Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Francis Turbine Model Tests
- H—hydraulic head (m);
- p—pressure (Pa);
- ς—liquid density (ς = 1000 kg·m−3 was assumed, kg·m−3);
- g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2).
- T—torque (Nm);
- F—the force of the weight acting on the shaft (F = F1 − F2; F1—force read from the right weight, N, F2—force read from the left weight, N) (N);
- D—shaft diameter (D = 0.05 m was assumed, m).
- Pout—output power (capacity), W;
- n—number of rotations, -.
- Phyd—hydraulic power (capacity) (W);
- V—volumetric flow through the turbine (m3·s−1);
- H—hydraulic head (m);
- ς—liquid density (ς = 1000 kg·m−3 was assumed, kg·m−3);
- g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2);
- p—gauge pressure (bar).
- ηturb—turbine efficiency, -.
- ηt—turbine set efficiency (-);
- ηturb—turbine efficiency (ηturb = 0.80 was assumed, -);
- ηtransm—transmission efficiency (ηtransm= 0.95 was assumed, -);
- ηgen—generator efficiency (ηgen= 0.90 was assumed, -);
- ηpout—power output efficiency (ηpout = 0.97 was assumed, -).
- Pgen—generated power (kW);
- H—hydraulic head (m);
- V—flow through the turbine (m3·s−1);
- ηt—turbine set efficiency (-);
- g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2).
- Pfinal—final power (kW);
- Pgen—generated power (kW);
- Pown—own power consumption (Pown = 0.02 was assumed, -).
- Pprod—annual electricity production (kWh);
- Pfinal—final power (kW);
- t—operating time of the hydropower plant in the WWTP, h.
2.2. Study Case and Research Facility
3. Results and Discussion
3.1. Model Tests
3.2. Research Facility
- Mean annual flow of 0.495 m3·s−1 (duration t = 142 days);
- Minimum annual flow of 0.387 m3·s−1 (duration t = 365 days);
- Intermediate annual flow of 0.450 m3·s−1 (duration t = 265 days).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, V.K.; Singal, S.K. Operation of hydro power plants-a review. Renew. Sustain. Energy Rev. 2017, 69, 610–619. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wiatkowski, M.; Kuriqi, A. Small Hydropower Plants’ Impacts on the Ecological Status Indicators of Urban Rivers. Appl. Sci. 2022, 12, 12882. [Google Scholar] [CrossRef]
- Okot, D.K. Review of small hydropower technology. Renew. Sustain. Energy Rev. 2013, 26, 515–520. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Micro- and Macroelements Content of Plants Used for Landfill Leachate Treatment Based on Phragmites australis and Ceratophyllum demersum. Int. J. Environ. Res. Public Health 2022, 19, 6035. [Google Scholar] [CrossRef] [PubMed]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Effect of substrates on the potential of Phragmites australis to accumulate and translocate selected contaminants from landfill leachate. Water Resour. Ind. 2023, 29, 100203. [Google Scholar] [CrossRef]
- Chae, K.J.; Kim, I.S.; Ren, X.; Cheon, K.H. Reliable energy recovery in an existing municipal wastewater treatment plant with a flow-variable micro-hydropower system. Energy Convers. Manag. 2015, 101, 681–688. [Google Scholar] [CrossRef]
- García, A.M.; Díaz JA, R.; Morillo, J.G.; McNabola, A. Energy Recovery Potential in Industrial and Municipal Wastewater Networks Using Micro-Hydropower in Spain. Water 2021, 13, 691. [Google Scholar] [CrossRef]
- Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 2010, 14, 462–469. [Google Scholar] [CrossRef]
- Andrade AD, L.; dos Santos, M.A. Hydroelectric plants environmental viability: Strategic environmental assessment application in Brazil. Renew. Sustain. Energy Rev. 2015, 52, 1413–1423. [Google Scholar] [CrossRef]
- Punys, P.; Jurevičius, L. Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania. Energies 2022, 15, 5173. [Google Scholar] [CrossRef]
- Sari, M.A.; Badruzzaman, M.; Cherchi, C.; Swindle, M.; Ajami, N.; Jacangelo, J.G. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. J. Environ. Manag. 2018, 228, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Macedo, H.E.; Lehner, B.; Nicell, J.; Grill, G.; Li, J.; Limtong, A.; Shakya, R. Global distribution of wastewater treatment plants and their released effluents into rivers and streams. Earth Syst. Sci. Data Discuss. 2021. [Google Scholar] [CrossRef]
- Mikhailov, V.N. Water and sediment runoff at the Amazon River mouth. Water Resour. 2010, 37, 145–159. [Google Scholar] [CrossRef]
- Hydropower Generation. Available online: https://ourworldindata.org/grapher/hydropower-consumption?tab=table (accessed on 27 August 2023).
- International Hydropower Association. Hydropower Status Report Contents Contents; International Hydropower Association: London, UK, 2022. [Google Scholar]
- Grubert, E.A. Water consumption from hydroelectricity in the United States. Adv. Water Resour. 2016, 96, 88–94. [Google Scholar] [CrossRef]
- Da Graça Carvalho, M. EU energy and climate change strategy. Energy 2012, 40, 19–22. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector. Available online: www.iea.org/t&c/ (accessed on 18 August 2023).
- Sibtain, M.; Li, X.; Bashir, H.; Azam, M.I. Hydropower exploitation for Pakistan’s sustainable development: A SWOT analysis considering current situation, challenges, and prospects. Energy Strategy Rev. 2021, 38, 100728. [Google Scholar] [CrossRef]
- Jawahar, C.P.; Michael, P.A. A review on turbines for micro hydro power plant. Renew. Sustain. Energy Rev. 2017, 72, 882–887. [Google Scholar] [CrossRef]
- Timilsina, A.B.; Mulligan, S.; Bajracharya, T.R. Water vortex hydropower technology: A state-of-the-art review of developmental trends. Clean Technol. Environ. Policy 2018, 20, 1737–1760. [Google Scholar] [CrossRef]
- Adhikari, R.; Wood, D. The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension. Energies 2018, 11, 267. [Google Scholar] [CrossRef]
- Elbatran, A.H.; Yaakob, O.B.; Ahmed, Y.M.; Shabara, H.M. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renew. Sustain. Energy Rev. 2015, 43, 40–50. [Google Scholar] [CrossRef]
- Hatata, A.Y.; El-Saadawi, M.M.; Saad, S. A feasibility study of small hydro Power for selected locations in Egypt. Energy Strategy Rev. 2019, 24, 300–313. [Google Scholar] [CrossRef]
- Wu, H.N.; Chen, L.J.; Yu, M.H.; Li, W.Y.; Chen, B.F. On design and performance prediction of the horizontal-axis water turbine. Ocean Eng. 2012, 50, 23–30. [Google Scholar] [CrossRef]
- Lewis, B.J.; Cimbala, J.M.; Wouden, A.M. Major historical developments in the design of water wheels and Francis hydroturbines. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 012020. [Google Scholar] [CrossRef]
- Fu, T.; Deng, Z.D.; Duncan, J.P.; Zhou, D.; Carlson, T.J.; Johnson, G.E.; Hou, H. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renew. Energy 2016, 99, 1244–1252. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wiatkowski, M. Shaping changes in the ecological status of watercourses within barrages with hydropower schemes—Literature review. Arch. Environ. Prot. 2020, 46, 78–94. [Google Scholar] [CrossRef]
- Loots, I.; van Dijk, M.; Barta, B.; van Vuuren, S.J.; Bhagwan, J.N. A review of low head hydropower technologies and applications in a South African context. Renew. Sustain. Energy Rev. 2015, 50, 1254–1268. [Google Scholar] [CrossRef]
- Tiwari, G.; Kumar, J.; Prasad, V.; Patel, V.K. Derivation of cavitation characteristics of a 3MW prototype Francis turbine through numerical hydrodynamic analysis. Mater. Today Proc. 2020, 26, 1439–1448. [Google Scholar] [CrossRef]
- Daneshgar, S.; Zahedi, R. Investigating the hydropower plants production and profitability using system dynamics approach. J. Energy Storage 2022, 46, 103919. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S. Performance prediction and geometry optimization for application of pump as turbine: A review. Front. Energy Res. 2022, 9, 818118. [Google Scholar] [CrossRef]
- Quaranta, E.; Bódis, K.; Kasiulis, E.; McNabola, A.; Pistocchi, A. Is there a residual and hidden potential for small and micro hydropower in Europe? A screening-level regional assessment. Water Resour. Manag. 2022, 36, 1745–1762. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, F.; Guo, Z.; Lu, J. Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode. Renew. Energy 2016, 99, 1146–1152. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.; Tan, L.; Wang, Y. Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode. Energy 2020, 206, 118084. [Google Scholar] [CrossRef]
- Kan, K.; Zhang, Q.; Xu, Z.; Zheng, Y.; Gao, Q.; Shen, L. Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions. Energy 2022, 255, 124532. [Google Scholar] [CrossRef]
- McNabola, A.; Coughlan, P.; Corcoran, L.; Power, P.; Williams, A.P.; Harris, I.; Gallagher, J.; Styles, D. Energy recovery in the water industry using micro-hydropower: An opportunity to improve sustainability. Water Policy 2014, 16, 168–183. [Google Scholar] [CrossRef]
- Tsiakiri, E.P.; Mpougali, A.; Lemonidis, I.; Tzenos, C.A.; Kalamaras, S.D.; Kotsopoulos, T.A.; Samaras, P. Estimation of Energy Recovery Potential from Primary Residues of Four Municipal Wastewater Treatment Plants. Sustainability 2021, 13, 7198. [Google Scholar] [CrossRef]
- Singh, V.; Phuleria, H.C.; Chandel, M.K. Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. J. Clean. Prod. 2020, 276, 122538. [Google Scholar] [CrossRef]
- Sarpong, G.; Gude, V.G.; Magbanua, B.S.; Truax, D.D. Evaluation of energy recovery potential in wastewater treatment based on codigestion and combined heat and power schemes. Energy Convers. Manag. 2020, 222, 113147. [Google Scholar] [CrossRef]
- GUNT Geraetebau GmbH, HM 150.20—Operating principle of a Francis turbine. Hamburg, Germany. Available online: https://www.gunt.de/images/datasheet/567/HM-150.20-Operating-principle-of-a-Francis-turbine-gunt-567-pdf_1_en-GB.pdf (accessed on 24 September 2023).
- Lee, D.; Cho, S.; Jang, S.; Ra, Y.; Jang, Y.; Yun, Y.; Choi, D. Toward effective irregular wind energy harvesting: Self-adaptive mechanical design strategy of triboelectric-electromagnetic hybrid wind energy harvester for wireless environmental monitoring and green hydrogen production. Nano Energy 2022, 102, 107638. [Google Scholar] [CrossRef]
- Rojas, J.; Verde, C. Adaptive estimation of the hydraulic gradient for the location of multiple leaks in pipelines. Control Eng. Pract. 2020, 95, 104226. [Google Scholar] [CrossRef]
- El-Din, M.G.; Rabi, M. Fluid Power Engineering; McGraw-Hill Education: New York City, NY, USA, 2009; Available online: https://www.accessengineeringlibrary.com/content/book/9780071622462 (accessed on 18 August 2023).
- Trivedi, C.; Agnalt, E.; Dahlhaug, O.G. Experimental study of a Francis turbine under variable-speed and discharge conditions. Renew. Energy 2018, 119, 447–458. [Google Scholar] [CrossRef]
- Khan, M.A.; Badshah, S. Research Article Design and Analysis of Cross Flow Turbine for Micro Hydro Power Application using Sewerage Water. Res. J. Appl. Sci. Eng. Technol. 2014, 8, 821–828. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, Y.S.; Cho, Y.; Choi, J.W.; Kim, J.H. Effect of blade thickness on the hydraulic performance of a Francis hydro turbine model. Renew. Energy 2019, 134, 807–817. [Google Scholar] [CrossRef]
- Margeta, J.; Glasnovic, Z. Feasibility of the green energy production by hybrid solar+ hydro power system in Europe and similar climate areas. Renew. Sustain. Energy Rev. 2010, 14, 1580–1590. [Google Scholar] [CrossRef]
- Woolson, R.F. Wilcoxon signed-rank test. In Wiley Encyclopedia of Clinical Trials; Wiley: Hoboken, NJ, USA, 2007; pp. 1–3. [Google Scholar] [CrossRef]
- Breza-Boruta, B.; Paluszak, Z. Influence of Water Treatment Plant on Microbiological Composition of Air Bioaerosol. Pol. J. Environ. Stud. 2007, 16, 663–670. [Google Scholar]
- Paluszak, Z.; Ligocka, A.; Breza-Boruta, B. Effectiveness of Sewage Treatment Based on Selected Faecal Bacteria Elimination in Municipal Wastewater Treatment Plant in Toruń. Pol. J. Environ. Stud. 2003, 12, 345–349. [Google Scholar]
- Rączkowska, M. Wastewater Treatment Analysis at Wastewater Treatment Plant “Centralna” in Toruń in Years between 2012 and 2014. Master Thesis, Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland, 2016. (In Polish). [Google Scholar]
- Igliński, B. Hydro energy in Poland: The history, current state, potential, SWOT analysis, environmental aspects. Int. J. Energy Water Resour. 2019, 3, 61–72. [Google Scholar] [CrossRef]
- Du, J.; Ge, Z.; Wu, H.; Shi, X.; Yuan, F.; Yu, W.; Wang, D.; Yang, X. Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings. Energy 2022, 256, 124616. [Google Scholar] [CrossRef]
- Krzemianowski, Z.; Steller, J. High specific speed Francis turbine for small hydro purposes—Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience. Renew. Energy 2021, 169, 1210–1228. [Google Scholar] [CrossRef]
- Sammartano, V.; Morreale, G.; Sinagra, M.; Tucciarelli, T. Numerical and experimental investigation of a cross-flow water turbine. J. Hydraul. Res. 2016, 54, 321–331. [Google Scholar] [CrossRef]
- Power, C.; McNabola, A.; Coughlan, P. Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: Case studies in Ireland and the UK. Sustain. Energy Technol. Assess. 2014, 7, 166–177. [Google Scholar] [CrossRef]
- Bousquet, C.; Samora, I.; Manso, P.; Rossi, L.; Heller, P.; Schleiss, A.J. Assessment of hydropower potential in wastewater systems and application to Switzerland. Renew. Energy 2017, 113, 64–73. [Google Scholar] [CrossRef]
- Darries, G.; Ayeleso, A.; Raji, A. Exploring Hydropower Options at A Wastewater Treatment Plant-A Case Study. In Proceedings of the 30th Southern African Universities Power Engineering Conference, SAUPEC 2022, Durban, South Africa, 25–27 January 2022. [Google Scholar] [CrossRef]
- Ak, M.; Kentel, E.; Kucukali, S. A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants. Renew. Sustain. Energy Rev. 2017, 68, 727–737. [Google Scholar] [CrossRef]
- Llácer-Iglesias, R.M.; Amparo López-Jiménez, P.; Pérez-Sánchez, M.; Álvarez-García, J.; Durán-Sánchez, A.; de La Cruz Del Río-Rama, M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water 2021, 13, 3259. [Google Scholar] [CrossRef]
- Górka, J.; Cimochowicz-Rybicka, M.; Poproch, D. Sludge Management at the Kraków-Płaszów WWTP—Case Study. Sustainability 2022, 14, 7982. [Google Scholar] [CrossRef]
- Power, C.; Coughlan, P.; McNabola, A. Microhydropower Energy Recovery at Wastewater-Treatment Plants: Turbine Selection and Optimization. J. Energy Eng. 2016, 143, 04016036. [Google Scholar] [CrossRef]
- Ottmar, E.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schloemer, S.; et al. “Hydropower” Renewable Energy Sources Climate Change Mitigation IPCC Special Report on Renewable Energy Sources Climate Change Mitigation; Ottmar, E., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schloemer, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Guzmán-Avalos, P.; Molinero-Hernández, D.; Galván-González, S.; Herrera-Sandoval, N.; Solorio-Díaz, G.; Rubio-Maya, C. Numerical design and optimization of a hydraulic micro-turbine adapted to a wastewater treatment plant. Alex. Eng. J. 2023, 62, 555–565. [Google Scholar] [CrossRef]
- Gallagher, J.; Harris, I.M.; Packwood, A.J.; McNabola, A.; Williams, A.P. A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints. Renew. Energy 2015, 81, 808–815. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Net energy production and emissions mitigation of domestic wastewater treatment system: A comparison of different biogas–sludge use alternatives. Bioresour. Technol. 2013, 144, 296–303. [Google Scholar] [CrossRef]
- Akmirza, Z.A.; Ersahin, M.E.; Dereli, R.K.; Ozgun, H.; Ozturk, İ. Atıksu arıtma tesislerinde enerji verimliliğinin incelenmesi (Investigation of Energy Efficiency in Wastewater Treatment Plants). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017, 21, 380–387. (In Turkish) [Google Scholar] [CrossRef]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Front. Environ. Sci. 2017, 5, 289034. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H.; Kim, S.; Yu, J. Feasibility analysis of introducing renewable energy systems in environmental basic facilities: A case study in Busan, South Korea. Energy 2018, 150, 702–708. [Google Scholar] [CrossRef]
- USEPA Energy Efficiency in Water and Wastewater Facilities. A Guide to Developing and Implementing Greenhouse Gas Reduction Programs; USEPA: Washington, DC, USA, 2013.
- Venkatesh, G.; Brattebø, H. Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy 2011, 36, 792–800. [Google Scholar] [CrossRef]
- Sinagra, M.; Picone, C.; Picone, P.; Aricò, C.; Tucciarelli, T.; Ramos, H.M. Low-Head Hydropower for Energy Recovery in Wastewater Systems. Water 2022, 14, 1649. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Södergren, K.; Palm, J.; Gerino, M.; Harmand, J.; le Bars, M.; Huyen, N.T.; Breil, P. How Organization Models Impact the Governing of Industrial Symbiosis in Public Wastewater Management. An Explorative Study in Sweden. Water 2021, 13, 824. [Google Scholar] [CrossRef]
- Chae, K.J.; Kang, J. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers. Manag. 2013, 75, 664–672. [Google Scholar] [CrossRef]
- Dirección General del Agua—Secretaría de Estado de Medio Ambiente—Ministerio para la Transición Ecológica y el Reto Demográfico, Plan Nacional de Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización PLAN DSEAR. Madrid, Spain. 2021. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-B-2020-36826 (accessed on 27 August 2023).
- Zhou, D.; Deng, Z. Ultra-low-head hydroelectric technology: A review. Renew. Sustain. Energy Rev. 2017, 78, 23–30. [Google Scholar] [CrossRef]
- Zhou, Y.; Schideman, L.; Zheng, M.; Martin-Ryals, A.; Li, P.; Tommaso, G.; Zhang, Y. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Sci. Technol. 2015, 72, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Riggio, V.; Ruffino, B.; Scibilia, G.; Zanetti, M. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Sci. Total Environ. 2019, 691, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
Average Active Turbine Capacity (kW) | Water Flow Through Turbine (m3·s−1) | Total Water Discharge (m3·h−1) | Top Water Level (m a.s.l.) | Bottom Water Level (m a.s.l.) | Head (m) |
---|---|---|---|---|---|
20.89 | 0.56 | 2368.18 | 42.75 | 35.30 | 7.45 |
Sample No. | Pressure (bar) | Rotational Speed (rpm) | Flow (L·min−1) | Torque (Nm) | Weight (N) | Output Capacity (W) | Hydraulic Capacity (W) | Efficiency (%) |
---|---|---|---|---|---|---|---|---|
1 | 0.14 | 135 | 17.7 | 0.008 | 0.1 | 0.106 | 4.13 | 2.566 |
2 | 0.14 | 122 | 17.7 | 0.018 | 0.3 | 0.224 | 4.13 | 5.411 |
3 | 0.12 | 111 | 17.7 | 0.023 | 0.5 | 0.261 | 3.54 | 7.384 |
4 | 0.13 | 100 | 17.7 | 0.033 | 0.7 | 0.340 | 3.835 | 8.870 |
5 | 0.14 | 98 | 17.7 | 0.041 | 0.8 | 0.423 | 4.13 | 10.245 |
6 | 0.14 | 90 | 17.7 | 0.045 | 1 | 0.424 | 4.13 | 10.264 |
7 | 0.14 | 94 | 17.7 | 0.05 | 0.9 | 0.492 | 4.13 | 11.911 |
8 | 0.14 | 83 | 17.7 | 0.048 | 1.2 | 0.413 | 4.13 | 9.992 |
9 | 0.14 | 75 | 17.7 | 0.05 | 1.4 | 0.396 | 4.13 | 9.504 |
10 | 0.14 | 69 | 17.7 | 0.053 | 1.5 | 0.379 | 4.13 | 9.181 |
11 | 0.13 | 62 | 17.7 | 0.053 | 1.5 | 0.341 | 3.835 | 8.884 |
12 | 0.14 | 67 | 17.7 | 0.055 | 1.5 | 0.386 | 4.13 | 9.339 |
13 | 0.14 | 61 | 17.7 | 0.055 | 1.6 | 0.351 | 4.13 | 8.503 |
14 | 0.14 | 58 | 17.7 | 0.058 | 1.7 | 0.349 | 4.13 | 8.452 |
15 | 0.14 | 52 | 17.7 | 0.059 | 1.8 | 0.320 | 4.13 | 7.742 |
16 | 0.14 | 43 | 17.7 | 0.063 | 1.9 | 0.281 | 4.13 | 6.811 |
17 | 0.14 | 34 | 17.7 | 0.059 | 2 | 0.209 | 4.13 | 5.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, P.; Mastalerek, K.; Wiatkowski, M.; Kuriqi, A.; Jurasz, J. Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant. Energies 2023, 16, 7214. https://doi.org/10.3390/en16207214
Tomczyk P, Mastalerek K, Wiatkowski M, Kuriqi A, Jurasz J. Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant. Energies. 2023; 16(20):7214. https://doi.org/10.3390/en16207214
Chicago/Turabian StyleTomczyk, Paweł, Krzysztof Mastalerek, Mirosław Wiatkowski, Alban Kuriqi, and Jakub Jurasz. 2023. "Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant" Energies 16, no. 20: 7214. https://doi.org/10.3390/en16207214