonnes);
- DDSV0—road distance on the GAZCP–SK–GAZCP route (km);
- NDSV0—quantity of HGVs required to complete 1 DC (pcs);
- UECDSV0—external unit costs generated by 1 HGV at a distance of 1 km (EUR).
- Estimation of External Costs in Variant DSV1 (Rail Vehicles)
- Deliveries from GAZCP to SD (and back) are made by means of intermodal electric trains;
- Carrying capacity of 1 train = 25 semi-trailers;
- Completion of 1 DC requires the use of 1 intermodal electric train;
- Average external cost for electric freight trains = 0.0112 EUR/tkm [111].
- ECDSV1—external costs generated by an intermodal electric train per 1 DC (EUR);
- WDSV1—weight of cargo carried by 1 intermodal electric train (tonnes);
- DDSV1—rail distance on the GAZCP–SD–GAZCP route (km);
- UECDSV1—external unit costs generated by 1 electric freight train in transporting 1 tonne at a distance of 1 km (EUR/tkm).
- Estimation of the reduction in the external costs
- per day: EUR 1290.24;
- per month: EUR 38,707.2;
- per quarter: EUR 116,121.6;
- per year: EUR 464,486.40.
- per day: EUR 10,321.92;
- per month: EUR 309,657.60;
- per quarter: EUR 928,972.80;
- per year: EUR 3,715,891.20.
5. Discussion
- per day: EUR 20,643.84;
- per month: EUR 619,315.20;
- per quarter: EUR 1,857,945.60;
- per year: EUR 7,431,782.40.
- Decreased road congestion as a result of a considerable reduction in the number of HGVs;
- Decreased degradation of the road infrastructure as a result of a considerable reduction in the number of HGVs using it;
- Increased road safety as a result of making the traffic more fluent;
- Increased safety of NMT users and pedestrians—the route leading from GAZCP runs through urbanised areas, including the centres of the cities: Police and Szczecin;
- Increased tourist attractiveness of the Szczecin city centre—the HGV traffic is currently concentrated in the representative part of the city, along Wały Chrobrego, the city’s main tourist attraction;
- Supporting energy transition by making it possible to establish low- and zero-emission zones in the centre of Szczecin (as recommended by the AEAF);
- Supporting energy transition by shifting cargo deliveries from road to rail transport in said agglomeration.
6. Conclusions
- DSV0: the currently used delivery system—cargoes are transported on semi-trailers by means of diesel-powered HGVs;
- DSV1: the proposed delivery system—cargoes are transported on semi-trailers by means of intermodal trains.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEAF | Act on Electromobility and Alternative Fuels |
BEV | Battery Electric Vehicle |
CNG | Compressed Natural Gas |
DC | Delivery Cycle |
EFV | Electric Freight Vehicle |
EU | European Union |
FM | First Mile |
GAZCP | Grupa Azoty Zakłady Chemiczne Police S.A. |
GHG | Greenhouse Gases |
HGV | Heavy Goods Vehicle |
ICEV | Internal Combustion Engine Vehicle |
LCV | Light Commercial Vehicle |
LEFV | Light Electric Freight Vehicle |
LEZ | Low Emission Zone |
LM | Last Mile |
LNG | Liquefied Natural Gas |
NMT | Nonmotorized Transport |
PHEV | Plug-in Hybrid Electric Vehicle |
REC | Reduction External Costs |
SD | Szczecin Dunikowo |
SK | Szczecin Kijewo |
TS | Transport System |
UFT | Urban Freight Transport |
ZEZ | Zero Emission Zone |
References
- Condurat, M.; Nicuţă, A.M.; Andrei, R. Environmental Impact of Road Transport Traffic. A Case Study for County of Iaşi Road Network. Procedia Eng. 2017, 181, 123–130. [Google Scholar] [CrossRef]
- Demirel, H.; Sertel, E.; Kaya, S.; Zafer Seker, D. Exploring Impacts of Road Transportation on Environment: A Spatial Approach. Desalination 2008, 226, 279–288. [Google Scholar] [CrossRef]
- Hao, G.; Zuo, L.; Weng, X.; Fei, Q.; Zhang, Z.; Chen, L.; Wang, Z.; Jing, C. Associations of Road Traffic Noise with Cardiovascular Diseases and Mortality: Longitudinal Results from UK Biobank and Meta-Analysis. Environ. Res. 2022, 212, 113129. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.M.; Ögren, M.; Molnár, P.; Segersson, D.; Rosengren, A.; Stockfelt, L. Road Traffic Noise, Air Pollution and Cardiovascular Events in a Swedish Cohort. Environ. Res. 2020, 185, 109446. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Mohammed, M.G.; Abdulqadir, S.O.; El-Kader, R.G.A.; El-Shall, N.A.; Chandran, D.; Rehman, M.E.U.; Dhama, K. Road Traffic Accidental Injuries and Deaths: A Neglected Global Health Issue. Health Sci. Rep. 2023, 6, e1240. [Google Scholar] [CrossRef] [PubMed]
- Afrin, T.; Yodo, N. A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System. Sustainability 2020, 12, 4660. [Google Scholar] [CrossRef]
- Bjørgen, A.; Ryghaug, M. Integration of Urban Freight Transport in City Planning: Lesson Learned. Transp. Res. Part D Transp. Environ. 2022, 107, 103310. [Google Scholar] [CrossRef]
- EU Commission. Green Paper—Towards a New Culture for Urban Mobility; 25.9.2007 [COM(2007) 551]; European Union: Brussels, Belgium, 2007. [Google Scholar]
- EU Commission. A European Strategy for Low-Emission Mobility; 20.7.2016 [COM(2016) 501 Final]; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Pietrzak, K.; Pietrzak, O. Environmental Effects of Electromobility in a Sustainable Urban Public Transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. The World’s Cities in 2018—Data Booklet; (ST/ESA/SER.A/417); United Nations: New York, NY, USA, 2018.
- Bennani, M.; Jawab, F.; Hani, Y.; ElMhamedi, A.; Amegouz, D. A Hybrid MCDM for the Location of Urban Distribution Centers under Uncertainty: A Case Study of Casablanca, Morocco. Sustainability 2022, 14, 9544. [Google Scholar] [CrossRef]
- Rudewicz, J. Entrepreneurship in Slum Dwellers: Social Inclusion and the “Right to a City”. Przedsiębiorczość–Eduk. 2020, 16, 318–333. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Urbanization|OurWorldInData. Available online: https://ourworldindata.org/urbanization (accessed on 31 May 2023).
- Domagała, J.; Zych-Lewandowska, M. Environmental Costs Generated by Road Freight Transport in Poland. Rocz. Ochr. Sr. 2021, 23, 138–150. [Google Scholar] [CrossRef]
- Kijewska, K.; Jedliński, M.; Iwan, S. Ecological Utility of FQP Projects in the Stakeholders’ Opinion in the Light of Empirical Studies Based on the Example of the City of Szczecin. Sustain. Cities Soc. 2021, 74, 103171. [Google Scholar] [CrossRef]
- Davidich, N.; Galkin, A.; Iwan, S.; Kijewska, K.; Chumachenko, I.; Davidich, Y. Monitoring of Urban Freight Flows Distribution Considering the Human Factor. Sustain. Cities Soc. 2021, 75, 103168. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, J. Characteristics, Impacts and Trends of Urban Transportation. Encyclopedia 2022, 2, 1168–1182. [Google Scholar] [CrossRef]
- Lah, O. Factors of Change: The Influence of Policy Environment Factors on Climate Change Mitigation Strategies in the Transport Sector. Transp. Res. Procedia 2017, 25, 3495–3510. [Google Scholar] [CrossRef]
- Waqas, M.; Dong, Q.; Ahmad, N.; Zhu, Y.; Nadeem, M. Understanding Acceptability towards Sustainable Transportation Behavior: A Case Study of China. Sustainability 2018, 10, 3686. [Google Scholar] [CrossRef]
- Łapko, A.; Panasiuk, A.; Strulak-Wójcikiewicz, R.; Landowski, M. The State of Air Pollution as a Factor Determining the Assessment of a City’s Tourist Attractiveness—Based on the Opinions of Polish Respondents. Sustainability 2020, 12, 1466. [Google Scholar] [CrossRef]
- Strulak-Wójcikiewicz, R.; Lemke, J. Concept of a Simulation Model for Assessing the Sustainable Development of Urban Transport. Transp. Res. Procedia 2019, 39, 502–513. [Google Scholar] [CrossRef]
- Mikulski, M.; Droździel, P.; Tarkowski, S. Reduction of Transport-Related Air Pollution. A Case Study Based on the Impact of the COVID-19 Pandemic on the Level of NOx Emissions in the City of Krakow. Open Eng. 2021, 11, 790–796. [Google Scholar] [CrossRef]
- Połom, M.; Wiśniewski, P. Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot. Int. J. Environ. Res. Public Health 2021, 18, 8379. [Google Scholar] [CrossRef]
- Jereb, B.; Stopka, O.; Skrúcaný, T. Methodology for Estimating the Effect of Traffic Flow Management on Fuel Consumption and CO2 Production: A Case Study of Celje, Slovenia. Energies 2021, 14, 1673. [Google Scholar] [CrossRef]
- Urrutia-Mosquera, J.A.; Flórez-Calderón, L.Á. Impact of Confinement on the Reduction of Pollution and Particulate Matter Concentrations. Reflections for Public Transport Policies. Environ. Process. 2022, 10, 2. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air Pollution and Health Risks due to Vehicle Traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Matz, C.J.; Egyed, M.; Hocking, R.; Seenundun, S.; Charman, N.; Edmonds, N. Human Health Effects of Traffic-Related Air Pollution (TRAP): A Scoping Review Protocol. Syst. Rev. 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, H.; Patton, A.P.; Atkinson, R.W.; Brook, J.R.; Chang, H.H.; Crouse, D.L.; Fussell, J.C.; Hoek, G.; Hoffmann, B.; Kappeler, R.; et al. Long-Term Exposure to Traffic-Related Air Pollution and Selected Health Outcomes: A Systematic Review and Meta-Analysis. Environ. Int. 2022, 164, 107262. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Jensen, S.S.; Ketzel, M.; Sørensen, M.; Hansen, J.; Loft, S.; Tjønneland, A.; Overvad, K. Traffic Air Pollution and Mortality from Cardiovascular Disease and All Causes: A Danish Cohort Study. Environ. Health 2012, 11, 60. [Google Scholar] [CrossRef]
- Jerrett, M.; Shankardass, K.; Berhane, K.; Gauderman, W.J.; Künzli, N.; Avol, E.; Gilliland, F.; Lurmann, F.; Molitor, J.N.; Molitor, J.T.; et al. Traffic-Related Air Pollution and Asthma Onset in Children: A Prospective Cohort Study with Individual Exposure Measurement. Environ. Health Perspect. 2008, 116, 1433–1438. [Google Scholar] [CrossRef]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to Traffic-Related Air Pollution and Risk of Development of Childhood Asthma: A Systematic Review and Meta-Analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef]
- Favarato, G.; Anderson, H.R.; Atkinson, R.; Fuller, G.; Mills, I.; Walton, H. Traffic-Related Pollution and Asthma Prevalence in Children. Quantification of Associations with Nitrogen Dioxide. Air Qual. Atmos. Health 2014, 7, 459–466. [Google Scholar] [CrossRef]
- Hudda, N.; Eliasziw, M.; Hersey, S.O.; Reisner, E.; Brook, R.D.; Zamore, W.; Durant, J.L.; Brugge, D. Effect of Reducing Ambient Traffic-Related Air Pollution on Blood Pressure. Hypertension 2021, 77, 823–832. [Google Scholar] [CrossRef]
- Zhong, J.; Cayir, A.; Trevisi, L.; Sanchez-Guerra, M.; Lin, X.; Peng, C.; Bind, M.-A.; Prada, D.; Laue, H.; Brennan, K.J.; et al. Traffic-Related Air Pollution, Blood Pressure, and Adaptive Response of Mitochondrial Abundance. Circulation 2016, 133, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, E.; Serghides, D.; Dimitriou, S.; Zittis, G. Land Transport CO2 Emissions and Climate Change: Evidence from Cyprus. Int. J. Sustain. Energy 2020, 39, 634–647. [Google Scholar] [CrossRef]
- Abraham, S.; Ganesh, K.; Kumar, A.S.; Ducqd, Y. Impact on Climate Change due to Transportation Sector—Research Prospective. Procedia Eng. 2012, 38, 3869–3879. [Google Scholar] [CrossRef]
- Zhang, A.; Gudmundsson, S.V.; Oum, T.H. Air Transport, Global Warming and the Environment. Transp. Res. Part D Transp. Environ. 2010, 15, 1–4. [Google Scholar] [CrossRef]
- Zhang, S.; Witlox, F. Analyzing the Impact of Different Transport Governance Strategies on Climate Change. Sustainability 2019, 12, 200. [Google Scholar] [CrossRef]
- Marsden, G.; Rye, T. The Governance of Transport and Climate Change. J. Transp. Geogr. 2010, 18, 669–678. [Google Scholar] [CrossRef]
- Gelete, G.; Gokcekus, H. The Economic Impact of Climate Change on Transportation Assets. J. Environ. Pollut. Control 2018, 1, 105. [Google Scholar] [CrossRef]
- Regmi, M.B.; Hanaoka, S. A Survey on Impacts of Climate Change on Road Transport Infrastructure and Adaptation Strategies in Asia. Environ. Econ. Policy Stud. 2011, 13, 21–41. [Google Scholar] [CrossRef]
- Koetse, M.J.; Rietveld, P. The Impact of Climate Change and Weather on Transport: An Overview of Empirical Findings. Transp. Res. Part D Transp. Environ. 2009, 14, 205–221. [Google Scholar] [CrossRef]
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors Affecting the Emission of Pollutants in Different Types of Transportation: A Literature Review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Pomianowski, A. Electromobility in Poland, Availability, Trends and Challenges. Eur. Res. Stud. J. 2021, XXIV, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Deja, A.; Ulewicz, R.; Kyrychenko, Y. Analysis and Assessment of Environmental Threats in Maritime Transport. Transp. Res. Procedia 2021, 55, 1073–1080. [Google Scholar] [CrossRef]
- Montwiłł, A.; Pietrzak, K.; Pietrzak, O. Analysis of the possibility of reducing external costs of transport within land-sea transport chains on the example of Zachodniopomorskie Voivodeship, Poland. Transp. Probl. 2020, 15 Pt 2, 179–190. [Google Scholar] [CrossRef]
- Mercik, A.R. Elektromobilność w autobusowym transporcie publicznym organizowanym przez górnośląsko-zagłębiowską metropolię jako narzędzie realizacji idei zrównoważonej mobilności. Pr. Kom. Geogr. Komun. PTG 2020, 23, 18–33. [Google Scholar] [CrossRef]
- Macioszek, E. Analysis of Trends in Development of Electromobility in Poland: Current Problems and Issues. In Transport Development Challenges in the 21st Century; Suchanek, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 145–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Andre, M.; Liu, Y.; Wu, L.; Jing, B.; Mao, H. Evaluation of Low Emission Zone Policy on Vehicle Emission Reduction in Beijing, China. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 052070. [Google Scholar] [CrossRef]
- Cruz, C.; Montenon, A. Implementation and Impacts of Low Emission Zones on Freight Activities in Europe: Local Schemes versus National Schemes. Transp. Res. Procedia 2016, 12, 544–556. [Google Scholar] [CrossRef]
- Kowalska-Pyzalska, A. Perspectives of Development of Low Emission Zones in Poland: A Short Review. Front. Energy Res. 2022, 10, 898391. [Google Scholar] [CrossRef]
- de Bok, M.; Tavasszy, L.; Kourounioti, I.; Thoen, S.; Eggers, L.; Nielsen, V.M.; Streng, J. Simulation of the Impacts of a Zero-Emission Zone on Freight Delivery Patterns in Rotterdam. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 776–785. [Google Scholar] [CrossRef]
- Kos, B.; Krawczyk, G.; Tomanek, R.J. Determinants for the Effective Electromobility Development in Public Transport. In Electric Mobility in Public Transport—Driving towards Cleaner Air; Springer: Cham, Switzerland, 2021; pp. 27–51. [Google Scholar] [CrossRef]
- Goliszek, S. Private Car Transport or Public Transport? The Study of Daily Accessibility in Szczecin. Geogr. Časopis–Geogr. J. 2022, 74, 337–356. [Google Scholar] [CrossRef]
- Sen, V.; Hajela, A.; Suneeth, G.; Saxena, S.; Deore, A. Greening of Public Transport in Pune—A Feasibility Study. Australas. Account. Bus. Financ. J. 2023, 17, 220–235. [Google Scholar] [CrossRef]
- Iqbal, R.; Ullah, M.U.; Habib, G.; Ullah, M.K. Evaluating Public and Private Transport of Lahore. J. World Sci. 2023, 2, 325–336. [Google Scholar] [CrossRef]
- Velasco Arevalo, A.; Gerike, R. Sustainability Evaluation Methods for Public Transport with a Focus on Latin American Cities: A Literature Review. Int. J. Sustain. Transp. 2023, 17, 1236–1253. [Google Scholar] [CrossRef]
- Al-Dalain, R.; Alnsour, M. Measuring the Sustainability Performance of the Public Transport System. Int. J. Proj. Manag. Product. Assess. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Budiarto, A. The Sustainability of Public Transport Operation Based on Financial Point of View. MATEC Web Conf. 2019, 258, 01008. [Google Scholar] [CrossRef]
- Cheng, H.; Madanat, S.; Horvath, A. Planning Hierarchical Urban Transit Systems for Reductions in Greenhouse Gas Emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 44–58. [Google Scholar] [CrossRef]
- Ranceva, J.; Ušpalytė-Vitkūnienė, R. Models of public transport organization and management in Lithuania and foreign countries. Moksl.–Liet. Ateitis 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Gadziński, J.; Radzimski, A. The First Rapid Tram Line in Poland: How Has It Affected Travel Behaviours, Housing Choices and Satisfaction, and Apartment Prices? J. Transp. Geogr. 2016, 54, 451–463. [Google Scholar] [CrossRef]
- Barczak, A. The Expectations of the Residents of Szczecin in the Field of Telematics Solutions after the Launch of the Szczecin Metropolitan Railway. Information 2021, 12, 339. [Google Scholar] [CrossRef]
- Pietrzak, K.; Pietrzak, O. Can the Metropolitan Rail System Hamper the Development of Individual Transport? (Case Study on the Example of the Szczecin Metropolitan Railway, Szczecin, Poland). In Transport Development Challenges in the 21st Century; Springer: Cham, Switzerland, 2021; pp. 181–192. [Google Scholar] [CrossRef]
- Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B.; Oleszczuk, Ł.; Fialová, J. The Potential of Tram Networks in the Revitalization of the Warsaw Landscape. Land 2021, 10, 375. [Google Scholar] [CrossRef]
- Wołek, M.; Wolański, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279, 123807. [Google Scholar] [CrossRef]
- Połom, M. Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries. Energies 2021, 14, 3040. [Google Scholar] [CrossRef]
- Guzik, R.; Kołoś, A.; Taczanowski, J.; Fiedeń, Ł.; Gwosdz, K.; Hetmańczyk, K.; Łodziński, J. The Second Generation Electromobility in Polish Urban Public Transport: The Factors and Mechanisms of Spatial Development. Energies 2021, 14, 7751. [Google Scholar] [CrossRef]
- Jurkovič, M.; Kalina, T.; Skrúcaný, T.; Gorzelanczyk, P.; Ľupták, V. Environmental Impacts of Introducing LNG as Alternative Fuel for Urban Buses—Case Study in Slovakia. Promet–Traffic Transp. 2020, 32, 837–847. [Google Scholar] [CrossRef]
- Milojevic, S.; Grocic, D.; Dragojlovic, D. CNG Propulsion System for Reducing Noise of Existing City Buses. J. Appl. Eng. Sci. 2016, 14, 377–382. [Google Scholar] [CrossRef]
- Merkisz, J.; Dobrzyński, M.; Kozak, M.; Lijewski, P.; Fuć, P. Environmental Aspects of the Use of CNG in Public Urban Transport. In Alternative Fuels, Technical and Environmental Conditions; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Park, S.-A.; Tak, H. The Environmental Effects of the CNG Bus Program on Metropolitan Air Quality in Korea. Ann. Reg. Sci. 2011, 49, 261–287. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Lago Sari, R.; Tripathi, S. Life Cycle CO2 Footprint Reduction Comparison of Hybrid and Electric Buses for Bus Transit Networks. Appl. Energy 2022, 308, 118354. [Google Scholar] [CrossRef]
- Dreier, D.; Silveira, S.; Khatiwada, D.; Fonseca, K.V.O.; Nieweglowski, R.; Schepanski, R. Well-To-Wheel Analysis of Fossil Energy Use and Greenhouse Gas Emissions for Conventional, Hybrid-Electric and Plug-in Hybrid-Electric City Buses in the BRT System in Curitiba, Brazil. Transp. Res. Part D Transp. Environ. 2018, 58, 122–138. [Google Scholar] [CrossRef]
- Konečný, V.; Gnap, J.; Settey, T.; Petro, F.; Skrúcaný, T.; Figlus, T. Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe. Energies 2020, 13, 3869. [Google Scholar] [CrossRef]
- Dalla Chiara, B.; Pede, G.; Deflorio, F.; Zanini, M. Electrifying Buses for Public Transport: Boundaries with a Performance Analysis Based on Method and Experience. Sustainability 2023, 15, 14082. [Google Scholar] [CrossRef]
- Alessio, H.M.; Bassett, D.R.; Bopp, M.J.; Parr, B.B.; Patch, G.S.; Rankin, J.W.; Rojas-Rueda, D.; Roti, M.W.; Wojcik, J.R. Climate Change, Air Pollution, and Physical Inactivity. Med. Sci. Sports Exerc. 2021, 53, 1170–1178. [Google Scholar] [CrossRef]
- Rather, A.R.; Ram, S.; Ganie, R.A. Study for Human Powered Transportation and Its Consequences on General Traffic. Int. J. Sci. Res. Dev. 2020, 8, 1147–1150. [Google Scholar]
- Yazid, M.R.M.; Ismail, R.; Atiq, R. The Use of Non-Motorized for Sustainable Transportation in Malaysia. Procedia Eng. 2011, 20, 125–134. [Google Scholar] [CrossRef]
- Maciorowski, M.M.; Souza, J.C. Urban Roads and Non-Motorized Transport: The Barrier Effect and Challenges in the Search for Sustainable Urban Mobility. Transp. Res. Procedia 2018, 33, 123–130. [Google Scholar] [CrossRef]
- Risimati, B.; Gumbo, T.; Chakwizira, J. Spatial Integration of Non-Motorized Transport and Urban Public Transport Infrastructure: A Case of Johannesburg. Sustainability 2021, 13, 11461. [Google Scholar] [CrossRef]
- Rietveld, P. Non-Motorised Modes in Transport Systems: A Multimodal Chain Perspective for the Netherlands. Transp. Res. Part D Transp. Environ. 2000, 5, 31–36. [Google Scholar] [CrossRef]
- Grzelak, M.; Kijek, M. Modeling the Price of Electric Vehicles as an Element of Promotion of Environmental Safety and Climate Neutrality: Evidence from Poland. Energies 2021, 14, 8534. [Google Scholar] [CrossRef]
- Gerboni, R.; Caballini, C.; Minetti, A.; Grosso, D.; Dalla Chiara, B. Recharging Scenarios for Differently Electrified Road Vehicles: A Methodology and Its Application to the Italian Grid. Transp. Res. Interdiscip. Perspect. 2021, 11, 100454. [Google Scholar] [CrossRef]
- Dong, Y.; Polak, J.; Tretvik, T.; Roche-Cerasi, I.; Quak, H.; Nesterova, N.; Van Rooijen, T. Electric freight vehicles for urban logistics—Technical performance, economics feasibility and environmental impacts. In Proceedings of the 7th Transport Research Arena TRA 2018, Vienna, Austria, 16–19 April 2018. [Google Scholar]
- Wątróbski, J.; Małecki, K.; Kijewska, K.; Iwan, S.; Karczmarczyk, A.; Thompson, R. Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability 2017, 9, 1453. [Google Scholar] [CrossRef]
- Iwan, S.; Kijewska, K.; Kijewski, D. Possibilities of Applying Electrically Powered Vehicles in Urban Freight Transport. Procedia–Soc. Behav. Sci. 2014, 151, 87–101. [Google Scholar] [CrossRef]
- Taefi, T.T.; Kreutzfeldt, J.; Held, T.; Fink, A. Supporting the Adoption of Electric Vehicles in Urban Road Freight Transport—A Multi-Criteria Analysis of Policy Measures in Germany. Transp. Res. Part A Policy Pract. 2016, 91, 61–79. [Google Scholar] [CrossRef]
- Melander, L.; Nyquist-Magnusson, C. Drivers for and Barriers to Electric Freight Vehicle Adoption in Stockholm. Transp. Res. Part D Transp. Environ. 2022, 108, 103317. [Google Scholar] [CrossRef]
- Pietrzak, K.; Pietrzak, O.; Montwiłł, A. Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains. Energies 2021, 14, 6809. [Google Scholar] [CrossRef]
- Papaioannou, E.; Iliopoulou, C.; Kepaptsoglou, K. Last-Mile Logistics Network Design under E-Cargo Bikes. Future Transp. 2023, 3, 403–416. [Google Scholar] [CrossRef]
- Balm, S.; Moolenburgh, E.; Anand, N.; Ploos van Amstel, W. The Potential of Light Electric Vehicles for Specific Freight Flows: Insights from the Netherlands. In City Logistics 2: Modeling and Planning Initiatives; ISTE Ltd.: London, UK, 2018; pp. 241–260. [Google Scholar] [CrossRef]
- Moolenburgh, E.A.; van Duin, J.H.R.; Balm, S.; van Altenburg, M.; van Amstel, W.P. Logistics Concepts for Light Electric Freight Vehicles: A Multiple Case Study from the Netherlands. Transp. Res. Procedia 2020, 46, 301–308. [Google Scholar] [CrossRef]
- Díaz-Ramírez, J.; Zazueta-Nassif, S.; Galarza-Tamez, R.; Prato-Sánchez, D.; Huertas, J.I. Characterization of Urban Distribution Networks with Light Electric Freight Vehicles. Transp. Res. Part D Transp. Environ. 2023, 119, 103719. [Google Scholar] [CrossRef]
- Iwan, S.; Allesch, J.; Celebi, D.; Kijewska, K.; Hoé, M.; Klauenberg, J.; Zajicek, J. Electric Mobility in European Urban Freight and Logistics—Status and Attempts of Improvement. Transp. Res. Procedia 2019, 39, 112–123. [Google Scholar] [CrossRef]
- Skrúcaný, T.; Kendra, M.; Stopka, O.; Milojević, S.; Figlus, T.; Csiszár, C. Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries. Sustainability 2019, 11, 4948. [Google Scholar] [CrossRef]
- Anosike, A.; Loomes, H.; Udokporo, C.K.; Garza-Reyes, J.A. Exploring the Challenges of Electric Vehicle Adoption in Final Mile Parcel Delivery. Int. J. Logist. Res. Appl. 2021, 26, 683–707. [Google Scholar] [CrossRef]
- Settey, T.; Gnap, J.; Synák, F.; Skrúcaný, T.; Dočkalik, M. Research into the Impacts of Driving Cycles and Load Weight on the Operation of a Light Commercial Electric Vehicle. Sustainability 2021, 13, 13872. [Google Scholar] [CrossRef]
- Melo, S.; Baptista, P.; Costa, Á. Comparing the Use of Small Sized Electric Vehicles with Diesel Vans on City Logistics. Procedia–Soc. Behav. Sci. 2014, 111, 350–359. [Google Scholar] [CrossRef]
- Juan, A.; Mendez, C.; Faulin, J.; de Armas, J.; Grasman, S. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges. Energies 2016, 9, 86. [Google Scholar] [CrossRef]
- Li, Y.; Lim, M.K.; Tan, Y.; Lee, S.Y.; Tseng, M.-L. Sharing Economy to Improve Routing for Urban Logistics Distribution Using Electric Vehicles. Resour. Conserv. Recycl. 2020, 153, 104585. [Google Scholar] [CrossRef]
- Olovsson, J.; Taljegard, M.; Von Bonin, M.; Gerhardt, N.; Johnsson, F. Impacts of Electric Road Systems on the German and Swedish Electricity Systems—An Energy System Model Comparison. Front. Energy Res. 2021, 9, 631200. [Google Scholar] [CrossRef]
- Shoman, W.; Karlsson, S.; Yeh, S. Benefits of an Electric Road System for Battery Electric Vehicles. World Electr. Veh. J. 2022, 13, 197. [Google Scholar] [CrossRef]
- Taljegard, M.; Thorson, L.; Odenberger, M.; Johnsson, F. Large-Scale Implementation of Electric Road Systems: Associated Costs and the Impact on CO2 Emissions. Int. J. Sustain. Transp. 2019, 14, 606–619. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Bock, S.; Boysen, N.; Briskorn, D. Optimizing the Electrification of Roads with Charge-While-Drive Technology. Eur. J. Oper. Res. 2021, 299, 1111–1127. [Google Scholar] [CrossRef]
- Börjesson, M.; Johansson, M.; Kågeson, P. The Economics of Electric Roads. Transp. Res. Part C Emerg. Technol. 2021, 125, 102990. [Google Scholar] [CrossRef]
- Rocznik Statystyczny Rzeczypospolitej Polskiej. 2022. Available online: https://www.stat.gov.pl/ (accessed on 31 May 2023).
- Generalna Dyrekcja Dróg Krajowych i Autostrad. Available online: https://www.gov.pl/web/gddkia (accessed on 31 May 2023).
- PKP Polskie Linie Kolejowe S.A. Available online: http://mapa.plk-sa.pl/ (accessed on 31 May 2023).
- Handbook on the External Costs of Transport; Version 2019—1.1; European Commission: Brussels, Belgium, 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/9781f65f-8448-11ea-bf12-01aa75ed71a1 (accessed on 31 May 2023).
- Act of 11 January 2018 on Electromobility and Alternative Fuels (Ustawa z Dnia 11 Stycznia 2018 r. o Elektromobilności i Paliwach Alternatywnych, Dz. U. 2018, poz. 317). Available online: https://isap.sejm.gov.pl (accessed on 31 May 2023).
- Grupa Azoty Zakłady Chemiczne “Police” S.A. Available online: https://polyolefins.grupaazoty.com/aktualnosci/grupa-azoty-uruchamia-produkcje-polipropylenu-w-polimerach-police (accessed on 31 May 2023).
- Krzyżewska, I. Problems in the organisation of the transport process on the international market. Sci. J. Silesian Univ. Technol. Ser. Transp. 2021, 112, 113–123. [Google Scholar] [CrossRef]
- Solina, K.; Abramović, B. Effects of Railway Market Liberalisation: European Union Perspective. Sustainability 2022, 14, 4657. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.pl/maps/preview (accessed on 31 May 2023).
- PKP Polskie Linie Kolejowe S.A. Available online: https://skrj.plk-sa.pl/kalkulacja/ (accessed on 31 May 2023).
- Kiba-Janiak, M. EU Cities’ Potentials for Formulation and Implementation of Sustainable Urban Freight Transport Strategic Plans. Transp. Res. Procedia 2019, 39, 150–159. [Google Scholar] [CrossRef]
DSV0 | DSV1 | ||||
---|---|---|---|---|---|
Number of Vehicles | Number of Kilometres | Number of Vehicles | Number of Kilometres | ||
day | 1 DC | 25 | 1800 | 1 | 78 |
8 DCs | 200 | 14,400 | 8 | 624 | |
16 DCs | 400 | 28,800 | 16 | 1248 | |
month | 1 DC | 750 | 54,000 | 30 | 2340 |
8 DCs | 6000 | 432,000 | 240 | 18,720 | |
16 DCs | 12,000 | 864,000 | 480 | 37,440 | |
quarter | 1 DC | 2250 | 162,000 | 90 | 7020 |
8 DCs | 18,000 | 1,296,000 | 720 | 56,160 | |
16 DCs | 36,000 | 2,592,000 | 1440 | 112,320 | |
year | 1 DC | 9000 | 648,000 | 360 | 28,080 |
8 DCs | 72,000 | 5,184,000 | 2880 | 224,640 | |
16 DCs | 144,000 | 10,368,000 | 5760 | 449,280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, K.; Pietrzak, O.; Montwiłł, A. A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland. Energies 2023, 16, 7943. https://doi.org/10.3390/en16247943
Pietrzak K, Pietrzak O, Montwiłł A. A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland. Energies. 2023; 16(24):7943. https://doi.org/10.3390/en16247943
Chicago/Turabian StylePietrzak, Krystian, Oliwia Pietrzak, and Andrzej Montwiłł. 2023. "A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland" Energies 16, no. 24: 7943. https://doi.org/10.3390/en16247943
APA StylePietrzak, K., Pietrzak, O., & Montwiłł, A. (2023). A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland. Energies, 16(24), 7943. https://doi.org/10.3390/en16247943