Numerical Simulation Method for Flash Evaporation with Circulating Water Based on a Modified Lee Model
Abstract
:1. Introduction
2. Mathematical Approach
2.1. Physical Model and Boundary Conditions
2.2. Governing Equations
2.3. Solution Strategy and Numerical Approach
2.4. Grid Independence
3. Results and Discussion
3.1. Values of Time Relaxation Parameters and Model Verification
3.2. Transient Flash Process
4. Conclusions
- (1)
- The mass transfer process during flow flash evaporation can be effectively modeled by the modified Lee model proposed in this paper, which uses local pressure and temperature to calculate the phase transition source term.
- (2)
- With the time relaxation parameters ranging from 0.195 to 0.43 (Pout,v = 19.9 kPa, Tin = 3–6 K) and from 0.31 to 0.92 (Pout,v = 31.2 kPa, Tin = 3–6 K), the model can effectively simulate the equilibrium in the flow flash evaporation process under different operating conditions.
- (3)
- The process from the initial rapid boiling state to the dynamic equilibrium of the flow flash evaporation process can be captured by this model, and the violent phase change regions and the slow phase change regions due to water pressure can be observed, which are valuable for a better understanding of the heat and mass transfer process in a flow flash evaporation process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
αi | volume fraction of phase i |
c | Time relaxation parameters (s−1) |
cp | Specific heat (J·kg−1·K−1) |
ε | Turbulent dissipation rate (m2·s−3) |
E | Internal energy (J·kg−1) |
FCSF | Volume force caused by surface tension (kg·m−2·s−2) |
g | Gravitational acceleration vector (m·s−2) |
h | Initial water level height (m) |
i | Source terms of mass transfer (kg·m−3·s−1) |
κ | Curvature of the interface (m−1) |
k | Turbulent kinetic energy (m2·s−2) |
σ | Surface tension coefficient (kg·s−2) |
p | Pressure (Pa) |
pout,l | Pressure of liquid outlet (Pa) |
pout,v | Pressure of vapor outlet (Pa) |
ρ | Density (kg·m−3) |
qm,v | Mass rate of vapor generation (kg·s−1) |
qm,w | Mass rate of water inlet (kg·s−1) |
r | Latent heat (J·kg−1) |
i | Source terms of energy (W·m−3) |
t | Time (s) |
T | Temperature (K) |
Tin | Inlet temperature (K) |
Tsat | Saturation temperature (K) |
Tout | Outlet temperature (K) |
λ | Thermal conductivity (W·m−1·K−1) |
μ | Dynamic viscosity (kg·m−1·s−1) |
v | Velocity vector (m·s−1) |
Subscripts | |
l | Liquid |
lv | Liquid to vapor |
v | Vapor |
References
- Wu, H.; Liu, W.; Li, X.; Chen, F.; Yang, L. Experimental Study on Flash Evaporation under Low-pressure Conditions. J. Appl. Sci. Eng. 2019, 22, 213–220. [Google Scholar]
- Miyatake, O.; Murakami, K.; Kawata, Y.; Fujii, T. Fundamental Experiments of Flash Evaporation. Bull. Soc. Sea Water Sci. Jpn. 1972, 26, 189–198. [Google Scholar]
- Kim, J.-I.; Lior, N. Some critical transitions in pool flash evaporation. Int. J. Heat Mass Transf. 1997, 40, 2363–2372. [Google Scholar] [CrossRef]
- Saury, D.; Harmand, S.; Siroux, M. Flash evaporation from a water pool: Influence of the liquid height and of the depressurization rate. Int. J. Therm. Sci. 2005, 44, 953–965. [Google Scholar] [CrossRef]
- Gopalakrishna, S.; Purushothaman, V.; Lior, N. An experimental study of flash evaporation from liquid pools. Desalination 1987, 65, 139–151. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, D.; Chong, D.; Wang, G.; Li, L. Experimental study on static/circulatory flash evaporation. Int. J. Heat Mass Transf. 2010, 53, 5528–5535. [Google Scholar]
- Zhang, Y.; Wang, J.; Liu, J.; Chong, D.; Zhang, W.; Yan, J. Experimental study on heat transfer characteristics of circulatory flash evaporation. Int. J. Heat Mass Transf. 2013, 67, 836–842. [Google Scholar] [CrossRef]
- El-Dessouky, H.; Ettouney, H.; Al-Juwayhel, F.; Al-Fulaij, H. Analysis of Multistage Flash Desalination Flashing Chambers. Chem. Eng. Res. Des. 2004, 82, 967–978. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yan, J.; Chong, D.; Liu, J.; Zhang, W.; Wang, C. Experimental study on non-equilibrium fraction of NaCl solution circulatory flash evaporation. Desalination 2014, 335, 9–16. [Google Scholar] [CrossRef]
- Seul, K.W.; Lee, S.Y. Numerical predictions of evaporative behaviors of horizontal stream inside a multi-stage-flash distillator. Desalination 1990, 79, 13–35. [Google Scholar] [CrossRef]
- Jin, W.; Low, S. Investigation of single-phase flow patterns in a model flash evaporation chamber using PIV measurement and numerical simulation. Desalination 2002, 150, 51–63. [Google Scholar] [CrossRef]
- Dietzel, D.; Hitz, T.; Munz, C.-D.; Kronenburg, A. Expansion rates of bubble clusters in superheated liquids. In Proceedings of the ILASS—Europe 2017 28th Conference on Liquid Atomization and Spray Systems, Valencia, Spain, 6–8 September 2017. [Google Scholar]
- Chen, C.; Zhang, C. Numerical Simulation of Evaporation Characteristics of Flash Evaporation of Hot Water. Power Syst. Eng. 2020, 36, 25–28. [Google Scholar]
- Nigim, T.; Eaton, J. CFD prediction of the flashing processes in a MSF desalination chamber. Desalination 2017, 420, 258–272. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Y.; Wu, L.; Hu, Y. Numerical simulation and optimization of the flash chamber for multi-stage flash seawater de-salination. Desalination 2019, 465, 69–78. [Google Scholar] [CrossRef]
- Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Banerjee, R.; Isaac, K.M. Evaluation of Turbulence Closure Schemes for Stratified Two Phase Flow. In Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 15–21 November 2003; pp. 689–705. [Google Scholar]
- Lee, W.H. Pressure iteration scheme for two-phase flow modeling. Multiph. Transp. Fundam. React. Saf. Appl. 1980, 1, 407–431. [Google Scholar]
- Ding, S.-T.; Luo, B.; Li, G. A volume of fluid based method for vapor-liquid phase change simulation with numerical oscillation suppression. Int. J. Heat Mass Transf. 2017, 110, 348–359. [Google Scholar]
- Bahreini, M.; Ramiar, A.; Ranjbar, A.A. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient. Nucl. Eng. Des. 2015, 293, 238–248. [Google Scholar] [CrossRef]
Materials | ρ | λ | cp | μ |
---|---|---|---|---|
Water (19.9 kPa) | 983.16 | 0.65100 | 4185.1 | 0.00046602 |
Water (31.2 kPa) | 977.73 | 0.65972 | 4190.2 | 0.00040353 |
Vapor (19.9 kPa) | 0.02104 | 1964.8 | 0.00001085 | |
Vapor (31.2 kPa) | 0.02186 | 1986.2 | 0.00001120 |
Number of Grids | qm,v (kg/s) | Tout (K) |
---|---|---|
154,845 | 0.05089 | 334.207 |
224,000 | 0.05707 | 334.3567 |
350,000 | 0.05359 | 334.246 |
620,712 | 0.05341 | 334.243 |
h | qm,w | pout,v | Tin | qm,v (Numerical) | qm,v (Experimental) | Errors | |
---|---|---|---|---|---|---|---|
Case 1 | 0.12 | 800 | 19.9 | 63.5 | 0.000768 | 0.000724 | 6.1% |
Case 2 | 0.12 | 800 | 19.9 | 65.5 | 0.00158 | 0.00154 | 2.6% |
Case 3 | 0.12 | 800 | 31.2 | 73.5 | 0.000985 | 0.000931 | 5.8% |
Case 4 | 0.12 | 800 | 31.2 | 75.5 | 0.00189 | 0.00187 | 1.0% |
Case 5 | 0.16 | 600 | 19.9 | 64.5 | 0.000713 | 0.000684 | 4.2% |
Case 6 | 0.16 | 1000 | 19.9 | 64.0 | 0.00122 | 0.00138 | 11.6% |
Case 7 | 0.16 | 800 | 19.9 | 64.5 | 0.00106 | 0.000989 | 7.1% |
Case 8 | 0.10 | 800 | 19.9 | 64.5 | 0.00112 | 0.00121 | 7.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, X.; Man, Y.; Li, B.; Wang, W. Numerical Simulation Method for Flash Evaporation with Circulating Water Based on a Modified Lee Model. Energies 2023, 16, 7453. https://doi.org/10.3390/en16217453
Li B, Wang X, Man Y, Li B, Wang W. Numerical Simulation Method for Flash Evaporation with Circulating Water Based on a Modified Lee Model. Energies. 2023; 16(21):7453. https://doi.org/10.3390/en16217453
Chicago/Turabian StyleLi, Bingrui, Xin Wang, Yameng Man, Bingxi Li, and Wei Wang. 2023. "Numerical Simulation Method for Flash Evaporation with Circulating Water Based on a Modified Lee Model" Energies 16, no. 21: 7453. https://doi.org/10.3390/en16217453
APA StyleLi, B., Wang, X., Man, Y., Li, B., & Wang, W. (2023). Numerical Simulation Method for Flash Evaporation with Circulating Water Based on a Modified Lee Model. Energies, 16(21), 7453. https://doi.org/10.3390/en16217453