Experimental Design of an Innovative Electromechanical System for Induction Heating-Based Air Heating: Exploring Temperature Dynamics and Energy Efficiency
Abstract
:1. Introduction
2. Description of the Experimental Setup
- A.
- Induction Coil and Workpiece
- B.
- Induction Generator Model
- C.
- Workpiece: Centrifugal Fan
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D.; Taherian, H. Heating, Ventilating, and Air Conditioning: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Haines, R.W.; Hittle, D.C. Control Systems for Heating, Ventilating, and Air Conditioning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gates, R.S.; Casey, K.D.; Xin, H.; Wheeler, E.F.; Simmons, J.D. Fan assessment numeration system (FANS) design and calibration specifications. Trans. ASAE 2004, 47, 1709–1715. [Google Scholar] [CrossRef]
- Nellis, G.; Klein, S. Heat Transfer; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kreider, J.F. (Ed.) Handbook of Heating, Ventilation, and Air Conditioning; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cosnier, M.; Fraisse, G.; Luo, L. An experimental and numerical study of a thermoelectric air-cooling and air-heating system. Int. J. Refrig. 2008, 31, 1051–1062. [Google Scholar] [CrossRef]
- Rolsma, B. Heat transfer aspects of electric heating. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 1961, 80, 28–33. [Google Scholar] [CrossRef]
- Lake, A.; Rezaie, B.; Beyerlein, S. Review of district heating and cooling systems for a sustainable future. Renew. Sustain. Energy Rev. 2017, 67, 417–425. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Lucía, O.; Maussion, P.; Dede, E.J.; Burdío, J.M. Induction heating technology and its applications: Past developments, current technology, and future challenges. IEEE Trans. Ind. Electron. 2013, 61, 2509–2520. [Google Scholar] [CrossRef]
- Semiatin, S.L. Elements of Induction Heating: Design, Control, and Applications; ASM International: Almere, The Netherlands, 1988. [Google Scholar]
- Sharma, G.K.; Pant, P.; Jain, P.K.; Kankar, P.K.; Tandon, P. On the suitability of induction heating system for metal additive manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 219–229. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, Y.L.; Liu, Y.J. The numerical analysis of temperature field during moveable induction heating of steel plate. J. Ship Prod. Des. 2012, 28, 73–81. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Li, J.; Liu, Y. The numerical study of steel plate forming by moveable induction heating considering the plate edge shrinkage. J. Ship Prod. Des. 2017, 33, 166–177. [Google Scholar] [CrossRef]
- Milošević-Mitić, V.; Maneski, T.; Andjelić, N.M.; Milović, L.; Petrović, A.S.; Gacesa, B.M. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor. Therm. Sci. 2014, 18, S49–S58. [Google Scholar] [CrossRef]
- Shokouhmand, H.; Ghaffari, S. Thermal analysis of moving induction heating of a hollow cylinder with subsequent spray cooling: Effect of velocity, initial position of coil, and geometry. Appl. Math. Model. 2012, 36, 4304–4323. [Google Scholar] [CrossRef]
- Unver, U. Efficiency analysis of induction air heater and investigation of distribution of energy losses. Tehnički Vjesnik 2016, 23, 1259–1267. [Google Scholar]
- Thepsatitsilp, K.; Boonpeang, W.; Saeung, P.; Pukseesang, N.; Thongsopa, C. Experiment and design a suitable induction heating for air heat exchanger application. In Proceedings of the 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Seoul, Republic of Korea, 20–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 161–163. [Google Scholar]
- Li, F.; Li, X.; Zhu, T.; Rong, Y. Numerical simulation of the moving induction heating process with magnetic flux concentrator. Adv. Mech. Eng. 2013, 5, 907295. [Google Scholar] [CrossRef]
- Bay, F.; Labbé, V.; Favennec, Y.; Chenot, J.L. A numerical model for induction heating processes coupling electromagnetism and thermomechanics. Int. J. Numer. Methods Eng. 2003, 58, 839–867. [Google Scholar] [CrossRef]
- Shao, S.; Chen, H.; Wu, X.; Zhang, J.; Sheng, K. Circulating current and ZVS-on of a dual active bridge DC-DC converter: A review. IEEE Access 2019, 7, 50561–50572. [Google Scholar] [CrossRef]
- Sugimura, H.; Muraoka, H.; Ahmed, T.; Chandhaket, S.; Hiraki, E.; Nakaoka, M.; Lee, H.W. Dual mode phase-shifted ZVS-PWM series load resonant high-frequency inverter for induction heating super heated steamer. J. Power Electron. 2004, 4, 138–151. [Google Scholar]
- Peng, Q.; Du, Q. Progress in heat pump air conditioning systems for electric vehicles—A review. Energies 2016, 9, 240. [Google Scholar] [CrossRef]
- Di Barba, P.; Mognaschi, M.E.; Lowther, D.A.; Dughiero, F.; Forzan, M.; Lupi, S.; Sieni, E. A benchmark problem of induction heating analysis. Int. J. Appl. Electromagn. Mech. 2017, 53, S139–S149. [Google Scholar] [CrossRef]
- Solin, P.; Dolezel, I.; Karban, P.; Ulrych, B. Integral Methods in Low-Frequency Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass Transf. 2011, 38, 711–716. [Google Scholar] [CrossRef]
- Ozgener, L. A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey. Renew. Sustain. Energy Rev. 2011, 15, 4483–4490. [Google Scholar] [CrossRef]
- Aktaş, M.; Şevik, S.; Özdemir, M.B.; Gönen, E. Performance analysis and modeling of a closed-loop heat pump dryer for bay leaves using artificial neural network. Appl. Therm. Eng. 2015, 87, 714–723. [Google Scholar] [CrossRef]
- Tavakoli, M.H.; Ojaghi, A.; Mohammadi-Manesh, E.; Mansour, M. Influence of coil geometry on the induction heating process in crystal growth systems. J. Cryst. Growth 2009, 311, 1594–1599. [Google Scholar] [CrossRef]
- Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Phadatare, M.R.; Pawar, S.H. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2013, 332, 48–51. [Google Scholar] [CrossRef]
- Anila, I.; Lahiri, B.B.; John, S.P.; Mathew, M.J.; Philip, J. Preparation, physicochemical characterization, and AC induction heating properties of colloidal aggregates of ferrimagnetic cobalt ferrite nanoparticles coated with a bio-compatible polymer. Ceram. Int. 2023, 49, 15183–15199. [Google Scholar] [CrossRef]
Element | Technical Specification | |
---|---|---|
Model | Description | |
Induction Generator Model | A full-bridge ZVS circuit | Resonant frequency: 21 kHz Maximum power output: 2500 w |
Fan | Centrifugal Fan | Size: 216 × 70 × 10 mm Estimated airflow: 81.23 CFM Air volume: 1500 m 3/h (1360 r/min) Turning: Clockwise Weight: 249 g |
Motor | XD3420 | No-load speed: 3500 RPM Rated current: 400 mA, 12 V Rated torque: 19.6 N.cm/2 Kg.cm Replaceable carbon brush |
Plastic Box | PVC | Board thickness: 5 mm 50 cm3 |
Thermometer | TM902C K Type | Type K, male, flat pins Range: −25 to 125 °C Resolution: ± 1 °C |
Power Supply | S-1000W | DC Output: 0–24 V/0–42 A |
Digital Photo Tachometer | DT-2234C+ | Range measurement: 2.5~99,999 RPM |
Infrared Camera | FLK-Ti100 | −20 °C to +250 °C 160 × 120 pixels |
Components | Quantity | Type |
---|---|---|
N-Channel-MOSFET | 4 | IRFP260 |
Capacitor | 12 | 0.33uF-1200V-X2 |
Default Diode | 2 | FR307 |
Zener Diode | 4 | 1N4742 |
Magnetic-Core Inductor | 2 | 100 uH |
Resistor | 4 | 10 K |
Resistor | 2 | 470R 5W |
Induction Coil (Copper) | 1 | Wire Diameter (R) 0.3 cm Hole Diameter (r) 0.1 cm Resistance 16 Ω Length (L) 6 m |
Chemical | Fe | Co | Mn | Si | S | Cr |
---|---|---|---|---|---|---|
wt % | 99.54 | 0.22 | 0.14 | 0.08 | 0.02 | 0.001 |
error % | 0.230 | 0.010 | 0.016 | 0.014 | 0.003 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansoor, G.; Che, Y. Experimental Design of an Innovative Electromechanical System for Induction Heating-Based Air Heating: Exploring Temperature Dynamics and Energy Efficiency. Energies 2023, 16, 7573. https://doi.org/10.3390/en16227573
Mansoor G, Che Y. Experimental Design of an Innovative Electromechanical System for Induction Heating-Based Air Heating: Exploring Temperature Dynamics and Energy Efficiency. Energies. 2023; 16(22):7573. https://doi.org/10.3390/en16227573
Chicago/Turabian StyleMansoor, Gafar, and Yanbo Che. 2023. "Experimental Design of an Innovative Electromechanical System for Induction Heating-Based Air Heating: Exploring Temperature Dynamics and Energy Efficiency" Energies 16, no. 22: 7573. https://doi.org/10.3390/en16227573
APA StyleMansoor, G., & Che, Y. (2023). Experimental Design of an Innovative Electromechanical System for Induction Heating-Based Air Heating: Exploring Temperature Dynamics and Energy Efficiency. Energies, 16(22), 7573. https://doi.org/10.3390/en16227573