Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies
Abstract
:1. Introduction
2. Materials and Methods
2.1. K-Means Clustering Algorithm
2.2. Estimation Models
- corresponds to alternative and nuclear energy (% of total energy use) in country i, in year t, from cluster c. This variable corresponds to an approximation of public policies oriented towards the use of energies that have more environmentally sustainable characteristics and that can have an effect on the control of the effects of climate change.
- corresponds to gross domestic product (constant 2015 USD) in country i, in year t, from cluster c. GDP allows for a scaling of the size of the economy and its potential impact on variables related to environmental impact.
- corresponds to the growth of the gross domestic product (annual %) in country i, in year t, from cluster c. GDP growth can be used to measure the dynamics of the impact of country variables on the environmental impact.
- corresponds to the amount of emitted into the environment (kt) in country i, in year t, from cluster c. This corresponds to the scale effect of emissions, which is related to the size and production technologies of the country.
- corresponds to the amount of per capita emitted into the environment (metric tons per capita) in country i, in year t, from cluster c. This variable corresponds to the intensity of the use of polluting technologies in the country’s production.
- corresponds to the equivalent in kilograms of oil used in energy consumption per capita in country i, in year t, from cluster c. This variable allows us to understand the amount of energy consumption in the respective economy.
- corresponds to the equivalent in kilograms of oil of energy consumption per USD 1000 GDP in country i, in year t, from cluster c. This variable allows us to understand the amount of energy consumption in the respective economy.
- corresponds to the urban population (% of total population) in country i, in year t, from cluster c, which affects the need for energy use resulting in the use of polluting energies to supply that need.
- corresponds to imports of goods and services (% of GDP) in country i, in year t, from cluster c, which indicates the country’s relationship with other countries to supply its consumption needs.
- corresponds to exports of goods and services (% of GDP) in country i, in year t, from cluster c, which indicates the country’s relationship with other countries to supply products that are created within its borders.
- Alt_En_lagi,t,c corresponds to the measured lag of the previous period of alternative and nuclear energy (% of total energy use) in country i, in year t, from cluster c. The lag allows us to understand that public measures or policies are characterized by long-term investments and the marginal effects of the period are what we can measure when considering this variable.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, Y. Energy and environmental policy. Singap. Econ. Rev. 2015, 60, 1550039. [Google Scholar] [CrossRef]
- Ali, A.; Radulescu, M.; Lorente, D.B.; Hoang, V.N.V. An analysis of the impact of clean and non-clean energy consumption on economic growth and carbon emission: Evidence from PIMC countries. Environ. Sci. Pollut. Res. 2022, 29, 51442–51455. [Google Scholar]
- Bölük, G.; Mert, M. The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach. Renew. Sustain. Energy Rev. 2015, 52, 587–595. [Google Scholar]
- de Carvalho, A.L.; Antunes, C.H.; Freire, F.; Henriques, C.O. A multi-objective interactive approach to assess economic-energy-environment trade-offs in Brazil. Renew. Sustain. Energy Rev. 2016, 54, 1429–1442. [Google Scholar]
- Ghorbal, S.; Soltani, L.; Ben Youssef, S. Patents, fossil fuels, foreign direct investment, and carbon dioxide emissions in South Korea. Environ. Dev. Sustain. 2022, 1–17. [Google Scholar] [CrossRef]
- Wang, W.; Rehman, M.A.; Fahad, S. The dynamic influence of renewable energy, trade openness, and industrialization on the sustainable environment in G-7 economies. Renew. Energy 2022, 198, 484–491. [Google Scholar]
- Vélez-Henao, J.A.; Vivanco, D.F.; Hernández-Riveros, J.A. Technological change and the rebound effect in the STIRPAT model: A critical view. Energy Policy 2019, 129, 1372–1381. [Google Scholar]
- Jiang, Y.; Batool, Z.; Raza, S.M.F.; Haseeb, M.; Ali, S.; Zain Ul Abidin, S. Analyzing the asymmetric effect of renewable energy consumption on environment in STIRPAT-Kaya-EKC framework: A NARDL approach for China. Int. J. Environ. Res. Public Health 2022, 19, 7100. [Google Scholar]
- Singh, K.; Vashishtha, S. Relationship trend of energy consumption and economic growth studies: A global examination based on bibliometric and visualization analysis. Int. J. Energy Sect. Manag. 2023, 17, 310–332. [Google Scholar]
- Zhang, X.; Wu, L.; Zhang, R.; Deng, S.; Zhang, Y.; Wu, J.; Li, Y.; Lin, L.; Li, L.; Wang, Y.; et al. Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renew. Sustain. Energy Rev. 2013, 18, 259–270. [Google Scholar]
- Husnain, M.I.U.; Beyene, S.D.; Aruga, K. Investigating the energy-environmental Kuznets curve under panel quantile regression: A global perspective. Environ. Sci. Pollut. Res. 2023, 30, 20527–20546. [Google Scholar]
- Menegaki, A.N. On energy consumption and GDP studies; A meta-analysis of the last two decades. Renew. Sustain. Energy Rev. 2014, 29, 31–36. [Google Scholar]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar]
- Li, B.; Haneklaus, N. Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization. Energy Rep. 2022, 8, 704–713. [Google Scholar] [CrossRef]
- Selçuklu, S.B.; Rodgers, M.D.; Movlyanov, A. Economically and environmentally sustainable long-term power system expansion. Comput. Ind. Eng. 2022, 164, 107892. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, K.; Chaudhary, R.; Vashishtha, S. How economic growth, sustainable energy and carbon emission impact each other? New insights from India using ARDL approach. OPEC Energy Rev. 2023, 47, 216–238. [Google Scholar]
- Mamidi, V.; Marisetty, V.B.; Thomas, E.N. Clean energy transition and intertemporal socio-economic development: Evidence from an emerging market. Energy Econ. 2021, 101, 105392. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Kedjanyi, E.A.G.; Sampene, A.A.; Dapaah, M.F.; Monto, A.R.; Buabeng, P.; Samekong, G.C.G. Exploring the nexus link of environmental technology innovation, urbanization, financial development, and energy consumption on environmental pollution: Evidence from 27 emerging economies. Heliyon 2023. [Google Scholar] [CrossRef]
- Danish; Zhang, B.; Wang, Z.; Wang, B. Energy production, economic growth and CO2 emission: Evidence from Pakistan. Nat. Hazards 2018, 90, 27–50. [Google Scholar]
- Wiredu, J.; Yang, Q.; Inuwa, U.L.; Sampene, A.K. Energy transition in Africa: The role of human capital, financial development, economic development, and carbon emissions. Environ. Sci. Policy 2023, 146, 24–36. [Google Scholar]
- Aluwani, T. Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies 2023, 11, 85. [Google Scholar]
- AlKhars, M.A.; Alwahaishi, S.; Fallatah, M.R.; Kayal, A. A literature review of the Environmental Kuznets Curve in GCC for 2010–2020. Environ. Sustain. Indic. 2022, 14, 100181. [Google Scholar]
- Khalfaoui, R.; Tiwari, A.K.; Khalid, U.; Shahbaz, M. Nexus between carbon dioxide emissions and economic growth in G7 countries: Fresh insights via wavelet coherence analysis. J. Environ. Plan. Manag. 2023, 66, 31–66. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zaman, K.; Zhang, Y. The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries. Renew. Sustain. Energy Rev. 2016, 62, 468–477. [Google Scholar]
- Moriarty, P.; Honnery, D. Are Energy Reductions Compatible with Economic Growth? Sustainability 2023, 15, 8043. [Google Scholar]
- Basu, S.; Roy, M.; Pal, P. Exploring the impact of economic growth, trade openness and urbanization with evidence from a large developing economy of India towards a sustainable and practical energy policy. Clean Technol. Environ. Policy 2020, 22, 877–891. [Google Scholar]
- Chahuán-Jiménez, K.; Rubilar-Torrealba, R.; Fuente-Mella, H.D.L. Market openness and its relationship to connecting markets due to COVID-19. Sustainability 2021, 13, 10964. [Google Scholar] [CrossRef]
- Chiu, C.L.; Chang, T.H. What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries? Renew. Sustain. Energy Rev. 2009, 13, 1669–1674. [Google Scholar]
- Sun, Y.; Jia, J.; Ju, M.; Chen, C. Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically Weighted Regression. Land 2022, 11, 1039. [Google Scholar] [CrossRef]
- Charfeddine, L.; Mrabet, Z. The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renew. Sustain. Energy Rev. 2017, 76, 138–154. [Google Scholar]
- Diawuo, F.A.; Pina, A.; Baptista, P.C.; Silva, C.A. Energy efficiency deployment: A pathway to sustainable electrification in Ghana. J. Clean. Prod. 2018, 186, 544–557. [Google Scholar]
- Fæhn, T.; Bruvoll, A. Richer and cleaner—At others’ expense? Resour. Energy Econ. 2009, 31, 103–122. [Google Scholar]
- Jakovac, P.; Kutnjak, G.; Miljenovic, D. GDP, Electricity Consumption and Financial Development in Croatia: An Empirical Analysis. Montenegrin J. Econ. 2021, 17, 35–43. [Google Scholar] [CrossRef]
- Larrea, C. Crisis, estrategias de desarrollo y políticas económicas alternativas. Asedios Impos. 2005, 99. [Google Scholar]
- Chen, P.Y.; Chen, S.T.; Hsu, C.S.; Chen, C.C. Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renew. Sustain. Energy Rev. 2016, 65, 420–431. [Google Scholar]
- Li, Z.; Chen, W.T.; Chang, I.C.; Lee, J.M. Analysis of stock market development and CO2 emissions on OECD countries via an empirical model. CLEAN Soil Air Water 2020, 48, 1900360. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. The effect of electricity consumption from renewable sources on countries’ economic growth levels: Evidence from advanced, emerging and developing economies. Renew. Sustain. Energy Rev. 2014, 39, 166–173. [Google Scholar] [CrossRef]
- Sbia, R.; Shahbaz, M.; Hamdi, H. A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE. Econ. Model. 2014, 36, 191–197. [Google Scholar] [CrossRef]
- Chahuán-Jiménez, K. Correlation between the djsi chile and the financial indices of chilean companies. Int. J. Financ. Stud. 2020, 8, 74. [Google Scholar] [CrossRef]
- Udemba, E.N.; Güngör, H.; Bekun, F.V.; Kirikkaleli, D. Economic performance of India amidst high CO2 emissions. Sustain. Prod. Consum. 2021, 27, 52–60. [Google Scholar] [CrossRef]
- Miao, L.; Gu, H.; Zhang, X.; Zhen, W.; Wang, M. Factors causing regional differences in China’s residential CO2 emissions—Evidence from provincial data. J. Clean. Prod. 2019, 224, 852–863. [Google Scholar]
- Al-Mulali, U.; Sheau-Ting, L. Econometric analysis of trade, exports, imports, energy consumption and CO2 emission in six regions. Renew. Sustain. Energy Rev. 2014, 33, 484–498. [Google Scholar] [CrossRef]
- Bayar, Y.; Sasmaz, M.U.; Ozkaya, M.H. Impact of trade and financial globalization on renewable energy in EU transition economies: A bootstrap panel granger causality test. Energies 2020, 14, 19. [Google Scholar] [CrossRef]
- Hdom, H.A.; Fuinhas, J.A. Energy production and trade openness: Assessing economic growth, CO2 emissions and the applicability of the cointegration analysis. Energy Strategy Rev. 2020, 30, 100488. [Google Scholar]
- Sinha, A.; Shahbaz, M.; Balsalobre, D. Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. J. Clean. Prod. 2017, 168, 1217–1229. [Google Scholar]
- Bekun, F.; Alola, A.; Gyamfi, B.; Kwakwa, P.; Uzuner, G. Econometrics analysis on cement production and environmental quality in European Union countries. Int. J. Environ. Sci. Technol. 2023, 20, 4265–4280. [Google Scholar]
- Chhabra, M.; Giri, A.K.; Kumar, A. Do trade openness and institutional quality contribute to carbon emission reduction? Evidence from BRICS countries. Environ. Sci. Pollut. Res. 2023, 30, 50986–51002. [Google Scholar]
- Farooq, U.; Tabash, M.I.; Anagreh, S.; Al-Rdaydeh, M.; Habib, S. Economic growth, foreign investment, tourism, and electricity production as determinants of environmental quality: Empirical evidence from GCC region. Environ. Sci. Pollut. Res. 2023, 30, 45768–45780. [Google Scholar]
- Lee, C.C.; Olasehinde-Williams, G.; Gyamfi, B.A. The synergistic effect of green trade and economic complexity on sustainable environment: A new perspective on the economic and ecological components of sustainable development. Sustain. Dev. 2023, 31, 976–989. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L. The Global Climate Risk Index 2021; Germanwatch: Bonn, Germany, 2021. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Mohamad, I.B.; Usman, D. Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 3299–3303. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95. [Google Scholar]
- McCullagh, P. Generalized Linear Models; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Alternative energies | 6.64% | 10.28% | 0% | 71.54% |
GDP | ||||
CO | 122,128.5 | 562,835.1 | 0 | |
CO per capita | 4.16 | 5.49 | 0 | 47.65 |
Energy per capita | 2220.01 | 2598.29 | 9.57 | 21,420.63 |
Energy total per USD 1000 | 145.21 | 109.25 | 4.44 | 990.07 |
Urban population | 48.11% | 24.42% | 2.07% | 100% |
Imports | 40.23% | 25.56% | 0.02% | 209.01% |
Exports | 35.07% | 26.32% | 0.01% | 228.99% |
Country | Cluster | Country | Cluster | Country | Cluster | Country | Cluster |
---|---|---|---|---|---|---|---|
Armenia | 1 | Belgium | 2 | St. Lucia | 2 | Burkina Faso | 4 |
Azerbaijan | 1 | B. and H. | 2 | St. V. and G. | 2 | Canada | 4 |
Bahrain | 1 | Brazil | 2 | Sudan | 2 | Chad | 4 |
Barbados | 1 | Bulgaria | 2 | Switzerland | 2 | Comoros | 4 |
Belarus | 1 | Burundi | 2 | Tonga | 2 | C. D. R. | 4 |
Benin | 1 | Chile | 2 | Uganda | 2 | Denmark | 4 |
Botswana | 1 | China | 2 | U. K. | 2 | Ecuador | 4 |
Brunei | 1 | Colombia | 2 | Vanuatu | 2 | Eritrea | 4 |
Cabo Verde | 1 | Costa Rica | 2 | Yemen | 2 | Eswatini | 4 |
Cameroon | 1 | Czechia | 2 | Afghanistan | 3 | Georgia | 4 |
C. A. R. | 1 | Djibouti | 2 | Australia | 3 | Ghana | 4 |
C. I. | 1 | D. R. | 2 | Bangladesh | 3 | Guinea-Bissau | 4 |
Cyprus | 1 | Ethiopia | 2 | Belize | 3 | Guyana | 4 |
Egypt | 1 | Greece | 2 | Bolivia | 3 | Iran | 4 |
Estonia | 1 | Honduras | 2 | Cambodia | 3 | Ireland | 4 |
Finland | 1 | Hungary | 2 | Croatia | 3 | Israel | 4 |
Gabon | 1 | Indonesia | 2 | Dominica | 3 | Kiribati | 4 |
Guinea | 1 | Jamaica | 2 | El Salvador | 3 | Kyrgyz | 4 |
Iceland | 1 | Japan | 2 | Fiji | 3 | Lebanon | 4 |
Iraq | 1 | Kenya | 2 | France | 3 | Lesotho | 4 |
Jordan | 1 | Korea, R. | 2 | Germany | 3 | Lithuania | 4 |
Kazakhstan | 1 | Lao PDR | 2 | Grenada | 3 | Luxembourg | 4 |
Kuwait | 1 | Latvia | 2 | Guatemala | 3 | Malaysia | 4 |
Liberia | 1 | Malawi | 2 | Haiti | 3 | Mali | 4 |
Libya | 1 | Mauritania | 2 | India | 3 | Mauritius | 4 |
Maldives | 1 | Mexico | 2 | Italy | 3 | Morocco | 4 |
Malta | 1 | Micronesia | 2 | Madagascar | 3 | Nigeria | 4 |
M. I. | 1 | Moldova | 2 | Mozambique | 3 | N. M. | 4 |
Norway | 1 | Mongolia | 2 | Myanmar | 3 | Panama | 4 |
Qatar | 1 | Namibia | 2 | Nepal | 3 | P. N. G. | 4 |
Seychelles | 1 | Netherlands | 2 | Oman | 3 | Rwanda | 4 |
Singapore | 1 | N. Z. | 2 | Pakistan | 3 | Saudi Arabia | 4 |
Surinam | 1 | Nicaragua | 2 | Philippines | 3 | Senegal | 4 |
Sweden | 1 | Niger | 2 | Portugal | 3 | Slovak | 4 |
Timor-Leste | 1 | Paraguay | 2 | Puerto Rico | 3 | South Sudan | 4 |
Togo | 1 | Peru | 2 | R. F. | 3 | St. K. and N. | 4 |
T. and T. | 1 | Poland | 2 | Spain | 3 | Tanzania | 4 |
U. A. E. | 1 | Romania | 2 | Sri Lanka | 3 | Tunisia | 4 |
Uzbekistan | 1 | Samoa | 2 | Thailand | 3 | Turkiye | 4 |
Venezuela | 1 | Serbia | 2 | Vietnam | 3 | Tuvalu | 4 |
Angola | 2 | S. L. | 2 | Zimbabwe | 3 | Ukraine | 4 |
A. and B. | 2 | Slovenia | 2 | Albania | 4 | Uruguay | 4 |
Argentina | 2 | S. I. | 2 | Algeria | 4 | Zambia | 4 |
Austria | 2 | S. A. | 2 | Bhutan | 4 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |
---|---|---|---|---|
GDP | −2.58 × *** | −2.80 × *** | −9.28 × *** | 8.58 × |
(−4.83) | (−3.53) | (−10.86) | (0.47) | |
GDPgrowth | −1.85 × | 1.48 × | −7.75 × * | 2.79 × |
(−0.54) | (0.58) | (−2.44) | (1.12) | |
CO | 5.73 × | 4.59 × *** | 8.21 × *** | 8.38 × |
(0.40) | (5.09) | (9.77) | (1.92) | |
COpc | −0.091 ** | −0.213 *** | −0.195 *** | −0.298 *** |
(−2.67) | (−5.64) | (−4.94) | (−4.65) | |
Energie_pc | 0.32 × * | 3.75 × *** | 2.39 × ** | 5.24 × * |
(2.02) | (4.48) | (2.73) | (2.57) | |
Energie | −3.03 × *** | −1.55 × ** | −2.87 × *** | 0.629 × |
(−5.51) | (−3.10) | (−8.38) | (1.61) | |
Urban | −0.024 ** | 0.009 ** | −0.003 | 0.018 * |
(−2.75) | (2.82) | (−0.39) | (2.50) | |
Imports | 1.36 × | −6.51 × *** | −1.44 × | 1.34 × |
(0.47) | (−3.85) | (−0.60) | (0.87) | |
Exports | −0.003 | 0.005 *** | 0.003 | −0.008 *** |
(−0.75) | (3.48) | (1.25) | (−3.59) | |
Alt_En_lag | 1.717 | 2.459 * | 4.621 *** | 5.388 *** |
(1.89) | (2.14) | (6.79) | (12.46) | |
Constant | 0.360 | −4.614 *** | −1.315 | −3.407 *** |
(0.61) | (−21.27) | (−1.84) | (−10.36) | |
N of observations | 650 | 980 | 590 | 729 |
Variables | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
GDP | ||||
GDPgrowth | ||||
CO | ||||
COpc | ||||
Energie_pc | ||||
Energie | ||||
Urban | ||||
Imports | ||||
Exports | ||||
Alt_En_lag |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chahuán-Jiménez, K.; Rubilar-Torrealba, R.; de la Fuente-Mella, H.; Geldres-Weiss, V.V. Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies. Energies 2023, 16, 7561. https://doi.org/10.3390/en16227561
Chahuán-Jiménez K, Rubilar-Torrealba R, de la Fuente-Mella H, Geldres-Weiss VV. Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies. Energies. 2023; 16(22):7561. https://doi.org/10.3390/en16227561
Chicago/Turabian StyleChahuán-Jiménez, Karime, Rolando Rubilar-Torrealba, Hanns de la Fuente-Mella, and Valeska V. Geldres-Weiss. 2023. "Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies" Energies 16, no. 22: 7561. https://doi.org/10.3390/en16227561
APA StyleChahuán-Jiménez, K., Rubilar-Torrealba, R., de la Fuente-Mella, H., & Geldres-Weiss, V. V. (2023). Cluster Analysis and Macroeconomic Indicators and Their Effects on the Evolution of the Use of Clean Energies. Energies, 16(22), 7561. https://doi.org/10.3390/en16227561