A Review of Isobutanol as a Fuel for Internal Combustion Engines
Abstract
:1. Introduction
2. Isobutanol Characteristics
3. Isobutanol Production
3.1. Isobutanol Production from Fossil Sources
3.2. Isobutanol Production from Renewable Sources
4. Isobutanol Combustion
5. Use of Isobutanol in SI Engines
5.1. Properties of Gasoline–Isobutanol Blends
5.2. Performance of Gasoline–Isobutanol Blends
5.2.1. Performance of Gasoline–Isobutanol Blends in General
5.2.2. Comparison with other Butanol Isomers
5.2.3. Comparison with other Gasoline–Alcohol Blends
Engine Tests
Vehicle Tests
5.3. The Use of Neat Isobutanol in SI Engines
6. Use of Isobutanol in CI Engines
6.1. Performance of Diesel–Isobutanol Blends
6.2. Comparison with Other Alcohols
6.3. Ternary Fuel Blends
6.4. LTC Studies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001 (accessed on 6 October 2023).
- U.S. Department of Energy. Alternative Fuels Data Center: Renewable Fuel Standard. Available online: https://afdc.energy.gov/laws/RFS (accessed on 6 October 2023).
- Lark, T.J.; Hendricks, N.P.; Smith, A.; Pates, N.; Spawn-Lee, S.A.; Bougie, M.; Booth, E.G.; Kucharik, C.J.; Gibbs, H.K. Environmental outcomes of the US Renewable Fuel Standard. Proc. Natl. Acad. Sci. USA 2022, 119, e2101084119. [Google Scholar] [CrossRef]
- Hoang, T.-D.; Nghiem, N. Recent Developments and Current Status of Commercial Production of Fuel Ethanol. Fermentation 2021, 7, 314. [Google Scholar] [CrossRef]
- Annual Ethanol Production. Renewable Fuels Association. Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 6 October 2023).
- Li, J.; Zhao, R.; Xu, Y.; Wu, X.; Bean, S.R.; Wang, D. Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances. Renew. Energy 2022, 188, 223–239. [Google Scholar] [CrossRef]
- Brito, T.L.F.; Islam, T.; Stettler, M.; Mouette, D.; Meade, N.; Moutinho Dos Santos, E. Transitions between technological generations of alternative fuel vehicles in Brazil. Energy Policy 2019, 134, 110915. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Vapor Pressures of Alcohol−Gasoline Blends. Energy Fuels 2010, 24, 3647–3654. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Distillation Curves for Alcohol−Gasoline Blends. Energy Fuels 2010, 24, 2683–2691. [Google Scholar] [CrossRef]
- Regalbuto, C.; Pennisi, M.; Wigg, B.; Kyritsis, D. Experimental Investigation of Butanol Isomer Combustion in Spark Ignition Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Vu, D.; Russell, R.; Asa-Awuku, A.; Durbin, T. A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles. SAE Int. J. Fuels Lubr. 2015, 8, 374–395. [Google Scholar] [CrossRef]
- Gaspar, D. Top Ten Blendstocks for Turbocharged Gasoline Engines: Bio-Blendstocks with the Potential to Deliver the Highest Engine Efficiency. PNNL-28713, Pacific North-West National Laboratory. 2019. Available online: https://www.osti.gov/servlets/purl/1567705 (accessed on 6 October 2023).
- Hardenberg, H.O.; Schaefer, A.J. The Use of Ethanol as a Fuel for Compression Ignition Engines; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1981. [Google Scholar] [CrossRef]
- Schaefer, A.J.; Hardenberg, H.O. Ignition Improvers for Ethanol Fuels; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1981. [Google Scholar] [CrossRef]
- Simonsen, H.; Chomiak, J. Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Çelebi, Y.; Aydin, H. An overview on the light alcohol fuels in diesel engines. Fuel 2019, 236, 890–911. [Google Scholar] [CrossRef]
- Kumar, S.; Cho, J.H.; Park, J.; Moon, I. Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renew. Sustain. Energy Rev. 2013, 22, 46–72. [Google Scholar] [CrossRef]
- Hansen, A.C.; Zhang, Q.; Lyne, P.W.L. Ethanol–diesel fuel blends—A review. Bioresour. Technol. 2005, 96, 277–285. [Google Scholar] [CrossRef]
- Hahn, H.-D.; Dämbkes, G.; Rupprich, N.; Bahl, H.; Frey, G.D. Butanols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wallner, T.; Miers, S.A.; Mcconnell, S. A Comparison of Ethanol and Butanol as Oxygenates Using a Direct-Injection, Spark-Ignition Engine. J. Eng. Gas Turbines Power 2009, 131, 032802. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Osswald, P.; Hansen, N.; Kohse-Höinghaus, K. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 2014, 44, 40–102. [Google Scholar] [CrossRef]
- Egolf, L.M.; Jurs, P.C. Estimation of Autoignition Temperatures of Hydrocarbons, Alcohols, and Esters from Molecular Structure. Ind. Eng. Chem. Res. 1992, 31, 1798–1807. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, W.; Zhang, A.; Shao, W. Biorefinery: The Production of Isobutanol from Biomass Feedstocks. Appl. Sci. 2020, 10, 8222. [Google Scholar] [CrossRef]
- Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451, 86–89. [Google Scholar] [CrossRef]
- Nozzi, N.E.; Desai, S.H.; Case, A.E.; Atsumi, S. Metabolic engineering for higher alcohol production. Metab. Eng. 2014, 25, 174–182. [Google Scholar] [CrossRef]
- Dedov, A.G.; Karavaev, A.A.; Loktev, A.S.; Osipov, A.K. Bioisobutanol as a Promising Feedstock for Production of “Green” Hydrocarbons and Petrochemicals (A Review). Pet. Chem. 2021, 61, 1139–1157. [Google Scholar] [CrossRef]
- Carlini, C.; Di Girolamo, M.; Macinai, A.; Marchionna, M.; Noviello, M.; Galletti, A.M.R.; Sbrana, G. Selective synthesis of isobutanol by means of the Guerbet reaction Part 2. Reaction of methanol/ethanol and methanol/ethanol/n-propanol mixtures over copper based/MeONa catalytic systems. J. Mol. Catal. A Chem. 2003, 200, 137–146. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, G.; Wang, X.; Mu, X. Selective upgrading of ethanol with methanol in water for the production of improved biofuel—Isobutanol. Green Chem. 2016, 18, 2811–2818. [Google Scholar] [CrossRef]
- Stephanopoulos, G. Challenges in Engineering Microbes for Biofuels Production. Science 2007, 315, 801–804. [Google Scholar] [CrossRef]
- Roussos, A.; Misailidis, N.; Koulouris, A.; Zimbardi, F.; Petrides, D. A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes 2019, 7, 667. [Google Scholar] [CrossRef]
- Lynd, L.R.; Liang, X.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef]
- Mcenally, C.S.; Pfefferle, L.D. Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons: Butyl alcohols. Proc. Combust. Inst. 2005, 30, 1363–1370. [Google Scholar] [CrossRef]
- Yang, B.; Osswald, P.; Li, Y.; Wang, J.; Wei, L.; Tian, Z.-Y.; Qi, F.; Kohse-Höinghaus, K. Identification of combustion intermediates in isomeric fuel-rich premixed butanol–oxygen flames at low pressure. Combust. Flame 2007, 148, 198–209. [Google Scholar] [CrossRef]
- Grana, R.; Frassoldati, A.; Faravelli, T.; Niemann, U.; Ranzi, E.; Seiser, R.; Cattolica, R.J.; Seshadri, K. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust. Flame 2010, 157, 2137–2154. [Google Scholar] [CrossRef]
- Osswald, P.; Güldenberg, H.; Kohse-Höinghaus, K.; Yang, B.; Yuan, T.; Qi, F. Combustion of butanol isomers—A detailed molecular beam mass spectrometry investigation of their flame chemistry. Combust. Flame 2011, 158, 2–15. [Google Scholar] [CrossRef]
- Frassoldati, A.; Grana, R.; Faravelli, T.; Ranzi, E.; Osswald, P.; Kohse-Höinghaus, K. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust. Flame 2012, 159, 2295–2311. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Vranckx, S.; Yasunaga, K.; Mehl, M.; Osswald, P.; Metcalfe, W.K.; Westbrook, C.K.; Pitz, W.J.; Kohse-Höinghaus, K.; Fernandes, R.X.; et al. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame 2012, 159, 2028–2055. [Google Scholar] [CrossRef]
- Moss, J.D.; Berkowitz, A.M.; Oehlschlaeger, M.A.; Biet, J.; Warth, V.; Curran, H.J.; Battin-Leclerc, F. An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J. Phys. Chem. A 2008, 112, 10843–10855. [Google Scholar] [CrossRef]
- Yasunaga, K.; Mikajiri, T.; Sarathy, S.M.; Koike, T.; Gillespie, F.; Nagy, T.; Simmie, J.M.; Curran, H.J. A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combust. Flame 2012, 159, 2009–2027. [Google Scholar] [CrossRef]
- Stranic, I.; Chase, D.; Harmon, J.E.; Yang, S.; Davidson, D.F.; Hanson, R.K. Shock tube measurements of ignition delay times for the butanol isomers. Combust. Flame 2012, 159, 516–527. [Google Scholar] [CrossRef]
- Gu, X.; Huang, Z.; Wu, S.; Li, Q. Laminar burning velocities and flame instabilities of butanol isomers–air mixtures. Combust. Flame 2010, 157, 2318–2325. [Google Scholar] [CrossRef]
- Veloo, P.S.; Egolfopoulos, F.N. Flame propagation of butanol isomers/air mix-tures. Proc. Combust. Inst. 2011, 33, 987–993. [Google Scholar] [CrossRef]
- Wu, F.; Law, C.K. An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers. Combust. Flame 2013, 160, 2744–2756. [Google Scholar] [CrossRef]
- Sileghem, L.; Alekseev, V.A.; Vancoillie, J.; Van Geem, K.M.; Nilsson, E.J.K.; Verhelst, S.; Konnov, A.A. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel 2013, 112, 355–365. [Google Scholar] [CrossRef]
- Camacho, J.; Lieb, S.; Wang, H. Evolution of size distribution of nascent soot in n- and i-butanol flames. Proc. Combust. Inst. 2013, 34, 1853–1860. [Google Scholar] [CrossRef]
- Singh, P.K.; Hui, X.; Sung, C.-J. Soot formation in non-premixed counterflow flames of butane and butanol isomers. Combust. Flame 2016, 164, 167–182. [Google Scholar] [CrossRef]
- Viteri, F.; Gracia, S.; Millera, Á.; Bilbao, R.; Alzueta, M.U. Polycyclic aromatic hydrocarbons (PAHs) and soot formation in the pyrolysis of the butanol isomers. Fuel 2017, 197, 348–358. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Liu, H.; Wang, H.; Kyritsis, D.C.; Yao, M. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame 2017, 177, 123–136. [Google Scholar] [CrossRef]
- Ayyasamy, R.; Nagalingam, B.; Ganesan, V.; Gopalakrrshnan, K.V.; Murthy, B.S. Formation and Control of Aldehydes in Alcohol Fueled Engines; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1981. [Google Scholar] [CrossRef]
- Zervas, E.; Montagne, X.; Lahaye, J. Emission of Alcohols and Carbonyl Compounds from a Spark Ignition Engine. Influ. Fuel Air/Fuel Equiv. Ratio. Environ. Sci. Technol. 2002, 36, 2414–2421. [Google Scholar] [CrossRef]
- Christensen, E.; Yanowitz, J.; Ratcliff, M.; Mccormick, R.L. Renewable Oxygenate Blending Effects on Gasoline Properties. Energy Fuels 2011, 25, 4723–4733. [Google Scholar] [CrossRef]
- ASTM D4814-22; Standard Specification for Automotive Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2022.
- Rodríguez-Antón, L.M.; Gutíerrez-Martín, F.; Doce, Y. Physical proper-ties of gasoline, isobutanol and ETBE binary blends in comparison with gasoline ethanol blends. Fuel 2016, 166, 73–78. [Google Scholar] [CrossRef]
- Li, Y.-L.; Yu, Y.-C.; Wang, Z.-W.; Wang, J.-F. Physical and chemical properties of isobutanol-gasoline blends. Environ. Prog. Sustain. Energy 2014, 34, 908–914. [Google Scholar] [CrossRef]
- Alleman, T.L.; Singh, A.; Christensen, E.; Simmons, E.; Johnston, G. Octane Modeling of Isobutanol Blending into Gasoline. Energy Fuels 2020, 34, 8424–8431. [Google Scholar] [CrossRef]
- Mccormick, R.L.; Fioroni, G.; Fouts, L.; Christensen, E.; Yanowitz, J.; Polikarpov, E.; Albrecht, K.; Gaspar, D.J.; Gladden, J.; George, A. Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines. SAE Int. J. Fuels Lubr. 2017, 10, 442–460. [Google Scholar] [CrossRef]
- Bell, A. Modern SI Engine Control Parameter Responses and Altitude Effects with Fuels of Varying Octane Sensitivity; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Alasfour, F.N. NOx Emission from a spark ignition engine using 30% Iso-butanol–gasoline blend: Part 1—Preheating inlet air. Appl. Therm. Eng. 1998, 18, 245–256. [Google Scholar] [CrossRef]
- Alasfour, F.N. The Effect of Using 30% Iso-Butanol-Gasoline Blend on Hydrocarbon Emissions from a Spark-Ignition Engine. Energy Sources 1999, 21, 379–394. [Google Scholar] [CrossRef]
- Baustian, J.; Wolf, L. Cold-Start/Warm-Up Vehicle Performance and Driveability Index for Gasolines Containing Isobutanol. SAE Int. J. Fuels Lubr. 2012, 5, 1300–1309. [Google Scholar] [CrossRef]
- Irimescu, A. Fuel conversion efficiency of a port injection engine fueled with gasoline–isobutanol blends. Energy 2011, 36, 3030–3035. [Google Scholar] [CrossRef]
- Sayin, C.; Balki, M.K. Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends. Energy 2015, 82, 550–555. [Google Scholar] [CrossRef]
- Vojtisek-Lom, M.; Beranek, V.; Stolcpartova, J.; Pechout, M.; Klir, V. Effects of n-Butanol and Isobutanol on Particulate Matter Emissions from a Euro 6 Direct-injection Spark Ignition Engine During Laboratory and on-Road Tests. SAE Int. J. Engines 2015, 8, 2338–2350. [Google Scholar] [CrossRef]
- Li, L.; Sun, K.; Duan, J. Effects of Butanol Isomers on the Combustion Characteristics and Particle Number Emissions of a GDI Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Yusoff, M.N.A.M.; Zulkifli, N.W.M.; Masjuki, H.H.; Harith, M.H.; Syahir, A.Z.; Kalam, M.A.; Mansor, M.F.; Azham, A.; Khuong, L.S. Performance and emission characteristics of a spark ignition engine fuelled with butanol isomer-gasoline blends. Transp. Res. Part D Transp. Environ. 2017, 57, 23–38. [Google Scholar] [CrossRef]
- Rice, R.W.; Sanyal, A.K.; Elrod, A.C.; Bata, R.M. Exhaust Gas Emissions of Butanol, Ethanol, and Methanol-Gasoline Blends. J. Eng. Gas Turbines Power 1991, 113, 377–381. [Google Scholar] [CrossRef]
- Popuri, S.S.; Bata, R.M. A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993. [Google Scholar] [CrossRef]
- Wallner, T.; Frazee, R.C. Study of Regulated and Non-Regulated Emissions from Combustion of Gasoline, Alcohol Fuels and their Blends in a DI-SI Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- He, X.; Ireland, J.C.; Zigler, B.T.; Ratcliff, M.A.; Knoll, K.E.; Alleman, T.L.; Luecke, J.H.; Tester, J.T. The Impacts of Mid-Level Alcohol Content in Gasoline on SIDI Engine-Out and Tailpipe Emissions. In Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference, San Antonio, TX, USA, 12–15 September 2010; American Society of Mechanical Engineers: New York, NY, USA, 2010; pp. 189–201. Available online: https://asmedigitalcollection.asme.org/ICEF/proceedings-abstract/ICEF2010/189/601614 (accessed on 6 October 2023).
- Wasil, J.R.; Mcknight, J.A.; Kolb, R.; Munz, D.C.; Adey, J.K.; Goodwin, B.C. In-Use Performance Testing of Butanol-Extended Fuel in Recreational Marine Engines and Vessels; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Wasil, J.R.; Wallner, T. Gaseous and Particulate Emissions Using Isobutanol-Extended Fuel in Recreational Marine Two-Stroke and Four-Stroke Engines. SAE Int. J. Fuels Lubr. 2014, 7, 1062–1068. [Google Scholar] [CrossRef]
- Wallner, T.; Ickes, A.; Wasil, J.R.; Sevik, J.; Miers, S.A. Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Storey, J.; Lewis, S.M.; Szybist, J.P.; Thomas, J.; Barone, T.L.; Eibl, M.; Nafziger, E.; Kaul, B.C. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends. SAE Int. J. Fuels Lubr. 2014, 7, 571–579. [Google Scholar] [CrossRef]
- Poitras, M.-J.; Rosenblatt, D.; Goodman, J. Impact of Ethanol and Isobutanol Gasoline Blends on Emissions from a Closed-Loop Small Spark-Ignited Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Irimescu, A. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends. Analele Univ. Eftimie Murgu 2009, 16, 151–156. [Google Scholar]
- Stansfield, P.A.; Bisordi, A.; Oudenijeweme, D.; Williams, J.; Gold, M.; Ali, R. The Performance of a Modern Vehicle on a Variety of Alcohol-Gasoline Fuel Blends. SAE Int. J. Fuels Lubr. 2012, 5, 813–822. [Google Scholar] [CrossRef]
- Ratcliff, M.A.; Luecke, J.; Williams, A.M.; Christensen, E.; Yanowitz, J.; Reek, A.; Mccormick, R.L. Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions. Environ. Sci. Technol. 2013, 47, 13865–13872. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Hajbabaei, M.; Vu, D.; Villela, M.; Russell, R.M.; Durbin, T.D.; Asa-Awuku, A. Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Asa-Awuku, A.; Durbin, T.D. Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 2014, 128, 410–421. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Russell, R.; Jung, H.; Asa-Awuku, A.; Durbin, T. Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends. SAE Int. J. Fuels Lubr. 2014, 7, 183–199. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Russell, R.L.; Jung, H.; Johnson, K.C.; Asa-Awuku, A.; Durbin, T.D. Assessing the Impacts of Ethanol and Isobutanol on Gase-ous and Particulate Emissions from Flexible Fuel Vehicles. Environ. Sci. Technol. 2014, 48, 14016–14024. [Google Scholar] [CrossRef] [PubMed]
- Karavalakis, G.; Short, D.; Vu, D.; Russell, R.M.; Asa-Awuku, A.; Jung, H.; Johnson, K.J.; Durbin, T.D. The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines. Energy 2015, 82, 168–179. [Google Scholar] [CrossRef]
- Chan, T.W. The Impact of Isobutanol and Ethanol on Gasoline Fuel Properties and Black Carbon Emissions from Two Light-Duty Gasoline Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Storey, J.; Moses-Debusk, M.; Huff, S.; Thomas, J.M.; Eibl, M.; Li, F. Characterization of GDI PM during Vehicle Start-Stop Operation; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Irimescu, A. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol. Appl. Energy 2012, 96, 477–483. [Google Scholar] [CrossRef]
- Pechout, M.; Dittrich, A.; Vojtisek-Lom, M. Operation of an Ordinary PFI Engine on n-butanol and Iso-Butanol and Their Blends with Gasoline; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Sileghem, L.; Ickes, A.; Wallner, T.; Verhelst, S. Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO-Stoichiometric Alcohol Blends; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Pechout, M.; Czerwinski, J.; Güdel, M.; Vojtisek-Lom, M. Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Al-Hasan, M.I.; Al-Momany, M. The effect of iso-butanol-diesel blends on engine performance. Transport 2008, 23, 306–310. [Google Scholar] [CrossRef]
- Karabektas, M.; Hosoz, M. Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renew. Energy 2009, 34, 1554–1559. [Google Scholar] [CrossRef]
- Ozsezen, A.N.; Turkcan, A.; Sayin, C.; Canakci, M. Comparison of Performance and Combustion Parameters in a Heavy-Duty Diesel Engine Fueled with Iso-Butanol/Diesel Fuel Blends. Energy Explor. Exploit. 2011, 29, 525–541. [Google Scholar] [CrossRef]
- Pal, A.; Manish, V.; Gupta, S.; Kumar, R. Performance and Emission Characteristics of Isobutanol-Diesel Blend in Water Cooled CI Engine Employing EGR with EGR Intercooler; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Gu, X.; Li, G.; Jiang, X.; Huang, Z.; Lee, C.-F. Experimental study on the performance of and emissions from a low-speed light-duty diesel engine fueled with n-butanol–diesel and isobutanol–diesel blends. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 261–271. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a DI diesel engine. Energy Convers. Manag. 2016, 119, 246–256. [Google Scholar] [CrossRef]
- SS-EN 590:2022; Automotive fuels - Diesel - Requirements and test methods. Online. Swedish Institute for Standards: Stockholm, Sweden, 2022. Available online: https://www.sis.se/en/produkter/petroleum-and-related-technologies/fuels/liquid-fuels/ss-en-5902022 (accessed on 6 October 2023).
- Krishnan, M.G.; Rajkumar, S. Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol. Energy 2022, 252, 124022. [Google Scholar] [CrossRef]
- Yang, P.-M.; Lin, K.; Lin, Y.-C.; Jhang, S.-R.; Chen, S.-C. Emission evaluation of a diesel engine generator operating with a proportion of isobutanol as a fuel additive in bio-diesel blends. Appl. Therm. Eng. 2016, 100, 628–635. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Singh, A.P.; Maurya, R.K. Evolution, challenges and path forward for low temperature combustion engines. Prog. Energy Combust. Sci. 2017, 61, 1–56. [Google Scholar] [CrossRef]
- Delvescovo, D.; Wang, H.; Wissink, M.; Reitz, R.D. Isobutanol as Both Low Reactivity and High Reactivity Fuels with Addition of Di-Tert Butyl Peroxide (DTBP) in RCCI Combustion. SAE Int. J. Fuels Lubr. 2015, 8, 329–343. [Google Scholar] [CrossRef]
- Mack, J.H.; Schuler, D.; Butt, R.H.; Dibble, R.W. Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines. Appl. Energy 2016, 165, 612–626. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S. Effects of iso-butanol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode. Fuel 2016, 170, 49–59. [Google Scholar] [CrossRef]
- Zeini, E.; Hesham, Y. Q-Chem Steam Boilers NOx Emissions Reduction. In Advances in Gas Processing, Proceedings of the 2nd Annual Gas Processing Symposium, Doha, Qatar, 11–14 January, 2010; Benyahia, F., Eljack, F.T., Eds.; Elsevier: Amsterdam, Netherlands, 2010; Volume 2, pp. 41–49. [Google Scholar]
- Konjević, L.; Racar, M.; Ilinčić, P.; Faraguna, F. A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol. Energy 2023, 262 Pt A, 125430. [Google Scholar] [CrossRef]
- Altinkurt, M.D.; Ozturk, Y.E.; Turkcan, A. Effects of isobutanol fraction in diesel–biodiesel blends on combustion, injection, performance and emission parameters. Fuel 2022, 330, 125554. [Google Scholar] [CrossRef]
- Shahsavan, M.; Mack, J.H. Numerical study of a boosted HCCI engine fueled with n-butanol and isobutanol. Energy Convers. Manag. 2018, 157, 28–40. [Google Scholar] [CrossRef]
1-Butanol | 2-Butanol | Isobutanol | tert-Butanol | Ethanol | Gasoline | |
---|---|---|---|---|---|---|
Density (kg/m3) (20 °C) | 810 | 808 | 802 | 789 | 794 | 715–765 |
Lower heating value (MJ/kg) | 33.2 | 33.0 | 33.2 | 32.6 | 27.0 | 42.7 |
Research octane number (RON) | 98 | 105 | 105 | 107 | 109 | 88–98 |
Motor octane number (MON) | 85 | 93 | 90 | 94 | 90 | 80–88 |
Autoignition temperature (°C) | 343 | 406 | 427 | 478 | 423 | ~300 |
Boiling point (°C) | 118 | 99 | 108 | 83 | 78 | 25–215 |
Heat of vaporization (kJ/kg) | 708 | 671 | 686 | 630 | 920 | 380–500 |
Reid vapor pressure (RVP) (kPa) | 2.2 | 5.3 | 3.3 | 12.2 | 16 | 60–62 |
Use of Gasoline–Isobutanol Blends in SI Engines | ||||
---|---|---|---|---|
Reference | Author(s) | Year Published | Main Topic | Engine/Test Type |
[10] | Regalbuto et al. | 2012 | Performance and emissions | PFI engine |
[58] | Alasfour | 1998 | NOx emissions | PFI engine |
[59] | Alasfour | 1999 | HC emissions | PFI engine |
[60] | Baustian and Wolf | 2012 | Cold-start performance | Vehicle, PFI, and DI engines |
[61] | Irimescu | 2011 | Engine efficiency | Vehicle, PFI engine |
[62] | Sayin and Balki | 2015 | Engine efficiency | PFI engine |
[63] | Vojtisek-Lom et al. | 2015 | PM emissions | Vehicle, DI engine |
[64] | Li et al. | 2017 | Combustion and emissions | DI engine |
[65] | Yusoff et al. | 2017 | Performance and emissions | PFI engine |
[66] | Rice et al. | 1991 | Gaseous emissions | Carbureted engine |
[67] | Popuri and Bata | 1993 | Performance and knock | CFR engine |
[68] | Wallner and Frazee | 2010 | Regulated and unregulated emissions | DI engine |
[69] | He et al. | 2010 | PM emissions | DI engine |
[70] | Wasil et al. | 2012 | Performance and emissions | DI two-stroke and PFI four-stroke |
[71] | Wasil and Wallner | 2014 | Performance and emissions | DI two-stroke and PFI four-stroke |
[72] | Wallner et al. | 2014 | Performance and emissions | PFI engine |
[73] | Storey et al. | 2014 | Regulated and unregulated emissions | DI engine |
[74] | Poitras et al. | 2015 | Unregulated emissions | PFI engine |
[75] | Irimescu | 2009 | Engine performance | Vehicle, PFI engine |
[76] | Stansfield et al. | 2012 | Emissions | Vehicle, DI engine |
[77] | Ratcliff et al. | 2013 | Unregulated emissions | Vehicle, PFI engine |
[78] | Karavalakis et al. | 2013 | Emissions | Vehicle, PFI engine |
[79] | Karavalakis et al. | 2014 | Regulated and unregulated emissions, PM emissions | Vehicle, PFI, and DI engines |
[80] | Karavalakis et al. | 2014 | Gaseous and PM emissions | Vehicle, DI engine |
[81] | Karavalakis et al. | 2014 | Gaseous emissions | Vehicle, PFI engine |
[82] | Karavalakis et al. | 2015 | Gaseous and PM emissions | Vehicle, DI engine |
[83] | Chan | 2015 | PM emissions | Vehicle, PFI, and DI engines |
[84] | Storey et al. | 2019 | PM emissions | Vehicle, DI engine |
Use of Neat Isobutanol in SI Engines | ||||
[85] | Irimescu | 2009 | Engine efficiency | Vehicle, PFI engine |
[86] | Pechout et al. | 2014 | Engine performance | Vehicle, PFI engine |
[87] | Sileghem et al. | 2015 | Performance and emissions | Vehicle, DI engine |
[88] | Pechout et al. | 2017 | Combustion | PFI engine |
Use of Isobutanol Blends in CI Engines | ||||
[89] | Al-Hasan and Al-Momany | 2008 | Engine performance | Single-cylinder engine |
[90] | Karabektas and Hosoz | 2009 | Performance and emissions | Single-cylinder engine |
[91] | Ozsezen et al. | 2011 | Performance and emissions | Heavy-duty DI engine |
[92] | Pal et al. | 2013 | Performance and emissions | Single-cylinder engine |
[93] | Gu et al. | 2013 | Performance and emissions | DI engine |
[94] | Rajesh Kumar et al. | 2016 | Performance and emissions | Single-cylinder engine |
[95] | Krishnan and Rajkumar | 2022 | Performance and emissions | Dual-fuel engine |
[96] | Yang et al. | 2016 | Emissions | Ternary fuel blends |
[97] | Altinkurt et al. | 2022 | Performance and emissions | Ternary fuel blends |
[98] | DelVescovo et al. | 2015 | Performance and emissions | LTC |
[99] | Mack et al. | 2016 | Performance and emissions | LTC |
[100] | Rajesh Kumar and Saravanan | 2016 | Performance and emissions | LTC |
[101] | Shahsavan and Mack | 2018 | Performance and emissions | LTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olson, A.L.; Tunér, M.; Verhelst, S. A Review of Isobutanol as a Fuel for Internal Combustion Engines. Energies 2023, 16, 7470. https://doi.org/10.3390/en16227470
Olson AL, Tunér M, Verhelst S. A Review of Isobutanol as a Fuel for Internal Combustion Engines. Energies. 2023; 16(22):7470. https://doi.org/10.3390/en16227470
Chicago/Turabian StyleOlson, André L., Martin Tunér, and Sebastian Verhelst. 2023. "A Review of Isobutanol as a Fuel for Internal Combustion Engines" Energies 16, no. 22: 7470. https://doi.org/10.3390/en16227470
APA StyleOlson, A. L., Tunér, M., & Verhelst, S. (2023). A Review of Isobutanol as a Fuel for Internal Combustion Engines. Energies, 16(22), 7470. https://doi.org/10.3390/en16227470