Performance Evaluation of Modified Zinc-Phthalocyanine Groups as an Active Material in Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Device Configuration and Modeling
2.1. Approach and Design
2.2. Device Simulation Parameters
3. Analysis and Discussion
3.1. Evaluation of Different Photo-Harvesting Layers
3.2. Effect of Active Layer Thickness and Defect Density on Cell Performance
3.3. Effect of Active Layer Mobility and Doping Density on Cell Performance
3.4. Influence of Different ETMs on Cell Performance
3.5. Optimization of Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in Dye-Sensitized Solar Cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Reagen, B.O.; Gratzel, M.J.N. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Ti0 (2) Films. Nature 1991, 353, 737. [Google Scholar] [CrossRef]
- Gregg, B.A.; Hanna, M.C.J. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 2003, 93, 3605–3614. [Google Scholar] [CrossRef]
- Gnanasekar, S.; Kollu, P.; Jeong, S.K.; Grace, A.N. Pt-free, low-cost and efficient counter electrode with carbon wrapped VO2(M) nanofiber for dye-sensitized solar cells. Sci. Rep. 2019, 9, 5177. [Google Scholar] [CrossRef]
- Wang, M.; Grätzel, C.; Zakeeruddin, S.M.; Grätzel, M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 9394–9405. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamaguchi, M.; Kumagai, M.; Yanagida, S. Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chem. Lett. 2003, 32, 28–29. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, R.; Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 2020, 196, 589–596. [Google Scholar] [CrossRef]
- Sevim, A.M.; Çakar, S.; Özacar, M.; Gül, A. Electrochemical and photovoltaic properties of highly efficient solar cells with cobalt/zinc phthalocyanine sensitizers. Sol. Energy 2018, 160, 18–24. [Google Scholar] [CrossRef]
- Kadem, B.; Hassan, A.; Göksel, M.; Basova, T.; Şenocak, A.; Demirbaş, E.; Durmuş, M. High performance ternary solar cells based on P3HT: PCBM and ZnPc-hybrids. RSC Adv. 2016, 6, 93453–93462. [Google Scholar] [CrossRef]
- Stylianakis, M.M.; Konios, D.; Viskadouros, G.; Vernardou, D.; Katsarakis, N.; Koudoumas, E.; Anastasiadis, S.H.; Stratakis, E.; Kymakis, E. Ternary organic solar cells incorporating zinc phthalocyanine with improved performance exceeding 8.5%. Dye. Pigment. 2017, 146, 408–413. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.; Huang, D.; Kong, J.; Goh, T.; Huang, W.; Yu, J.; Taylor, A.D. Binary Solvent Additives Treatment Boosts the Efficiency of PTB7:PCBM Polymer Solar Cells to Over 9.5%. Sol. RRL 2018, 2, 1700144. [Google Scholar] [CrossRef]
- Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Lambert, S.; Guillet, F.; Marcel, C.; Sanchez, C. Solid-State Organic/Inorganic Hybrid Solar Cells Based on Poly (octylthiophene) and Dye-Sensitized Nanobrookite and Nanoanatase TiO2 Electrodes; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Liu, Y.; He, B.; Duan, J.; Zhao, Y.; Ding, Y.; Tang, M.; Chen, H.; Tang, Q.J. Poly (3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr 3 perovskite solar cells. J. Mater. Chem. A 2019, 7, 12635–12644. [Google Scholar] [CrossRef]
- Ahmadi, M.; Asemi, M.; Ghanaatshoar, M. Mg and N co-doped CuCrO2: A record breaking p-type TCO. Appl. Phys. Lett. 2018, 113, 242101. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Jahantigh, F.; Safikhani, M.J. The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): A SCAPS-1D simulation study. Appl. Phys. A 2019, 125, 276. [Google Scholar] [CrossRef]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. Simulated performance of a novel solid-state dye-sensitized solar cell based on phenyl-C61-butyric acid methyl ester (PC61BM) electron transport layer. Opt. Quantum Electron. 2021, 53, 1–24. [Google Scholar] [CrossRef]
- Ojotu, K.; Babaji, G.J. Simulation of an optimized poly 3-hexylthiophene (P3HT) based solid state dye sensitized solar cell (ss-DSSC) using SCAPS. Int. J. Mod. Res. Eng. Technol. 2020, 5, 1–10. [Google Scholar]
- Noorasid, N.S.; Arith, F.; Firhat, A.Y.; Mustafa, A.N.; Shah, A.S.M. SCAPS Numerical Analysis of Solid-State Dye-Sensitized Solar Cell Utilizing Copper (I) Iodide as Hole Transport Layer. Eng. J. 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Nithya, K.; Sudheer, K. Device modelling of non-fullerene organic solar cell with inorganic CuI hole transport layer using SCAPS 1-D. Optik 2020, 217, 164790. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Iqbal, M.A.; Rehman, S.U.; Zaib, A.; Sadiq, M.I.; Dogar, M.A.; Azhar, M.; Maidin, S.S.; Hussain, S.S.; Morsy, K. Numerical optimization and performance evaluation of ZnPC: PC70BM based dye-sensitized solar cell. Sci. Rep. 2023, 13, 10431. [Google Scholar] [CrossRef]
- Abdelaziz, W.; Shaker, A.; Abouelatta, M.; Zekry, A. Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation. Opt. Mater. 2019, 91, 239–245. [Google Scholar] [CrossRef]
- Sharma, B.; Mathur, A.; Rajput, V.; Singh, I.; Singh, B. Device modeling of non-fullerene organic solar cell by incorporating CuSCN as a hole transport layer using SCAPS. Optik 2022, 251, 168457. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Hussain, S.S.; Khan, M.; Haider, S.; Akbar, I.; Nowsherwan, N.; Ikram, S.; Ishtiaq, S.; Riaz, S.; Naseem, S. Role of graphene-oxide and reduced-graphene-oxide on the performance of lead-free double perovskite solar cell. Zeitschrift Für Naturforschung A 2022, 77, 1083–1098. [Google Scholar] [CrossRef]
- Biplab, S.R.I.; Ali, M.H.; Moon, M.M.A.; Pervez, M.F.; Rahman, M.F.; Hossain, J. Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 2020, 19, 342–352. [Google Scholar] [CrossRef]
- Nykyruy, L.; Yavorskyi, R.; Zapukhlyak, Z.; Wisz, G.; Potera, P. Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Opt. Mater. 2019, 92, 319–329. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Samad, A.; Iqbal, M.A.; Mushtaq, T.; Hussain, A.; Malik, M.; Haider, S.; Pham, P.V.; Choi, J.R. Performance Analysis and Optimization of a PBDB-T:ITIC Based Organic Solar Cell Using Graphene Oxide as the Hole Transport Layer. Nanomaterials 2022, 12, 1767. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370–380. [Google Scholar] [CrossRef]
- Hipps, K.; Mazur, U. Phthalocyanines. Electron affinity states of metal supported phthalocyanines measured by tunneling spectroscopy. J. Porphyr. Phthalocyanines 2012, 16, 273–281. [Google Scholar] [CrossRef]
- Siddique, S.A.; Arshad, M.; Naveed, S.; Mehboob, M.Y.; Adnan, M.; Hussain, R.; Ali, B.; Siddique, M.B.A.; Liu, X. Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: A detailed DFT study. RSC Adv. 2021, 11, 27570–27582. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Petre, G.; Costas, A.; Rasoga, O.; Popescu-Pelin, G.; Mihailescu, A.; Stanculescu, A.; Socol, G. MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings 2020, 10, 956. [Google Scholar] [CrossRef]
- Tan, K.; Lin, P.; Wang, G.; Liu, Y.; Xu, Z.; Lin, Y. Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electron. 2016, 126, 75–80. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsiao, S.-Y.; Chen, C.-Y.; Kang, H.-W.; Huang, Z.-Y.; Lin, H.-W. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. J. Mater. Chem. A 2015, 3, 9152–9159. [Google Scholar] [CrossRef]
- Seo, J.H.; Nguyen, T.-Q. Electronic Properties of Conjugated Polyelectrolyte Thin Films. J. Am. Chem. Soc. 2008, 130, 10042–10043. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, C.; Chen, Z.; Wang, T.; Chen, T.; Shi, R.; Yu, S.; Liu, J. Investigation of the TiO2 nanoparticles aggregation with high light harvesting for high-efficiency dye-sensitized solar cells. Mater. Res. Bull. 2021, 135, 111148. [Google Scholar] [CrossRef]
- Dematage, N. Dye-Sensitized and Semiconductor-Sensitized Solid State Solar Cells Utilizing CuSCN and CuI as Hole Conducting Materials. Ph.D. Thesis, Shizuoka University, Shizuoka, Japan, 2014. [Google Scholar]
- Anwar, F.; Mahbub, R.; Satter, S.S.; Hussain, S.M.; Ullah, S.M. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. Int. J. Photoenergy 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Hussain, S.S.; Riaz, S.; Nowsherwan, G.A.; Jahangir, K.; Raza, A.; Iqbal, M.J.; Sadiq, I.; Naseem, S. Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell by Using SCAPS-1D. J. Renew. Energy 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Noorasid, N.S.; Arith, F.; Mustafa, A.N.M.; Suhaimy, S.H.M.; Shah, A.S.M.; Abid, M.A.M. Numerical Analysis of Ultrathin TiO2 Photoanode Layer of Dye Sensitized Solar Cell by Using SCAPS-1D. In Proceedings of the 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Virtual, 2–4 August 2021; pp. 96–99. [Google Scholar]
- Benyoucef, A.; Belarbi, M.; Zeggai, O.; Goumri-Said, S.; Kanoun, M.B.; Benyoucef, B.; Louhibi-Fasla, S. Numerical investigation of octakis (4-methoxyphenyl) spiro [fluorene-9, 9′ xanthene]− 2, 2′, 7, 7′-tetraamine)(X60) as hole transport layer in solid-state dye-sensitized solar cell. Phys. Scr. 2023, 98, 095009. [Google Scholar] [CrossRef]
- Rondan-Gómez, V.; Ayala-Mató, F.; Seuret-Jiménez, D.; Santana-Rodríguez, G.; Zamudio-Lara, A.; Santos, I.M.D.L.; Seuret-Hernández, H.Y. New architecture in dye sensitized solar cells: A SCAPS-1D simulation study. Opt. Quantum Electron. 2020, 52, 1–11. [Google Scholar] [CrossRef]
- Sharma, A.K.; Chourasia, N.K.; Jha, P.K.; Kumar, R.; Kumar, M.; Chourasia, R.K. Characteristic Features and Performance Investigations of a PTB7:PC71BM/PFN:Br Pure Organic Solar Cell Using SCAPS-1D. J. Electron. Mater. 2023, 52, 4302–4311. [Google Scholar] [CrossRef]
- Azizi, T.; Toujeni, H.; Karoui, M.B.; Gharbi, R. A comprehensive device modeling of solid state dye sensitized solar cell with SCAPS-1D. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24–26 March 2019; pp. 336–340. [Google Scholar]
- Pindolia, G.; Shinde, S.M.; Jha, P.K. Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Sol. Energy 2022, 236, 802–821. [Google Scholar] [CrossRef]
- Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2016, 4, 3970–3990. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Zaib, A.; Shah, A.A.; Khan, M.; Shakoor, A.; Bukhari, S.N.S.; Riaz, M.; Hussain, S.S.; Shar, M.A.; Alhazaa, A. Preparation and Numerical Optimization of TiO2:CdS Thin Films in Double Perovskite Solar Cell. Energies 2023, 16, 900. [Google Scholar] [CrossRef]
- Omar, A.; Abdullah, H. Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2014, 31, 149–157. [Google Scholar] [CrossRef]
- Shakoor, A.; Nowsherwan, G.A.; Alam, W.; Bhatti, S.Y.; Bilal, A.; Nadeem, M.; Zaib, A.; Hussain, S.S. Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC). Phys. B Condens. Matter 2023, 654, 414690. [Google Scholar] [CrossRef]
- Arka, G.N.; Prasad, S.B.; Singh, S. Comprehensive study on dye sensitized solar cell in subsystem level to excel performance potential: A review. Sol. Energy 2021, 226, 192–213. [Google Scholar] [CrossRef]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. Computational Simulation of a Highly Efficient Hole Transport-Free Dye-Sensitized Solar Cell Based on Titanium Oxide (TiO2) and Zinc Oxysulfide (ZnOS) Electron Transport Layers. J. Electron. Mater. 2021, 50, 7259–7274. [Google Scholar] [CrossRef]
- Shukla, V.; Panda, G. The performance study of CdTe/CdS/SnO2 solar cell. Mater. Today Proc. 2020, 26, 487–491. [Google Scholar] [CrossRef]
- Han, J.; Fan, F.; Xu, C.; Lin, S.; Wei, M.; Duan, X.; Wang, Z.L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203. [Google Scholar] [CrossRef] [PubMed]
- Wozny, S.; Yang, M.; Nardes, A.M.; Mercado, C.C.; Ferrere, S.; Reese, M.O.; Zhou, W.; Zhu, K. Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells. Chem. Mater. 2015, 27, 4814–4820. [Google Scholar] [CrossRef]
Parameters | FTO [19,20,24] | PFN:Br [25,26] | PEDOT:PSS [25,32] | PC70BM [24,26,32] | ZnPC [26,33,34] |
---|---|---|---|---|---|
Thickness (nm) | 100 | 100 | 150 | 50 | 200 |
Acceptor Density (cm−3) | 0 | 0 | 1018 | 0 | 0 |
Donor Density (cm−3) | 1019 | 9 × 1018 | 0 | 0 | 0 |
Effective Density of states for valence band (cm−3) | 9.2 × 1018 | 1019 | 2.5 × 1021 | 1019 | 1019 |
Effective Density of states for conduction band (cm−3) | 1.8 × 1019 | 1019 | 1.7 × 1019 | 1019 | 1019 |
Bandgap (eV) | 3.5 | 2.8 | 1.5 | 2 | 1.86 |
Relative Dielectric Permittivity | 9 | 5 | 3 | 3 | 5 |
Mobility of Electron (cm2/Vs) | 20 | 2 × 10−6 | 1.69 × 10−4 | 2.2 × 10−4 | 0.1963 |
Mobility of Hole (cm2/Vs) | 10 | 1 × 10−4 | 1.69 × 10−4 | 2.5 × 10−4 | 0.0627 |
Electron Affinity (eV) | 4 | 4 | 3.4 | 3.9 | 3.7 |
Defect Density (cm−3) | 1015 | 1012 | 1015 | 1012 | 5 × 1013 |
Device Configuration | PCE (%) | Ref. |
---|---|---|
Experimental Published Results | ||
FTO/dye & TiO2 (TNA)/Pt | 8.34 | [38] |
FTO/TiO2/N719/modified CuSCN/carbon past/Pt-FTO | 4.24 | [39] |
4-HBa-ZnPc, 4-HBa-CoPc, 4-MKBa-CoPc | 2.99, 3.70, 4.18 | [9] |
P3HT:PCBM:ZnPc–SWCNTs | 5.30 | [10] |
ITO/PEDOT:PSS/PTB7:ZnPc:PC71BM/Ca | 8.52 | [11] |
FTO/TiO2/CsPbBr3/P3HT:ZnPC/carbon | 10.03 | [14] |
Simulation Results | ||
FTO/PFN:Br/ZnPC/PEDOT:PSS/Au | 7.65 | This study |
FTO/PFN:Br/ZnPC:PC70BM/PEDOT:PSS/Au | 8.36 | This study |
Parameters | PFN:Br [22,24,54] | TiO2 [22,24,25,53,54] | ZnO [21,22,24,40,55] | SnO2 [21,22,24,40,55] |
---|---|---|---|---|
Thickness (nm) | 100 | 100 | 100 | 100 |
Acceptor Density (cm−3) | 0 | 0 | 0 | 0 |
Donor Density (cm−3) | 9 × 1018 | 9 × 1018 | 9 × 1018 | 9 × 1018 |
Effective Density of states for valence band (cm−3) | 1019 | 1019 | 1019 | 1019 |
Effective Density of states for conduction band (cm−3) | 1019 | 1019 | 1019 | 1019 |
Bandgap (eV) | 2.8 | 3.2 | 3.4 | 3.6 |
Relative Dielectric Permittivity | 5 | 9 | 10 | 9 |
Mobility of Electron (cm2/Vs) | 2 × 10−6 | 20 | 20 | 100 |
Mobility of Hole (cm2/Vs) | 1 × 10−4 | 10 | 10 | 25 |
Electron Affinity (eV) | 4 | 3.9 | 4.3 | 4 |
Defect Density (cm−3) | 1015 | 1015 | 1015 | 1015 |
Parameters | ETL | Absorber Layer | HTL | |
---|---|---|---|---|
Thickness (nm) | — | 300 | — | |
Material | TiO2 | — | — | |
Electron Mobility (cm2/Vs) | — | 1 × 100 | — | |
Hole Mobility (cm2/Vs) | — | 1 × 100 | — | |
Defect Density (cm−3) | — | 1 × 1013 | 1 × 1016 | |
Device Configuration | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
PFN:Br/ZnPC/PEDOT:PSS | 0.9151 | 18.57 | 55.63 | 9.50 |
PFN:Br/ZnPC:PC70BM/PEDOT:PSS | 0.9184 | 22.50 | 47.48 | 9.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowsherwan, G.A.; Nowsherwan, N.; Anwar, N.; Ahmed, M.; Usman, Y.; Amin, F.; Nowsherwan, N.; Ikram, S.; Irfan, S.; Umar, M.; et al. Performance Evaluation of Modified Zinc-Phthalocyanine Groups as an Active Material in Dye-Sensitized Solar Cells. Energies 2023, 16, 7730. https://doi.org/10.3390/en16237730
Nowsherwan GA, Nowsherwan N, Anwar N, Ahmed M, Usman Y, Amin F, Nowsherwan N, Ikram S, Irfan S, Umar M, et al. Performance Evaluation of Modified Zinc-Phthalocyanine Groups as an Active Material in Dye-Sensitized Solar Cells. Energies. 2023; 16(23):7730. https://doi.org/10.3390/en16237730
Chicago/Turabian StyleNowsherwan, Ghazi Aman, Nouman Nowsherwan, Nadia Anwar, Muqarrab Ahmed, Yasir Usman, Faisal Amin, Nadia Nowsherwan, Saira Ikram, Shaheen Irfan, Muhammad Umar, and et al. 2023. "Performance Evaluation of Modified Zinc-Phthalocyanine Groups as an Active Material in Dye-Sensitized Solar Cells" Energies 16, no. 23: 7730. https://doi.org/10.3390/en16237730
APA StyleNowsherwan, G. A., Nowsherwan, N., Anwar, N., Ahmed, M., Usman, Y., Amin, F., Nowsherwan, N., Ikram, S., Irfan, S., Umar, M., & Lai, W. -C. (2023). Performance Evaluation of Modified Zinc-Phthalocyanine Groups as an Active Material in Dye-Sensitized Solar Cells. Energies, 16(23), 7730. https://doi.org/10.3390/en16237730