Literature Review of Hydrogen Energy Systems and Renewable Energy Sources
Abstract
:1. Introduction
2. Methods and Analysis
Clusters of Hydrogen Energy Systems (HES) and Renewable Energy Sources (RES)
3. Results and Discussion
3.1. Results of the Bibliometric Analysis
3.2. Overview of Selected Hydrogen Applications
3.2.1. HES–RES in Practice
3.2.2. HES and Electrolyzer Efficiency
3.2.3. Hybrid HES-RES Aspects
3.2.4. HES-RES and Safety Aspects
3.2.5. HES-RES and Techno-Economic Aspects
3.2.6. HES-RES and Environmental Aspects
3.2.7. Miscellaneous Aspects
- –
- The selection of the number of fuel cell stacks should consider the price increase of additional fuel cells with the decrease in the price of the smaller storage tank.
- –
- An analysis of the solar–hydrogen hybrid system should consider the effect of the solar irradiance and the ambient air temperature, which are key determinants for calculating the power from the solar panel array. Those reliable and uninterrupted systems of energy are depended on the number of solar panels used in the system. The number of solar panels used in the system affects the electrolyzer size as well as the storage tank volume.
- –
- The efficiency of the hybrid system is dependent on the nominal electrolyzer power. Proper sizing of the electrolyzer can reduce the non-utilizable energy and therefore increase efficiency. The nominal power of the electrolyzer also determines the number of solar panels and the storage tank volume.
- –
- Modular designers cannot ignore the fact that simulations have to consider short time intervals for constructing the properly sized components in the system; otherwise, there will be inevitable interruptions in the power from time to time with undersized hybrid system components.
- –
- Liquid and gaseous hydrogen are valued as the best transportation fuels when compared to liquid fuels such as gasoline, jet fuel and alcohols.
- –
- Hydrogen is a versatile fuel that can be converted to useful thermal-, mechanical- and electrical-energy forms for end-users through a variety of processes, whereas fossil fuels can only be converted through one process, i.e., flame combustion.
- –
- In quantitative terms, hydrogen is 39% more efficient than fossil fuels. Moreover, hydrogen is an energy-conserving fuel that can save primary energy resources.
- –
- In safety terms, hydrogen is safe for use, avoiding fire hazard and toxicity cases.
3.3. Limitations, Challenges and Future Research Prospects of HES-RES Synergies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ntona, E.; Arabatzis, G.; Kyriakopoulos, G.L. Energy saving: Views and attitudes of students in secondary education. Renew. Sustain. Energy Rev. 2015, 46, 1–15. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Arabatzis, G. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 2016, 56, 1044–1067. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L. Energy Communities Overview: Managerial Policies, Economic Aspects, Technologies, and Models. J. Risk Financ. Manag. 2022, 15, 521. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Q.; Zhang, W.; Lin, H. Economic operation strategy of integrated hydrogen energy system considering the uncertainty of PV power output. Energy Rep. 2023, 9, 463–471. [Google Scholar] [CrossRef]
- Çiçek, A. Multi-Objective Operation Strategy for a Community with RESs, Fuel Cell EVs and Hydrogen Energy System Considering Demand Response. Sustain. Energy Technol. Assess. 2023, 55, 102957. [Google Scholar] [CrossRef]
- Ren, J.; Xu, D.; Cao, H.; Wei, S.; Dong, L.; Goodsite, M.E. Sustainability decision support framework for the prioritization of hydrogen energy systems. In Hydrogen Economy: Processes, Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability, 2nd ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 273–313. [Google Scholar] [CrossRef]
- Virji, M.; Randolf, G.; Ewan, M.; Rocheleau, R. Analyses of hydrogen energy system as a grid management tool for the Hawaiian Isles. Int. J. Hydrogen Energy 2020, 45, 8052–8066. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hassani, R.; Gomes, C.; Hizam, H.; Othman, M.L.; Behmanesh, M. Hybrid energy management with respect to a hydrogen energy system and demand response. Int. J. Hydrogen Energy 2020, 45, 1499–1509. [Google Scholar] [CrossRef]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- Cho, S.; Won, W.; Han, S.; Kim, S.; Youa, C.; Kim, J. An optimization-based design and analysis of a biomass derived hydrogen energy system. Comput. Aided Chem. Eng. 2018, 44, 1573–1578. [Google Scholar] [CrossRef]
- Rosen, M.A. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. In Hydrogen Production: Prospects and Processes; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 1–28. [Google Scholar]
- Özden, E.; Tari, I. Numerical investigation of a stand-alone solar hydrogen energy system: Effects of pefc degradation. In Proceedings of the Thermal and Fluids Engineering Summer Conference, New York, NY, USA, 9–12 August 2015; pp. 673–684. [Google Scholar] [CrossRef]
- Lanjewar, P.B.; Rao, R.V.; Kale, A.V. A combined graph theory and analytic hierarchy process approach for multicriteria evaluation of hydrogen energy systems. Int. J. Energy Technol. Policy 2014, 10, 80–96. [Google Scholar] [CrossRef]
- Contreras, A.; Posso, F. Technical and financial study of the development in Venezuela of the hydrogen energy system. Renew. Energy 2011, 36, 3114–3123. [Google Scholar] [CrossRef]
- Wang, B.; Sun, L.; Diao, N.; Zhang, L.; Guo, X.; Guerrero, J.M. GaN-based step-down power converter and control strategy for hydrogen energy systems. Energy Rep. 2023, 9, 252–259. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, Y.; Liu, W.; Jain, R.; Zhao, C. A Hydrogen Load Modeling Method for Integrated Hydrogen Energy System Planning. In Proceedings of the 2023 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT, Washington, DC, USA, 16–19 January 2023. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Gu, W.; Liu, P.; Wang, J.; Lu, Y.; Zheng, S.; Zhao, J. Multi-stage Co-planning Model for Power Distribution System and Hydrogen Energy System Under Uncertainties. J. Mod. Power Syst. Clean Energy 2023, 11, 80–93. [Google Scholar] [CrossRef]
- Alanazi, A.; Alanazi, M.; Arabi Nowdeh, S.; Abdelaziz, A.Y.; El-Shahat, A. An optimal sizing framework for autonomous photovoltaic/hydrokinetic/hydrogen energy system considering cost, reliability and forced outage rate using horse herd optimization. Energy Rep. 2022, 8, 7154–7175. [Google Scholar] [CrossRef]
- Dong, W.; Shao, C.; Feng, C.; Zhou, Q.; Bie, Z.; Wang, X. Cooperative Operation of Power and Hydrogen Energy Systems with HFCV Demand Response. IEEE Trans. Ind. Appl. 2022, 58, 2630–2639. [Google Scholar] [CrossRef]
- Schrotenboer, A.H.; Veenstra, A.A.T.; uit het Broek, M.A.J.; Ursavas, E. A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renew. Sustain. Energy Rev. 2022, 168, 112744. [Google Scholar] [CrossRef]
- Marocco, P.; Ferrero, D.; Martelli, E.; Santarelli, M.; Lanzini, A. An MILP approach for the optimal design of renewable battery-hydrogen energy systems for off-grid insular communities. Energy Convers. Manag. 2021, 245, 114564. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Y.; Yang, Y.; Cai, C.; Chen, Y. Optimal configuration of an off-grid hybrid wind-hydrogen energy system: Comparison of two systems. Energy Eng. J. Assoc. Energy Eng. 2021, 118, 1641–1658. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, T.; Tan, J. Business model and planning approach for hydrogen energy systems at three application scenarios. J. Renew. Sustain. Energy 2021, 13, 044101. [Google Scholar] [CrossRef]
- Onwe, C.A.; Rodley, D.; Reynolds, S. Modelling and simulation tool for off-grid PV-hydrogen energy system. Int. J. Sustain. Energy 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Manilov, A.I. Hydrogen Energy System Based on Silicon Nanopowders: Prospects and Problems. In Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 16–18 April 2019; pp. 60–63. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Zong, Z.; Chen, Q.; Zhang, P.; Wu, K. Development and modelling of a novel electricity-hydrogen energy system based on reversible solid oxide cells and power to gas technology. Int. J. Hydrogen Energy 2019, 44, 28305–28315. [Google Scholar] [CrossRef]
- Alavi, O.; Mostafaeipour, A.; Sedaghat, A.; Qolipour, M. Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvest. Syst. 2017, 4, 143–163. [Google Scholar] [CrossRef]
- Ren, J.; Xu, D.; Cao, H.; Wei, S.; Dong, L.; Goodsite, M.E. Sustainability Decision Support Framework for the Prioritization of Hydrogen Energy Systems. In Hydrogen Economy: Processes, Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability; Academic Press: Cambridge, MA, USA, 2017; pp. 225–276. [Google Scholar] [CrossRef]
- Lacko, R.; Drobnič, B.; Sekavčnik, M.; Mori, M. Hydrogen energy system with renewables for isolated households: The optimal system design, numerical analysis and experimental evaluation. Energy Build. 2014, 80, 106–113. [Google Scholar] [CrossRef]
- Patrício, R.A.; Sales, A.D.; Sacramento, E.M.; De Lima, L.C.; Veziroglu, T.N. Wind hydrogen energy system and the gradual replacement of natural gas in the State of Ceará-Brazil. Int. J. Hydrogen Energy 2012, 37, 7355–7364. [Google Scholar] [CrossRef]
- Aguado, M.; Ayerbe, E.; Azcárate, C.; Blanco, R.; Garde, R.; Mallor, F.; Rivas, D.M. Economical assessment of a wind-hydrogen energy system using WindHyGen® software. Int. J. Hydrogen Energy 2009, 34, 2845–2854. [Google Scholar] [CrossRef]
- Acar, C.; Erturk, E.; Firtina-Ertis, I. Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings. Int. J. Hydrogen Energy 2023, 48, 1664–1684. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I. Development and evaluation of a solar based integrated hydrogen energy system for mobile applications. Energy Convers. Manag. 2023, 280, 116808. [Google Scholar] [CrossRef]
- Lin, X.-M.; Li, J.-F. Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem 2023, 10, 202201003. [Google Scholar] [CrossRef]
- Alex, A.; Petrone, R.; Tala-Ighil, B.; Bozalakov, D.; Vandevelde, L.; Gualous, H. Optimal techno-enviro-economic analysis of a hybrid grid connected tidal-wind-hydrogen energy system. Int. J. Hydrogen Energy 2022, 47, 36448–36464. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Binofai, F.A.S.; Mohamad, M.O.A. Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis. Energies 2022, 15, 6663. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Haque, N.; Bhargava, S.; Madapusi, S.; Parthasarathy, R. Techno-economic evaluation methodology for hydrogen energy systems. In Bioenergy Resources and Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 237–260. [Google Scholar] [CrossRef]
- Endo, N.; Goshome, K.; Tetsuhiko, M.; Segawa, Y.; Shimoda, E.; Nozu, T. Thermal management and power saving operations for improved energy efficiency within a renewable hydrogen energy system utilizing metal hydride hydrogen storage. Int. J. Hydrogen Energy 2021, 46, 262–271. [Google Scholar] [CrossRef]
- Endo, N.; Segawa, Y.; Goshome, K.; Shimoda, E.; Nozu, T.; Maeda, T. Use of cold start-up operations in the absence of external heat sources for fast fuel cell power and heat generation in a hydrogen energy system utilizing metal hydride tanks. Int. J. Hydrogen Energy 2020, 45, 32196–32205. [Google Scholar] [CrossRef]
- Endo, N.; Shimoda, E.; Goshome, K.; Yamane, T.; Nozu, T.; Maeda, T. Operation of a stationary hydrogen energy system using TiFe-based alloy tanks under various weather conditions. Int. J. Hydrogen Energy 2020, 45, 207–215. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Zhang, R.; Sun, H. Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review. Energy Explor. Exploit. 2020, 38, 2099–2127. [Google Scholar] [CrossRef]
- Yilmaz, C. Life cycle cost assessment of a geothermal power assisted hydrogen energy system. Geothermics 2020, 83, 101737. [Google Scholar] [CrossRef]
- Sorgulu, F.; Dincer, I. A renewable source based hydrogen energy system for residential applications. Int. J. Hydrogen Energy 2018, 43, 5842–5851. [Google Scholar] [CrossRef]
- Kalinci, Y.; Dincer, I.; Hepbasli, A. Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. Int. J. Hydrogen Energy 2017, 42, 2492–2503. [Google Scholar] [CrossRef]
- Ewan, M.; Rocheleau, R.; Swider-Lyons, K.E.; Devlin, P.; Virji, M.; Randolf, G. Development of a hydrogen energy system as a grid frequency management tool. ECS Trans. 2016, 75, 403–419. [Google Scholar] [CrossRef]
- Khalid, F.; Dincer, I.; Rosen, M.A. Analysis and assessment of an integrated hydrogen energy system. Int. J. Hydrogen Energy 2016, 41, 7960–7967. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F.; Ahmadi, M.H. Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol. Energy 2016, 139, 666–675. [Google Scholar] [CrossRef]
- Balabel, A.; Zaky, M.S. Experimental investigation of solar-hydrogen energy system performance. Int. J. Hydrogen Energy 2011, 36, 4653–4663. [Google Scholar] [CrossRef]
- Bendaikha, W.; Larbi, S.; Mahmah, B. Hydrogen energy system analysis for residential applications in the southern region of Algeria. Int. J. Hydrogen Energy 2011, 36, 8159–8166. [Google Scholar] [CrossRef]
- Chao, C.-H.; Shieh, J.-J. Control and management for hydrogen energy systems. Recent Researches in Energy, Environment, Entrepreneurship, Innovation. In Proceedings of the International Conference on Energy, Environment, Entrepreneurship, Innovation, ICEEEI, Canary Islands, Spain, 27–29 May 2011; pp. 27–31. [Google Scholar]
- Kikkinides, E.S. Hydrogen-Based Energy Systems: The Storage Challenge. In Process Systems Engineering: Volume 5: Energy Systems Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Chapter 3; pp. 85–123. [Google Scholar] [CrossRef]
- Gabriel García Clúa, J.; Julián Mantz, R.; De Battista, H. Hybrid control of a photovoltaic-hydrogen energy system. Int. J. Hydrogen Energy 2008, 33, 3455–3459. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, Z.; Xia, G. A Review on Research and Technology Development of Green Hydrogen Energy Systems with Thermal Management and Heat Recovery. Heat Transf. Eng. 2023. [Google Scholar] [CrossRef]
- Blanco, H.; Leaver, J.; Dodds, P.E.; Dickinson, R.; García-Gusano, D.; Iribarren, D.; Lind, A.; Wang, C.; Danebergs, J.; Baumann, M. A taxonomy of models for investigating hydrogen energy systems. Renew. Sustain. Energy Rev. 2022, 167, 112698. [Google Scholar] [CrossRef]
- Sezgin, B.; Devrim, Y.; Ozturk, T.; Eroglu, I. Hydrogen energy systems for underwater applications. Int. J. Hydrogen Energy 2022, 47, 19780–19796. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Development and assessment of an onshore wind and concentrated solar based power, heat, cooling and hydrogen energy system for remote communities. J. Clean. Prod. 2022, 374, 134067. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Martin, A.; Agnoletti, M.-F.; Brangier, E. Users in the design of Hydrogen Energy Systems: A systematic review. Int. J. Hydrogen Energy 2020, 45, 11889–11900. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Cumulative energy demand of hydrogen energy systems. In Environmental Footprints and Eco-Design of Products and Processes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–75. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Life cycle assessment of hydrogen energy systems: A review of methodological choices. Int. J. Life Cycle Assess. 2017, 22, 346–363. [Google Scholar] [CrossRef]
- Zini, G.; Tartarini, P. Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy; Springer: Berlin/Heidelberg, Germany, 2012; 184p, ISBN 9788847019980. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Noyan, Ö.F. Some approach to possible atmospheric impacts of a hydrogen energy system in the light of the geological past and present-day. Int. J. Hydrogen Energy 2011, 36, 11216–11228. [Google Scholar] [CrossRef]
- Li, Z.; Chang, L.; Gao, D.; Liu, P.; Pistikopoulos, E.N. Hydrogen Energy Systems. In Process Systems Engineering: Volume 5: Energy Systems Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Chapter 4; pp. 125–157. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ushifusa, Y. Consideration of Charging and Efficiently Using Surplus Photovoltaic power by Hydrogen Energy System. In Proceedings of the 13th Asian Control Conference (ASCC), Jeju, Republic of Korea, 4–7 May 2022; pp. 2298–2303. [Google Scholar] [CrossRef]
- Deng, W.; Pei, W.; Zhuang, Y.; Li, N.; Zhang, X.; Yang, Y.; Kong, L. Integration control of renewable energy/hydrogen energy system based on flexible DC interconnection. J. Phys. Conf. Ser. 2022, 1, 012032. [Google Scholar] [CrossRef]
- Budak, Y.; Devrim, Y. Evaluation of hybrid solar-wind-hydrogen energy system based on methanol electrolyzer. Int. J. Energy Res. 2020, 44, 10222–10237. [Google Scholar] [CrossRef]
- Shiroudi, A.; Taklimi, S.R.H.; Mousavifar, S.A.; Taghipour, P. Stand-alone PV-hydrogen energy system in Taleghan-Iran using HOMER software: Optimization and techno-economic analysis. Environ. Dev. Sustain. 2013, 15, 1389–1402. [Google Scholar] [CrossRef]
- Veziroǧlu, T.N.; Şahin, S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Koroneos, C.J. Exergetic aspects of hydrogen energy systems-The case study of a fuel cell bus. Sustainability 2017, 9, 276. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
- Samende, C.; Fan, Z.; Cao, J.; Fabián, R.; Baltas, G.N.; Rodriguez, P. Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning. Energies 2023, 16, 6770. [Google Scholar] [CrossRef]
- Niu, M.; Li, X.; Sun, C.; Xiu, X.; Wang, Y.; Hu, M.; Dong, H. Operation Optimization of Wind/Battery Storage/Alkaline Electrolyzer System Considering Dynamic Hydrogen Production Efficiency. Energies 2023, 16, 6132. [Google Scholar] [CrossRef]
- Ulleberg, Ø.; Nakken, T.; Eté, A. The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int. J. Hydrogen Energy 2010, 35, 1841–1852. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Tito, E.; Zoppi, G.; Pipitone, G.; Miliotti, E.; Di Fraia, A.; Rizzo, A.-M.; Pirone, R.; Chiaramonti, D.; Bensaid, S. Conceptual design and techno-economic assessment of coupled hydrothermal liquefaction and aqueous phase reforming of lignocellulosic residues. J. Environ. Chem. Eng. 2023, 11, 109076. [Google Scholar] [CrossRef]
- Salvi, B.L.; Subramanian, K.A. Sustainable development of road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. [Google Scholar] [CrossRef]
- Valverde-Isorna, L.; Ali, D.; Hogg, D.; Abdel-Wahab, M. Modelling the performance of wind-hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK. Renew. Sustain. Energy Rev. 2016, 53, 1313–1332. [Google Scholar] [CrossRef]
- Jing, D.; Mohammed, A.A.; Kadi, A.; Elmirzaev, S.; AL-Khafaji, M.O.; Marefati, M. Wastewater treatment to improve energy and water nexus with hydrogen fuel production option: Techno-economic and process analysis. Process Saf. Environ. Prot. 2023, 172, 437–450. [Google Scholar] [CrossRef]
- Topalis, F.V.; Doulos, L.T. Ambient light sensor integration. In Handbook of Advanced Lighting Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 607–634. [Google Scholar] [CrossRef]
- Anthopoulou, E.; Doulos, L. The effect of the continuous energy efficient upgrading of LED street lighting technology: The case study of Egnatia Odos. In Proceedings of the 2nd Balkan Junior Conference on Lighting, Balkan Light Junior, Plovdiv, Bulgaria, 19–21 September 2019. [Google Scholar] [CrossRef]
- Pallis, P.; Braimakis, K.; Roumpedakis, T.C.; Varvagiannis, E.; Karellas, S.; Doulos, L.; Katsaros, M.; Vourliotis, P. Energy and economic performance assessment of efficiency measures in zero-energy office buildings in Greece. Build. Environ. 2021, 206, 108378. [Google Scholar] [CrossRef]
- Arabatzis, G.; Malesios, C. Pro-environmental attitudes of users and non-users of fuelwood in a rural area of Greece. Renew. Sustain. Energy Rev. 2013, 22, 621–630. [Google Scholar] [CrossRef]
- Skordoulis, M.; Kyriakopoulos, G.; Ntanos, S.; Galatsidas, S.; Arabatzis, G.; Chalikias, M.; Kalantonis, P. The Mediating Role of Firm Strategy in the Relationship between Green Entrepreneurship, Green Innovation, and Competitive Advantage: The Case of Medium and Large-Sized Firms in Greece. Sustainability 2022, 14, 3286. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Sebos, I. Enhancing Climate Neutrality and Resilience through Coordinated Climate Action: Review of the Synergies between Mitigation and Adaptation Actions. Climate 2023, 11, 105. [Google Scholar] [CrossRef]
- Sebos, I.; Progiou, A.G.; Kallinikos, L. Methodological Framework for the Quantification of GHG Emission Reductions from Climate Change Mitigation Actions. Strateg. Plan. Energy Environ. 2020, 39, 219–242. [Google Scholar] [CrossRef]
Classification # | Reference # | Number of Citations in Absolute Numbers or as Percentage of the Total Citations Collected % | Intensity Rations (Per Basis of the Lowest-Documented Field of Cluster #a) |
---|---|---|---|
a | Lu et al., 2023; Çiçek, 2023; Ren et al., 2023; Virji et al., 2020; Maghami et al., 2020; Parra et al., 2019; Cho et al., 2018; Rosen and Koohi-Fayegh, 2016; Özden and Tari, 2015; Lanjewar et al., 2014; Contreras and Posso, 2011 [4,5,6,7,8,9,10,11,12,13,14] | 11 or 16.7% | 2.75 |
b | Wang et al., 2023; Zhao et al., 2023; Sun et al., 2023; Alanazi et al., 2022; Dong et al., 2022; Schrotenboer et al., 2022; Marocco et al., 2021; Zhang et al., 2021; Wang et al., 2021; Onwe et al., 2020; Manilov, 2019; Zhang et al., 2019a; Zhang et al., 2019b; Alavi et al., 2017; Ren et al., 2017; Lacko et al., 2014; Patricio et al., 2012; Aguado et al., 2009 [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] | 18 or 27.3% | 4.50 |
c | Acar et al., 2023; Karaca and Dincer, 2023; Lin and Li, 2023; Alex et al., 2022; Ibrahim et al., 2022 Balasubramanian et al., 2021; Endo et al., 2021; Endo et al., 2020a; Endo et al., 2020b; Li et al., 2020; Yilmaz, 2020; Sorgulu and Dincer, 2018; Kalinci et al., 2017; Ewan et al., 2016; Khalid et al., 2016; Maleki et al., 2016; Balabel and Zaky, 2011; Bendaikha et al., 2011; Chao and Shieh, 2011; Kikkinides, 2011; Gabriel García Clúa et al., 2008 [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] | 21 or 31.8% | 5.25 |
d | Cheng et al., 2023; Blanco et al., 2022; Sezgin et al., 2022; Temiz and Dincer, 2022; Yue et al., 2021; Martin et al., 2020; Valente et al., 2019; Valente et al., 2017; Zini and Tartarini, 2012; Rosen, 2012; Noyan, 2011; Li et al., 2011 [54,55,56,57,58,59,60,61,62,63,64,65] | 12 or 18.2% | 3.00 |
e | Yamamoto and Ushifusa, 2022; Deng et al., 2021; Budak and Devrim, 2020; Shiroudi et al., 2013 [66,67,68,69] | 4 or 6.0% | 1.00 |
Total references | 66 or 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakopoulos, G.L.; Aravossis, K.G. Literature Review of Hydrogen Energy Systems and Renewable Energy Sources. Energies 2023, 16, 7493. https://doi.org/10.3390/en16227493
Kyriakopoulos GL, Aravossis KG. Literature Review of Hydrogen Energy Systems and Renewable Energy Sources. Energies. 2023; 16(22):7493. https://doi.org/10.3390/en16227493
Chicago/Turabian StyleKyriakopoulos, Grigorios L., and Konstantinos G. Aravossis. 2023. "Literature Review of Hydrogen Energy Systems and Renewable Energy Sources" Energies 16, no. 22: 7493. https://doi.org/10.3390/en16227493
APA StyleKyriakopoulos, G. L., & Aravossis, K. G. (2023). Literature Review of Hydrogen Energy Systems and Renewable Energy Sources. Energies, 16(22), 7493. https://doi.org/10.3390/en16227493