Molecular Dynamics Simulation of CO2 Storage in Reservoir Pores with a Dead-End
Abstract
:1. Introduction
2. Models and Methodology
2.1. Modeling
2.2. Simulation Details
3. Results and Discussion
3.1. Size of the Dead-End
3.2. Different Width of the Main Channel
3.3. Differential Pressures
4. Conclusions
- (1)
- In different dead-end systems, the replacement efficiency varies due to the size of the dead-ends. With a larger size, carbon dioxide cannot occupy the pore wall fast enough, resulting in a lower replacement efficiency. A smaller dead-end shows a higher replacement efficiency. This is because the CO2 molecules in the dead-end are presented with less obstructions: although a smaller dead-end is more difficult to enter, it presents fewer oil molecules in its middle region, producing less obstructions for the CO2. Therefore, the CO2 can form a more coherent, thicker adsorption layer in the main channel and dissolve the oil molecules in the dead-end, thus completing CO2 burial in the dead-end more rapidly.
- (2)
- In the pores with different main channels observed, the larger main channel facilitated a more extensive contact between the CO2 and the oil, leading to a faster stripping time and promoting the oil’s expansion and viscosity reduction. This, in turn, reduced interfacial tension and resulted in better mixing and a higher displacement efficiency.
- (3)
- The injection pressure of CO2 had a significant impact on its sequestration. As the pressure difference increased, the rate of CO2 entering the dead-ends significantly improved, resulting in a better sequestration. Furthermore, the CO2 exhibited vortex motion within the dead-end, which enhanced the contact between the CO2 molecules, the pore walls, and the oil molecules. This enhanced contact increased the difficulty for the CO2 molecules to escape, implying that dead-ends play a crucial role in CO2 sequestration and have a positive effect on long-term CO2 storage.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, S.; Lei, T.; Wu, J.; Bi, S. Energy Demand and Supply Planning of China through 2060. Energy 2021, 234, 121193. [Google Scholar]
- Singh, M.; Mahmoodpour, S.; Ershadnia, R.; Soltanian, M.R.; Sass, I. Comparative study on heat extraction from Soultz-sous-Forêts geothermal field using supercritical carbon dioxide and water as the working fluid. Energy 2023, 266, 126388. [Google Scholar]
- Mahmoodpour, S.; Singh, M.; Mahyapour, R.; Omrani, S.; Sass, I. Numerical Simulation of Carbon Dioxide–Nitrogen Mixture Dissolution in Water-Saturated Porous Media: Considering Cross-Diffusion Effects. Fluids 2023, 8, 22. [Google Scholar]
- Zhang, S.; DePaolo, D.J. Rates of CO2 mineralization in geological carbon storage. Acc. Chem. Res. 2017, 50, 2075–2084. [Google Scholar] [PubMed]
- Wang, H.; Lu, Y.; Zhang, X.; Fan, Q.; Li, Q.; Zhang, L.; Zhao, J.; Yang, L.; Song, Y. Molecular Dynamics of Carbon Sequestration via Forming CO2 Hydrate in a Marine Environment. Energy Fuels 2023, 37, 9307–9317. [Google Scholar]
- McCaughan, J.; Iglauer, S.; Bresme, F. Molecular dynamics simulation of water/CO2-quartz interfacial properties: Application to subsurface gas injection. Energy Procedia 2013, 37, 5387–5402. [Google Scholar]
- Cheng, Y.; Liu, W.; Xu, T.; Zhang, Y.; Zhang, X.; Xing, Y.; Feng, B.; Xia, Y. Seismicity induced by geological CO2 storage: A review. Earth-Sci. Rev. 2023, 239, 104369. [Google Scholar]
- Wang, X.; Van ’t Veld, K.; Marcy, P.; Huzurbazar, S.; Alvarado, V. Economic co-optimization of oil recovery and CO2 sequestration. Appl. Energy 2018, 222, 132–147. [Google Scholar]
- Ajoma, E.; Saira; Sungkachart, T.; Ge, J.; Le-Hussain, F. Water-saturated CO2 injection to improve oil recovery and CO2 storage. Appl. Energy 2020, 266, 114853. [Google Scholar]
- Alam, M.M.M.; Hassan, A.; Mahmoud, M.; Sibaweihi, N.; Patil, S. Dual Benefits of Enhanced Oil Recovery and CO2 Sequestration: The Impact of CO2 Injection Approach on Oil Recovery. Front. Energy Res. 2022, 10, 877212. [Google Scholar]
- Han, D.Y.; Cao, Z.B.; Xu, X.Q. Study on Solvent Extraction of Mongolia Outcrop Oil Sands. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 13–16. [Google Scholar] [CrossRef]
- Shakiba, M.; Ayatollahi, S.; Riazi, M. Activating solution gas drive as an extra oil production mechanism after carbonated water injection. Chin. J. Chem. Eng. 2020, 28, 2938–2945. [Google Scholar] [CrossRef]
- Wan, J.; Peng, T.; Jurado, M.J.; Shen, R.; Yuan, G.; Ban, F. The influence of the water injection method on two-well-horizontal salt cavern construction. J. Pet. Sci. Eng. 2019, 184, 106560. [Google Scholar] [CrossRef]
- Yu, T.; Li, Q.; Hu, H.; Tan, Y.; Xu, L. Residual oil retention and stripping mechanism of hydrophilic pore surfaces during CO2 and N2 combined gas flooding. J. Pet. Sci. Eng. 2022, 218, 110989. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Liu, J.; Cao, B.; Hao, J.; Lu, X.; Zheng, K.; Cui, L.; Cui, T.; Sun, H. Integration of Profile Control and Thermal Recovery to Enhance Heavy Oil Recovery. Energies 2022, 15, 7346. [Google Scholar] [CrossRef]
- Janssen, M.T.G.; Mutawa, A.S.; Pilus, R.M.; Zitha, P.L.J. Foam-assisted chemical flooding for enhanced oil recovery: Effects of slug salinity and drive foam strength. Energy Fuels 2019, 33, 4951–4963. [Google Scholar] [CrossRef]
- Sun, G.; Liu, D.; Li, C.; Yang, D.; Wei, G.; Yang, F.; Yao, B. Effects of dissolved CO2 on the crude oil/water interfacial viscoelasticity and the macroscopic stability of water-in-crude oil emulsion. Energy Fuels 2018, 32, 9330–9339. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, L.; Luo, J.; Guo, Y.; Cheng, S.; Wu, D.; Li, K.; Guo, S. Molecular dynamics simulation of CO2 dissolution-diffusion in multi-component crude oil. Front. Environ. Sci. 2023, 11, 1243854. [Google Scholar] [CrossRef]
- Liu, B.; Shi, J.; Wang, M.; Zhang, J.; Sun, B.; Shen, Y.; Sun, X. Reduction in interfacial tension of water–oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation. J. Supercrit. Fluids 2016, 111, 171–178. [Google Scholar] [CrossRef]
- Ma, Z.; Ranjith, P.G. Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide. Fuel 2019, 255, 115644. [Google Scholar] [CrossRef]
- Hamza, A.; Hussein, I.A.; Al-Marri, M.J.; Mahmoud, M.; Shawabkeh, R.; Aparicio, S. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review. J. Pet. Sci. Eng. 2020, 196, 107685. [Google Scholar]
- Perera, M.S.A.; Gamage, R.P.; Rathnaweera, T.D.; Ranathunga, A.S.; Koay, A.; Choi, X. A review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- Hosseinzadeh Dehaghani, Y.; Assareh, M.; Feyzi, F. Simultaneous Prediction of Equilibrium, Interfacial, and Transport Properties of CO2-Brine Systems Using Molecular Dynamics Simulation: Applications to CO2 Storage. Ind. Eng. Chem. Res. 2022, 61, 15390–15406. [Google Scholar] [CrossRef]
- Yu, H.; Lebedev, M.; Zhou, J.; Lu, M.; Li, X.; Wang, Z.; Han, T.; Zhang, Y.; Johnson, L.M.; Iglauer, S. The rock mechanical properties of lacustrine shales: Argillaceous shales versus silty laminae shales. Mar. Pet. Geol. 2022, 141, 105707. [Google Scholar]
- Wang, Y.; Liu, L.; Cheng, H. Gas adsorption characterization of pore structure of organic-rich shale: Insights into contribution of organic matter to shale pore network. Nat. Resour. Res. 2021, 30, 2377–2395. [Google Scholar]
- Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, R. Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 2017, 209, 567–578. [Google Scholar]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar]
- Yang, G.; Zeng, J.; Qiao, J.; Liu, Y.; Liu, S.; Jia, W.; Cao, W.; Wang, C.; Geng, F.; Wei, W. Role of Organic Matter, Mineral, and Rock Fabric in the Full-Scale Pore and Fracture Network Development in the Mixed Lacustrine Source Rock System. Energy Fuels 2022, 36, 8161–8179. [Google Scholar]
- Foroozesh, J.; Abdalla, A.I.M.; Zhang, Z. Pore network modeling of shale gas reservoirs: Gas desorption and slip flow effects. Transp. Porous Media 2019, 126, 633–653. [Google Scholar]
- Wang, F.; Zai, Y. Fractal and multifractal characteristics of shale nanopores. Results Phys. 2021, 25, 104277. [Google Scholar] [CrossRef]
- Kar, A.; Chiang, T.Y.; Ortiz Rivera, I.; Sen, A.; Velegol, D. Enhanced transport into and out of dead-end pores. ACS Nano 2015, 9, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, Z.; Jin, Z.; Hu, Q.; Hu, Z.; Du, W.; Yan, C.; Geng, Y. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks. Mar. Pet. Geol. 2017, 86, 655–674. [Google Scholar]
- Liu, J.; Xie, H.; Wang, Q.; Chen, S.; Hu, Z. Influence of pore structure on shale gas recovery with CO2 sequestration: Insight into molecular mechanisms. Energy Fuels 2019, 34, 1240–1250. [Google Scholar]
- Fathaddin, M.T.; Awang, M.B.; Ardjani, K. A numerical study of pressure changes in dead-end pores. J. Hydrol. Hydromech. 2008, 56, 23–33. [Google Scholar]
- Wang, X.; Zhou, J.; Sun, X.; Tian, S.; Tang, J.; Shen, F.; Wu, J. The influences of composition and pore structure on the adsorption behavior of CH4 and CO2 on shale. Front. Earth Sci. 2021, 15, 283–300. [Google Scholar]
- Luo, Y.; Liu, X.; Xiao, H.; Zheng, T. Microscopic production characteristics of tight oil in the nanopores of different CO2-affected areas from molecular dynamics simulations. Sep. Purif. Technol. 2023, 306, 122607. [Google Scholar]
- Luo, Y.; Xiao, H.; Liu, X.; Zheng, T. Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130320. [Google Scholar] [CrossRef]
- Nielsen, L.C.; Bourg, I.C.; Sposito, G. Predicting CO2–water interfacial tension under pressure and temperature conditions of geologic CO2 storage. Geochim. Cosmochim. Acta 2012, 81, 28–38. [Google Scholar]
- Zhao, X.; Sang, Q.; Li, Y.; Liu, H.; Dong, M. CO2-kerogen interaction dominated CO2-oil counter-current diffusion and its effect on ad-/absorbed oil recovery and CO2 sequestration in shale. Fuel 2021, 294, 120500. [Google Scholar]
- Zhang, M.; Jin, Z. Molecular simulation on CO2 adsorption in partially water-saturated kaolinite nanopores in relation to carbon geological sequestration. Chem. Eng. J. 2022, 450, 138002. [Google Scholar]
- Fang, T.; Zhang, Y.; Ma, R.; Yan, Y.; Dai, C.; Zhang, J. Oil extraction mechanism in CO2 flooding from rough surface: Molecular dynamics simulation. Appl. Surf. Sci. 2019, 494, 80–86. [Google Scholar]
- Chang, Y.; Xiao, S.; Ma, R.; Wang, X.; Zhang, Z.; He, J. Displacement dynamics of trapped oil in rough channels driven by nanofluids. Fuel 2022, 314, 122760. [Google Scholar]
- Lu, P.; Mo, T.; Wei, Y.; Guo, Z.; Feng, G. Molecular insight into oil displacement by CO2 flooding on rough silica surface. J. Supercrit. Fluids 2022, 181, 105507. [Google Scholar] [CrossRef]
- Luan, Y.; Liu, B.; Hao, P.; Zhan, K.; Liu, J. Oil displacement by supercritical CO2 in a water cut dead-end pore: Molecular dynamics simulation. J. Pet. Sci. Eng. 2020, 188, 106899. [Google Scholar] [CrossRef]
- Luan, Y.; Dou, X.; Zhou, Y.; Hao, P.; Liu, B.; Liu, J. Effect of the Water Film Rupture on the Oil Displacement by Supercritical CO2 in the Nanopore: Molecular Dynamics Simulations. Energy Fuels 2022, 36, 4348–4357. [Google Scholar] [CrossRef]
- Emmings, J.F.; Dowey, P.J.; Taylor, K.G.; Davies, S.J.; Vane, C.H.; Moss-Hayes, V.; Rushton, J.C. Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale Formation, Craven Basin, UK. Mar. Pet. Geol. 2020, 120, 104567. [Google Scholar]
- Xu, K.; Chen, S.; Lu, J.; Li, Y.; Yin, X.; Wu, X.; Li, C. Molecular Simulation Analysis of Methane Adsorption Micromechanisms and the Impact of Water Saturation on Methane Adsorption in Transitional Shale. Lithosphere 2022, 2022, 8195502. [Google Scholar]
- Wang, S.; Javadpour, F.; Feng, Q. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 2016, 171, 74–86. [Google Scholar]
- Beckedahl, D.; Obaga, E.O.; Uken, D.A.; Sergi, A.; Ferrario, M. On the configurational temperature Nosè-Hoover thermostat. Physica A 2016, 461, 19–35. [Google Scholar] [CrossRef]
- Heinz, H.; Lin, T.J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir 2013, 29, 1754–1765. [Google Scholar]
- Trinh, T.T.; Vlugt, T.J.; Kjelstrup, S. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. J. Chem. Phys. 2014, 141, 134504. [Google Scholar] [CrossRef] [PubMed]
- Cygan, R.T.; Greathouse, J.A.; Kalinichev, A.G. Advances in Clayff Molecular Simulation of Layered and Nanoporous Materials and Their Aqueous Interfaces. J. Chem. Phys. 2021, 125, 17573–17589. [Google Scholar] [CrossRef]
- Argüello-Luengo, J.; González-Tudela, A.; Shi, T.; Zoller, P.; Cirac, J.I. Analogue quantum chemistry simulation. Nature 2019, 574, 215–218. [Google Scholar] [CrossRef]
- Granados-Bazan, E.L.; Quinones-Cisneros, S.E.; Deiters, U.K. Structure and contact angle in sessile droplets of binary mixtures of Lennard-Jones chains: A molecular dynamics study. Langmuir 2021, 37, 10945–10957. [Google Scholar] [CrossRef]
- Forsman, J.; Woodward, C.E. Limitations of the Derjaguin approximation and the Lorentz−Berthelot mixing rule. Langmuir 2010, 26, 4555–4558. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; He, C.; Sun, Y.; Yue, X.; Fang, H.; Lu, X.; Liu, S.; Lyu, W. Molecular Dynamics Simulation of CO2 Storage in Reservoir Pores with a Dead-End. Energies 2023, 16, 7341. https://doi.org/10.3390/en16217341
Ji Z, He C, Sun Y, Yue X, Fang H, Lu X, Liu S, Lyu W. Molecular Dynamics Simulation of CO2 Storage in Reservoir Pores with a Dead-End. Energies. 2023; 16(21):7341. https://doi.org/10.3390/en16217341
Chicago/Turabian StyleJi, Zeming, Chang He, Yingying Sun, Xiaokun Yue, Hongxu Fang, Xiaoqing Lu, Siyuan Liu, and Weifeng Lyu. 2023. "Molecular Dynamics Simulation of CO2 Storage in Reservoir Pores with a Dead-End" Energies 16, no. 21: 7341. https://doi.org/10.3390/en16217341
APA StyleJi, Z., He, C., Sun, Y., Yue, X., Fang, H., Lu, X., Liu, S., & Lyu, W. (2023). Molecular Dynamics Simulation of CO2 Storage in Reservoir Pores with a Dead-End. Energies, 16(21), 7341. https://doi.org/10.3390/en16217341