Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC
Abstract
:1. Introduction
2. PEMFC Model Description
2.1. Governing Equations and Source Terms
2.2. Calculation Boundary Conditions in the Different PEMFC Regions
2.3. PEMFC Model Validation
3. Analysis of the PEMFC Component Degradation
3.1. Simulation Process
3.2. Boundary Conditions
3.3. Core Parameters of Each Component
3.3.1. PEM Parameters
3.3.2. CL Parameters
3.3.3. GDL Parameters
3.3.4. BP Parameters
4. Results and Discussion
4.1. Performance Indexes
4.1.1. Current Density
4.1.2. Average Activation Overpotential at the Cathode CL
4.1.3. Average Equilibrium Potential at the Cathode CL
4.1.4. Average Exchange Current Density at the Anode CL
4.2. Distribution Indexes
4.2.1. Average Membrane Water Content
4.2.2. Average H2 Molar Concentration at the Anode CL
4.2.3. Average O2 Molar Concentration at the Cathode CL
4.2.4. Average H2 Crossover Flux
4.2.5. Average O2 Crossover Flux
5. Conclusions
- (a)
- The effects of the components’ degradation on the different indexes (performance and distribution) are provided. The effects of the different components’ degradation on the current density, average activation overpotential at the cathode CL, average equilibrium potential at the cathode CL, average exchange current density at the anode CL, average H2 molar concentration at the anode CL, average O2 molar concentration at the cathode CL, average membrane water content, average H2 crossover flux, and average O2 crossover flux are as follows: GDL > PEM > CL > BP, CL > GDL > PEM > BP, GDL > PEM > CL > BP, CL > PEM > GDL > BP, GDL > PEM > CL > BP, GDL > PEM > CL > BP, GDL > CL > PEM > BP, GDL > CL > PEM > BP, and CL > PEM > GDL > BP, respectively. Considering the nine indexes comprehensively, the influence of the components’ degradation on the performance degradation is as follows: GDL > PEM = CL > BP.
- (b)
- For the performance indexes, the effects of the PEM, CL, GDL, and BP on the current density account for approximately 44.6%, 7.6%, 48.2%, and 0.2%, respectively. The effects of the PEM, CL, GDL, and BP on the average activation overpotential at the cathode CL account for approximately 25.0%, 37.5%, 37.5%, and 0, respectively. The effects of the PEM, CL, GDL, and BP on the average equilibrium potential at the cathode CL account for approximately 28.6%, 14.3%, 50.0%, and 0, respectively. The effects of the PEM, CL, GDL, and BP on the average exchange current density at the anode CL account for approximately 16.6%, 69.2%, 13.9%, and 0, respectively.
- (c)
- For the distribution indexes, the effect of the PEM, CL, GDL, and BP on the average H2 molar concentration at the anode CL accounts for approximately 25.4%, 3.6%, 80.1%, and 1.8%, respectively. The effect of the PEM, CL, GDL, and BP on the average O2 molar concentration at the cathode CL accounts for approximately 29.7%, 3.4%, 66.9%, and 0, respectively. The effect of the PEM, CL, GDL, and BP on the average H2 crossover flux accounts for approximately 17.4%, 35.5%, 48.5%, and 0, respectively.
- (d)
- This work provides theoretical guidance for the selection and preparation of PEMFC component materials and also points out the possibility to delay the PEMFC’s performance degradation. At the same time, it expands the detection range during the PEMFC’s operation and provides more comprehensive indexes for the estimation of the state of health and the prediction of the remaining useful life.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Partial pressure index | Mass transfer coefficient | ||
Specific heat capacity | Dynamic viscosity | ||
Dissolved water content | Density | ||
Diffusion coefficient | Potential | ||
Ionomer equivalent | |||
Faraday constant | Superscript and subscript | ||
External heat transfer coefficient | act | Activation polarization | |
Specific total enthalpy | agg | Agglomerate | |
Current density | ano | Anode | |
Diffusion mass flux | cap | Capillary | |
Fluid permeability tensor | cat | Cathode | |
Nusselt number | ec | Electrochemical reaction | |
Pressure | ele | Electrical phases | |
Power | eq | Equilibrium | |
Radius | film | Ionomer film | |
Gas constant | g | Gas phase | |
Temperature | H2 | Hydrogen | |
Velocity of flow | ion | Ionic phase | |
Voltage | k | Substance k | |
Molar fraction | l | Liquid phase | |
Mass fraction | O2 | Oxygen | |
Phase volume fraction | ohm | Ohmic polarization | |
Charge transfer coefficient | ref | Reference | |
Thickness | w | Dissolved water | |
Efficiency | wall | Wall surface |
References
- Zhou, S.; Fan, L.; Zhang, G.; Gao, J.; Lu, Y.; Zhao, P.; Wen, C.; Shi, L.; Hu, Z. A review on proton exchange membrane multi-stack fuel cell systems: Architecture, performance, and power management. Appl. Energy 2022, 310, 118555–118579. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Chen, D.; Hu, S.; Xu, X. Thermal-physical modeling and parameter identification method for dynamic model with unmeasurable state in 10-kW scale proton exchange membrane fuel cell system. Energy Convers. Manag. 2023, 276, 116580. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, L.; Pei, P.; Yao, S.; Wang, F. Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell. Appl. Energy 2018, 213, 573–584. [Google Scholar] [CrossRef]
- Fukuhara, S.; Marx, N.; Ettihir, K.; Boulon, L.; Ait-Amirat, Y.; Becherif, M. A lumped fluidic model of an anode chamber for fault tolerant strategy design. Int. J. Hydrogen Energy 2016, 41, 5037–5047. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, B.K.; Mench, M.M. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects. J. Power Sources 2008, 179, 140–146. [Google Scholar] [CrossRef]
- Shi, S.; Sun, X.; Lin, Q.; Chen, J.; Fu, Y.; Hong, X.; Li, C.; Guo, X.; Chen, G.; Chen, X. Fatigue crack propagation behavior of fuel cell membranes after chemical degradation. Int. J. Hydrogen Energy 2020, 45, 27653–27664. [Google Scholar] [CrossRef]
- Yuan, X.-Z.; Zhang, S.; Wang, H.; Wu, J.; Sun, J.C.; Hiesgen, R.; Friedrich, K.A.; Schulze, M.; Haug, A. Degradation of a polymer exchange membrane fuel cell stack with Nafion® membranes of different thicknesses: Part I. In situ diagnosis. J. Power Sources 2010, 195, 7594–7599. [Google Scholar] [CrossRef]
- Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G.G.; Holdcroft, S.; Kjeang, E. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. J. Power Sources 2014, 257, 102–110. [Google Scholar] [CrossRef]
- Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 2006, 51, 5746–5753. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, M.; Shi, W.; Liu, W.; Liu, J.; Xing, D.; Yao, Y.; Hou, Z.; Ming, P.; Gu, J.; et al. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. Int. J. Hydrogen Energy 2014, 39, 14381–14390. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- Qu, L.; Wang, Z.; Guo, X.; Song, W.; Xie, F.; He, L.; Shao, Z.; Yi, B. Effect of electrode Pt-loading and cathode flow-field plate type on the degradation of PEMFC. J. Energy Chem. 2018, 35, 95–103. [Google Scholar] [CrossRef]
- Sharma, R.; Andersen, S.M. Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal. 2018, 8, 3424–3434. [Google Scholar] [CrossRef]
- Bi, W.; Fuller, T.F. Modeling of PEM fuel cell Pt/C catalyst degradation. J. Power Sources 2008, 178, 188–196. [Google Scholar] [CrossRef]
- Pauchet, J.; Prat, M.; Schott, P.; Kuttanikkad, S.P. Performance loss of proton exchange membrane fuel cell due to hydrophobicity loss in gas diffusion layer: Analysis by multiscale approach combining pore network and performance modelling. Int. J. Hydrogen Energy 2012, 37, 1628–1641. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Zhang, X.; Liu, H. Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 2020, 449, 227580. [Google Scholar] [CrossRef]
- Liu, H.; George, M.G.; Messerschmidt, M.; Zeis, R.; Kramer, D.; Scholta, J.; Bazylak, A. Accelerated degradation of polymer electrolyte membrane fuel cell gas diffusion layers. J. Electrochem. Soc. 2017, 164, F695–F703. [Google Scholar] [CrossRef]
- Yin, C.; Gao, Y.; Li, T.; Xie, G.; Li, K.; Tang, H. Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model. Renew. Energy 2020, 147, 650–662. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, S.; Zhao, P.; Gao, J. A Novel Hybrid Method Based on the Sliding Window Method for the Estimation of the State of Health of the Proton Exchange Membrane Fuel Cell; SAE Technical Paper Series; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R.T.E. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation. J. Power Sources 2015, 275, 777–784. [Google Scholar] [CrossRef]
- Liu, M.; Wu, D.; Yin, C.; Gao, Y.; Li, K.; Tang, H. Prediction of voltage degradation trend for a proton exchange membrane fuel cell city bus on roads. J. Power Sources 2021, 512, 230435. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, Y.; Gao, F.; Breaz, E.; Ravey, A.; Miraoui, A. Degradation prediction of PEM fuel cell stack based on multi-physical aging model with particle filter approach. IEEE Ind. Appl. Soc. Annu. Meet. 2017, 53, 4041–4052. [Google Scholar] [CrossRef]
- Schmittinger, W.; Vahidi, A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J. Power Sources 2008, 180, 1–14. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Arisetty, S.; Wang, X.; Wang, X.; Subbaraman, R.; Ball, S.C.; DeCrane, S.; Myers, D.J. Thermodynamics and Kinetics of Platinum Dissolution from Carbon-Supported Electrocatalysts in Aqueous Media under Potentiostatic and Potentiodynamic Conditions. J. Electrochem. Soc. 2013, 160, F447–F455. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Hissel, D.; Lu, J.; Hou, M.; Shao, Z. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 123, 109721–109742. [Google Scholar] [CrossRef]
- Bi, W.; Sun, Q.; Deng, Y.; Fuller, T.F. The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell. Electrochim. Acta 2009, 54, 1826–1833. [Google Scholar] [CrossRef]
- Kim, M.; Jung, N.; Eom, K.; Yoo, S.J.; Kim, J.Y.; Jang, J.H.; Kim, H.-J.; Hong, B.K.; Cho, E. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. J. Power Sources 2014, 266, 332–340. [Google Scholar] [CrossRef]
- Wang, F.; Yang, D.; Li, B.; Zhang, H.; Hao, C.; Chang, F.; Ma, J. Investigation of the recoverable degradation of PEM fuel cell operated under drive cycle and different humidities. Int. J. Hydrogen Energy 2014, 39, 14441–14447. [Google Scholar] [CrossRef]
Solution Quantity: Storage and Transport | Source 1 | ||||||
---|---|---|---|---|---|---|---|
CHA | GDL | CCL | PEM | ACL | BP | CC | |
0 | 0 | - | - | 0 | |||
- | - | - | |||||
- | - | 0 | |||||
- | - | - | |||||
- | - | - | |||||
- | - | - | |||||
- | - | 0 | - | - | |||
- | - | 0 | - | - | |||
- | - | 0 | - | - | |||
- | 0 | - | 0 | - | |||
- | - | 0 | - | - | |||
- | - | - | |||||
- | - | 0 | |||||
- | - |
Source Quantity | Source Definition |
---|---|
Mass | |
Momentum | |
Charge | |
Heat | |
Solution Quantity | Calculation Boundary Conditions | PEMFC Regions |
---|---|---|
CHA outlet, CC outlet | ||
CHA inlet | ||
CHA inlet, CC inlet | ||
CHA inlet | ||
CHA inlet | ||
with | CHA inlet | |
PEM/CL interface | ||
Agglomerate center | ||
Agglomerate surface | ||
Electrical terminal | ||
PEM/CL interface | ||
CHA inlet | ||
CHA inlet, CC inlet | ||
Lateral walls |
Boundary Conditions | Value |
---|---|
Voltage (V) | 0.665 |
Temperature of the anode inlet (K) | 297.687 |
Temperature of the cathode inlet (K) | 316.367 |
Temperature of the coolant (K) | 325.877 |
Pressure of the anode inlet (Pa) | 128,286.3 |
Pressure of the cathode inlet (Pa) | 129,953.1 |
Flow rate of the anode inlet (L/min) | 4.793 |
Flow rate of the cathode inlet (L/min) | 23.038 |
Flow rate of the coolant (L/min) | 0.4028 |
Relative humidity of the cathode inlet (-) | 54.351% |
PEM Parameter | Initial | Changed |
---|---|---|
Electro-osmotic drag coefficient (-) | 0.1136 | 0.10792 |
Ionic conductivity (A/(V·m)) | 0.1879 | 0.178505 |
Thermal conductivity (W/(m·K)) | 0.2 | 0.21 |
Water diffusion coefficient (m2/s) | 2.16 × 10−11 | 2.052 × 10−11 |
CL Parameter | Initial | Changed (Anode and Cathode) |
---|---|---|
Agglomerate radius (m) | ||
Electrical conductivity (A/(V·m)) | 13,514 | 12,838.3 |
Average pore diameter (m) | ||
Porosity (-) | 0.4 | 0.42 |
Thermal conductivity (W/(m·K)) | 2.74 | 2.877 |
Ionomer film thickness (m) | ||
Electrolyte volume fraction (-) | 0.25 | 0.2375 |
GDL Parameter | Initial | Changed (Anode and Cathode) |
---|---|---|
Average pore diameter (m) | ||
Porosity (-) | 0.4 | 0.42 |
Thermal conductivity (W/(m·K)) | 5 | 5.25 |
BP Parameter | Initial | Changed |
---|---|---|
Electrical conductivity (-) |
Component | Current Density (A/cm2) |
---|---|
Initial | 0.66265 |
PEM | 0.65100 |
CL | 0.66065 |
GDL | 0.65006 |
BP | 0.66259 |
Whole | 0.63657 |
Component | Average Activation Overpotential at the Cathode CL (V) |
---|---|
Initial | 0.3685 |
PEM | 0.3681 |
CL | 0.3679 (0.367894) |
GDL | 0.3679 (0.367935) |
BP | 0.3685 |
Whole | 0.3669 |
Component | Average Equilibrium Potential at the Cathode CL (V) |
---|---|
Initial | 1.2072 |
PEM | 1.2076 |
CL | 1.2074 |
GDL | 1.2079 |
BP | 1.2072 |
Whole | 1.2086 |
Component | Average Exchange Current Density at the Anode CL (A/cm3) |
---|---|
Initial | |
PEM | |
CL | |
GDL | |
BP | |
Whole |
Component | Average Membrane Water Content (-) |
---|---|
Initial | 5.0998 |
PEM | 5.0820 |
CL | 5.1315 |
GDL | 4.9821 |
BP | 5.0995 |
Whole | 4.9955 |
Component | Average H2 Molar Concentration at the Anode CL (mol/m3) |
---|---|
Initial | 27.9746 |
PEM | 28.0034 |
CL | 27.9705 |
GDL | 28.0653 |
BP | 27.9748 |
Whole | 28.0879 |
Component | Average O2 Molar Concentration at the Cathode CL (mol/m3) |
---|---|
Initial | 0.6309 |
PEM | 0.6379 |
CL | 0.6317 |
GDL | 0.6467 |
BP | 0.6309 |
Whole | 0.6545 |
Component | Average H2 Crossover Flux (mol/(m2·s)) |
---|---|
Initial | |
PEM | |
CL | |
GDL | |
BP | |
Whole |
Component | Average O2 Crossover Flux (mol/(m2·s)) |
---|---|
Initial | |
PEM | |
CL | |
GDL | |
BP | |
Whole |
Index | Effect Levels of the Components’ Degradation | |||
---|---|---|---|---|
PEM | CL | GDL | BP | |
Current density | 2 | 3 | 1 | 4 |
Average activation overpotential at the cathode CL | 3 | 1 | 2 | 4 |
Average equilibrium potential at the cathode CL | 2 | 3 | 1 | 4 |
Average exchange current density at the anode CL | 2 | 1 | 3 | 4 |
Average membrane water content | 2 | 3 | 1 | 4 |
Average H2 molar concentration at the anode CL | 2 | 3 | 1 | 4 |
Average O2 molar concentration at the cathode CL | 2 | 3 | 1 | 4 |
Average H2 crossover flux | 3 | 2 | 1 | 4 |
Average O2 crossover flux | 2 | 1 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Gao, J.; Lu, Y.; Shen, W.; Zhou, S. Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC. Energies 2023, 16, 7806. https://doi.org/10.3390/en16237806
Fan L, Gao J, Lu Y, Shen W, Zhou S. Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC. Energies. 2023; 16(23):7806. https://doi.org/10.3390/en16237806
Chicago/Turabian StyleFan, Lei, Jianhua Gao, Yanda Lu, Wei Shen, and Su Zhou. 2023. "Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC" Energies 16, no. 23: 7806. https://doi.org/10.3390/en16237806
APA StyleFan, L., Gao, J., Lu, Y., Shen, W., & Zhou, S. (2023). Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC. Energies, 16(23), 7806. https://doi.org/10.3390/en16237806