Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates
Abstract
:1. Introduction
2. Fundamental Models for Natural Gas Hydrates
2.1. The Equilibrium of Natural Gas Hydrates
2.2. Dissociation Kinetics of Natural Gas Hydrates
Authors | Heat Transfer | Intrinsic Kinetics | Fluid Flow | Porous Media | Model Approach |
---|---|---|---|---|---|
Kim et al. [40] | — | √ | — | — | Analytical |
Selim and Sloan [36] | √ | — | √ | √ | Analytical |
Jamaluddin et al. [48] | √ | √ | — | — | Numerical |
Yousif et al. [49] | — | √ | √ | √ | Numerical |
Hong et al. [50,51] | √ | √ | √ | √ | Analytical |
Li and Zhang [52] | √ | — | — | √ | Analytical |
3. Numerical Simulations for Hydrate Exploitation
3.1. Numerical Simulations for the Dissociation of Hydrates in Sediments
3.2. Numerical Simulations for the Flow Characteristics of Hydrates in a Wellbore
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
feq | the fugacity of the gas at the equilibrium, pa |
feqv | the fugacity of the gas at the solid surface, pa |
P | pressure, pa |
qs | the specified heat flux on the hydrate surface, w m−2 |
r | the radius of the unreacted core, m |
R0 | the averaged core radius of the porous media, m |
Rw | the thickness of the bound water layer, m |
SH | the phase saturation of the hydrate phase, - |
SA | the phase saturation of the aqueous phase, - |
SG | the phase saturation of the gas phase, - |
T | temperature, k |
Ti | the initial temperature of the hydrate, k |
Ts | the equilibrium temperature at the hydrate’s surface, k |
x, y, z | components in the Cartesian coordinate system, m |
Superscripts | |
A | aqueous |
eq | equilibrium |
G | gas |
H | hydrate |
s | the hydrate’s surface |
Abbreviations | |
BOP | blowout preventer |
CFD | computational fluid dynamics |
ESP | electric submersible pump |
MD | molecular dynamic |
PBM | population balance theory |
TOUGH | transport of unsaturated groundwater and heat |
References
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Romanovskii, N.N.; Hubberten, H.W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore Permafrost and Gas Hydrate Stability Zone on the Shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef]
- Bohrmann, G.; Torres, M.E. Gas Hydrates in Marine Sediments, Marine Geochemistry; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Makogon, Y.F.; Holditch, S.A.; Makogon, T.Y. Natural Gas-Hydrates-A Potential Energy Source for the 21st Century. J. Petrol. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Davy, H. The Bakerian Lecture. On some of the Combinations of Oxymuriatic Gas and Oxygene, and on the Chemical Relations of these Principles, to Inflammable Bodies. Phil. Trans. Roy. Soc. Lond. 1811, 101, 1–35. [Google Scholar]
- Shaibu, R.; Sambo, C.; Guo, B.; Dudun, A. An Assessment of Methane Gas Production from Natural Gas Hydrates: Challenges, Technology and Market Outlook. Adv. Geo-Energy Res. 2021, 5, 318–332. [Google Scholar] [CrossRef]
- Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B. Numerical Studies of Gas Production from Several CH4 Hydrate Zones at the Mallik Site, Mackenzie Delta, Canada. J. Petrol. Sci. Eng. 2004, 43, 219–238. [Google Scholar] [CrossRef]
- Konno, Y.; Fujii, T.; Sato, A.; Akamine, K.; Naiki, M.; Masuda, Y.; Yamamoto, K.; Nagao, J. Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy Fuels 2017, 31, 2607–2616. [Google Scholar] [CrossRef]
- Ye, J.; Qin, X.; Xie, W.; Lu, H.; Ma, B.; Qiu, H.; Liang, J.; Lu, J.; Kuang, Z.; Lu, C.; et al. Main Progress of the Second Gas Hydrate Trial Production in the South China Sea. China Geol. 2020, 47, 557–568. [Google Scholar]
- Boswell, R.; Collett, T.S. Current Perspectives on Gas Hydrate Resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Zerpa, L.E.; Dendy Sloan, E.; Sum, A.K.; Koh, C.A. Overview of CSMHyK: A Transient Hydrate Formation Model. J. Petrol. Sci. Eng. 2012, 98–99, 122–129. [Google Scholar] [CrossRef]
- Ke, W.; Svartaas, T.M.; Chen, D. A Review of Gas Hydrate Nucleation Theories and Growth Models. J. Nat. Gas Sci. Eng. 2019, 61, 169–196. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Rossi, F.; Mei, S. Effect of Promoters on CO2 Hydrate Formation: Thermodynamic Assessment and Microscale Raman Spectroscopy/Hydrate Crystal Morphology Characterization Analysis. Fluid Phase Equilib. 2021, 550, 113218. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Gambelli, A.M.; Zhao, X.; Gao, Y.; Rossi, F.; Mei, S. In Situ Experimental Study on the Effect of Mixed Inhibitors on the Phase Equilibrium of Carbon Dioxide Hydrate. Chem. Eng. Sci. 2022, 248, 117230. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Wang, Z.; Lou, W.; Zhang, J. Modeling of Multiphase Flow in Marine Gas Hydrate Production System and its Application to Control the Production Pressure Difference. J. Nat. Gas Sci. Eng. 2021, 85, 103687. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Z.; Song, Y.; Liu, W.; Zhang, Y.; Wang, D. Analyzing the Process of Gas Production for Natural Gas Hydrate using Depressurization. Appl. Energy 2015, 142, 125–134. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kanno, T.; Wang, X.X.; Tamaki, M.; Fujii, T.; Chee, S.S.; Wang, X.W.; Pimenov, V.; Shaka, V. Thermal Responses of a Gas Hydrate-Bearing Sediment to a Depressurization Operation. RSC Adv. 2017, 7, 5554–5577. [Google Scholar] [CrossRef]
- Moridis, G.; Kowalsky, M.; Pruess, K. Depressurization-Induced Gas Production from Class-1 Hydrate Deposits. SPE Reserv. Eval. Eng. 2007, 10, 458–481. [Google Scholar] [CrossRef]
- Pourafshary, P.; Varavei, A.; Sepehrnoori, K.; Podio, A. A Compositional Wellbore/Reservoir Simulator to Model Multiphase Flow and Temperature Distribution. J. Petrol. Sci. Eng. 2009, 69, 40–52. [Google Scholar] [CrossRef]
- Wang, W.C.; Wang, X.Y.; Li, Y.X.; Liu, S.; Yao, S.P.; Song, G.C. Study on Crystal Growth and Aggregated Microstructure of Natural Gas Hydrate under Flow Conditions. Energy 2020, 213, 118999. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, J.; Liu, Y.; Ma, Q.; Xu, J.; Zhou, S.; Song, S.; Shi, B. Simulation Study of Natural Gas Hydrate Slurry Flow Characteristics in a High-Pressure Flow Loop. Fuel 2022, 316, 123332. [Google Scholar] [CrossRef]
- Li, X.S.; Xu, C.G.; Zhang, Y.; Ruan, X.K.; Li, G.; Wang, Y. Investigation into Gas Production from Natural Gas Hydrate: A Review. Appl. Energy 2016, 172, 286–322. [Google Scholar] [CrossRef]
- Ruan, X.; Song, Y.; Liang, H.; Yang, M.; Dou, B. Numerical Simulation of the Gas Production Behavior of Hydrate Dissociation by Depressurization in Hydrate-Bearing Porous Medium. Energy Fuels 2012, 26, 1681–1694. [Google Scholar] [CrossRef]
- Ruan, X.; Li, X.S.; Xu, C.G. A Review of Numerical Research on Gas Production from Natural Gas Hydrates in China. J. Petrol. Sci. Eng. 2021, 85, 103713. [Google Scholar]
- Vanderwaals, J.H.; Platteeuw, J.C. Clathrate Solutions. In Advances in Chemical Physics; John Wiley & Sons: Hoboken, NJ, USA, 1959; Volume 2, pp. 1–57. [Google Scholar]
- Parrish, W.R.; Prausnit, J.M. Dissociation Pressures of Gas Hydrates Formed by Gas-Mixtures. Ind. Eng. Chem. Process Des. Dev. 1972, 11, 26–35. [Google Scholar] [CrossRef]
- John, V.T.; Holder, G.D. Contribution of Second and Subsequent Water Shells to the Potential Energy of Guest-Host Interactions in Clathrate Hydrates. J. Chem. Phys. 1982, 86, 455–459. [Google Scholar] [CrossRef]
- Li, X.S.; Wu, H.J.; Englezos, P. Prediction of Gas Hydrate Formation Conditions in the Presence of Methanol, Glycerol, Ethylene Glycol, and Triethylene Glycol with the Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 2006, 45, 2131–2137. [Google Scholar] [CrossRef]
- Chen, G.J.; Guo, T.M. A New Approach to Gas Hydrate Modelling. Chem. Eng. J. 1998, 71, 145–151. [Google Scholar] [CrossRef]
- Shahnazar, S.; Hasan, N. Gas Hydrate Formation Condition: Review on Experimental and Modeling Approaches. Fluid Phase Equilibr. 2014, 379, 72–85. [Google Scholar] [CrossRef]
- Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R. A Method to Predict Equilibrium Conditions of Gas Hydrate Formation in Porous Media. Ind. Eng. Chem. Res. 1999, 38, 2485–2490. [Google Scholar] [CrossRef]
- Henry, P.; Thomas, M.; Ben Clennell, M. Formation of Natural Gas Hydrates in Marine Sediments: 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments. J. Geophys. Res. Sol. Ea. 1999, 104, 23005–23022. [Google Scholar] [CrossRef]
- Li, X.S.; Zhang, Y.; Li, G.; Chen, Z.Y.; Yan, K.F.; Li, Q.P. Gas Hydrate Equilibrium Dissociation Conditions in Porous Media using two Thermodynamic Approaches. J. Chem. Thermodyn. 2008, 40, 1464–1474. [Google Scholar] [CrossRef]
- Wilder, J.W.; Seshadri, K.; Smith, D.H. Modeling Hydrate Formation in Media with Broad Pore Size Distributions. Langmuir 2001, 17, 6729–6735. [Google Scholar] [CrossRef]
- Peddireddy, S.; Lee, S.Y.; Lee, J.W. Variable Contact Angle Model for Gas Hydrate Equilibrium in Porous Media. AIChE J. 2006, 52, 1228–1234. [Google Scholar] [CrossRef]
- Selim, M.; Sloan, E. Heat and Mass Transfer during the Dissociation of Hydrates in Porous Media. AIChE J. 1989, 35, 1049–1052. [Google Scholar] [CrossRef]
- Englezos, P. Clathrate Hydrates. Ind. Eng. Chem. Res. 1993, 32, 1251–1274. [Google Scholar] [CrossRef]
- Vysniauskas, A.; Bishnoi, P.R. A Kinetic-Study of Methane Hydrate Formation. Chem. Eng. Sci. 1983, 38, 1061–1072. [Google Scholar] [CrossRef]
- Englezos, P.; Kalogerakis, N.; Dholabhai, P.D.; Bishnoi, P.R. Kinetics of Gas Hydrate Formation from Mixtures of Methane and Ethane. Chem. Eng. Sci. 1987, 42, 2659–2666. [Google Scholar] [CrossRef]
- Kim, H.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H. Kinetics of Methane Hydrate Decomposition. Chem. Eng. Sci. 1987, 42, 1645–1653. [Google Scholar] [CrossRef]
- Tang, L.G.; Li, X.S.; Feng, Z.P.; Li, G.; Fan, S.S. Control Mechanisms for Gas Hydrate Production by Depressurization in different Scale Hydrate Reservoirs. Energy Fuels 2007, 21, 227–233. [Google Scholar] [CrossRef]
- Yin, Z.; Chong, Z.R.; Tan, H.K.; Linga, P. Review of Gas Hydrate Dissociation Kinetic Models for Energy Recovery. J. Nat. Gas Sci. Eng. 2016, 35, 1362–1387. [Google Scholar] [CrossRef]
- Bishnoi, P.R.; Natarajan, V. Formation and Decomposition of Gas Hydrates. Fluid Phase Equilib. 1996, 117, 168–177. [Google Scholar] [CrossRef]
- Clarke, M.A.; Bishnoi, P.R. Determination of the Intrinsic Rate Constant and Activation Energy of CO2 Gas Hydrate Decomposition using in-situ Particle Size Analysis. Chem. Eng. Sci. 2004, 59, 2983–2993. [Google Scholar] [CrossRef]
- Clarke, M.A.; Bishnoi, P.R. Measuring and Modelling the Rate of Decomposition of Gas Hydrates Formed from Mixtures of Methane and Ethane. Chem. Eng. Sci. 2001, 56, 4715–4724. [Google Scholar] [CrossRef]
- Giraldo, C.; Clarke, M. Stoichiometric Approach toward Modeling the Decomposition Kinetics of Gas Hydrates Formed from Mixed Gases. Energy Fuels 2013, 27, 4534–4544. [Google Scholar] [CrossRef]
- Ullerich, J.W.; Selim, M.S.; Sloan, E.D. Theory and Measurement of Hydrate Dissociation. AIChE J. 1987, 33, 747–752. [Google Scholar] [CrossRef]
- Jamaluddin, A.K.M.; Kalogerakis, N.; Bishnoi, P.R. Modelling of Decomposition of a Synthetic Core of Methane Gas Hydrate by Coupling Intrinsic Kinetics with Heat Transfer Rates. Can. J. Chem. Eng. 1989, 67, 948–954. [Google Scholar] [CrossRef]
- Yousif, M.H.; Abass, H.H.; Selim, M.S.; Sloan, E.D. Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media. SPE Res. Eng. 1991, 6, 69–76. [Google Scholar]
- Hong, H.; Pooladi-Darvish, M.; Bishnoi, P.R. Analytical Modelling of Gas Production from Hydrates in Porous Media. J. Can. Pet. Technol. 2003, 42, 45–56. [Google Scholar] [CrossRef]
- Hong, H.; Pooladi-Darvish, M. Simulation of Depressurization for Gas Production from Gas Hydrate Reservoirs. J. Can. Pet. Technol. 2005, 44, 39–46. [Google Scholar] [CrossRef]
- Li, X.S.; Zhang, Y. Study on Dissociation Behaviors of Methane Hydrate in Porous Media Based on Experiments and Fractional Dimension Shrinking-Core Model. Ind. Eng. Chem. Res. 2011, 50, 8263–8271. [Google Scholar] [CrossRef]
- Ding, L.Y.; Geng, C.Y.; Zhao, Y.H.; Wen, H. Molecular Dynamics Simulation on the Dissociation Process of Methane Hydrates. Mol. Simul. 2007, 33, 1005–1016. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Englezos, P.; Alavi, S.; Ripmeester, J.A. Molecular Modeling of the Dissociation of Methane Hydrate in Contact with a Silica Surface. J. Phys. Chem. B 2012, 116, 3188–3197. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Englezos, P.; Alavi, S.; Ripmeester, J.A. Molecular Simulation of Non-Equilibrium Methane Hydrate Decomposition Process. J. Chem. Thermodyn. 2012, 44, 13–19. [Google Scholar] [CrossRef]
- Bai, D.; Zhang, D.; Zhang, X.; Chen, G. Origin of Self-Preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances. Sci. Rep. 2015, 5, 14599. [Google Scholar] [CrossRef] [PubMed]
- Bagherzadeh, S.A.; Alavi, S.; Ripmeester, J.; Englezos, P. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. J. Chem. Phys. 2015, 142, 214701. [Google Scholar] [CrossRef] [PubMed]
- Nazridoust, K.; Ahmadi, G. Computational Modeling of Methane Hydrate Dissociation in a Sandstone Core. Chem. Eng. Sci. 2007, 62, 6155–6177. [Google Scholar] [CrossRef]
- Clarke, M.; Bishnoi, P.R. Determination of the Activation Energy and Intrinsic Rate Constant of Methane Gas Hydrate Decomposition. Can. J. Chem. Eng. 2001, 79, 143–147. [Google Scholar] [CrossRef]
- Corey, A.T. The Interrelation between Gas and Oil Relative Permeabilities. Producers Monthly 1954, 19, 38–41. [Google Scholar]
- Sean, W.Y.; Sato, T.; Yamasaki, A.; Kiyono, F. CFD and Experimental Study on Methane Hydrate Dissociation Part I. Dissociation under Water Flow. AIChE J. 2007, 53, 262–274. [Google Scholar] [CrossRef]
- Sean, W.Y.; Sato, T.; Yamasaki, A.; Kiyono, F. CFD and Experimental Study on Methane Hydrate Dissociation. Part II. General Cases. AIChE J. 2007, 53, 2148–2160. [Google Scholar] [CrossRef]
- Liang, H.; Song, Y.; Chen, Y. Numerical Simulation for Laboratory-Scale Methane Hydrate Dissociation by Depressurization. Energy Convers. Manag. 2010, 51, 1883–1890. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, Z.; Wang, B.; Dong, H.; Liu, Y.; Song, Y. Simulation of Microwave Stimulation for the Production of Gas from Methane Hydrate Sediment. Appl. Energy 2016, 168, 25–37. [Google Scholar] [CrossRef]
- Wang, B.; Fan, Z.; Zhao, J.; Lv, X.; Pang, W.; Li, Q. Influence of Intrinsic Permeability of Reservoir Rocks on Gas Recovery from Hydrate Deposits via a Combined Depressurization and Thermal Stimulation Approach. Appl. Energy 2018, 229, 858–871. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Liu, Y.; Song, Y. The Effects of Compressibility of Natural Gas Hydrate-Bearing Sediments on Gas Production Using Depressurization. Energy 2019, 185, 837–846. [Google Scholar] [CrossRef]
- Chen, L.; Yamada, H.; Kanda, Y.; Lacaille, G.; Shoji, E.; Okajima, J.; Komiya, A.; Maruyama, S. Numerical Analysis of Core-Scale Methane Hydrate Dissociation Dynamics and Multiphase Flow in Porous Media. Chem. Eng. Sci. 2016, 153, 221–235. [Google Scholar] [CrossRef]
- Queiruga, A.F.; Moridis, G.J.; Reagan, M.T. Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using Tough+Millstone. Part 2: Geomechanical Formulation and Numerical Coupling. Transp. Porous Media 2019, 128, 221–241. [Google Scholar] [CrossRef]
- Sun, X.; Luo, H.; Soga, K. A Coupled Thermal-Hydraulic-Mechanical-Chemical (THMC) Model for Methane Hydrate Bearing Sediments Using COMSOL Multiphysics. J. Zhejiang Univ. Sci. A 2018, 19, 600–623. [Google Scholar] [CrossRef]
- De La Fuente, M.; Vaunat, J.; Marín-Moreno, H. Thermo-Hydro-Mechanical Coupled Modeling of Methane Hydrate-Bearing Sediments: Formulation and Application. Energies 2019, 12, 2178. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, N.; Chen, Q.; Li, W.; Hu, G.; Huang, L.; Ouyang, W. Coupled Thermal-Hydrodynamic-Mechanical-Chemical Numerical Simulation for Gas Production from Hydrate-Bearing Sediments Based on Hybrid Finite Volume and Finite Element Method. Comput. Geotech. 2022, 145, 104692. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yin, Z.; Clifton Tan, J.H.; Linga, P. Experimental Investigations on Energy Recovery from Water-Saturated Hydrate Bearing Sediments via Depressurization Approach. Appl. Energy 2017, 204, 1513–1525. [Google Scholar] [CrossRef]
- Yin, Z.; Moridis, G.; Chong, Z.R.; Tan, H.K.; Linga, P. Numerical Analysis of Experimental Studies of Methane Hydrate Dissociation Induced by Depressurization in a Sandy Porous Medium. Appl. Energy 2018, 230, 444–459. [Google Scholar] [CrossRef]
- Liao, Y.; Sun, X.; Sun, B.; Gao, Y.; Wang, Z. Transient Gas-Liquid-Solid Flow Model with Heat and Mass Transfer for Hydrate Reservoir Drilling. Int. J. Heat Mass Tran. 2019, 141, 476–486. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, S.; Lang, X. Reviews of Gas Hydrate Inhibitors in Gas-Dominant Pipelines and Application of Kinetic Hydrate Inhibitors in China. Chin. J. Chem. Eng. 2019, 27, 2118–2132. [Google Scholar]
- Balakin, B.V.; Pedersen, H.; Kilinc, Z.; Hoffmann, A.C.; Kosinski, P.; Hoiland, S. Turbulent Flow of Freon R11 Hydrate Slurry. J. Petrol. Sci. Eng. 2010, 70, 177–182. [Google Scholar] [CrossRef]
- Balakin, B.V.; Hoffmann, A.C.; Kosinski, P. Experimental Study and Computational Fluid Dynamics Modeling of Deposition of Hydrate Particles in a Pipeline with Turbulent Water Flow. Chem. Eng. Sci. 2011, 66, 755–765. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Cai, L.; Tang, Y.; Yu, Y.; Xu, A. A CFD-PBM Approach for Modeling Ice Slurry Flow in Horizontal Pipes. Chem. Eng. Sci. 2018, 176, 546–559. [Google Scholar] [CrossRef]
- Yao, S.; Li, Y.; Wang, W.; Song, G.; Jiang, K.; Shi, Z. Numerical Simulation of Hydrate Slurry Flow Characteristics in Vertical Pipes Based on Population Balance Theory. Int. J. Oil Gas Coal Technol. 2020, 25, 319–339. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Q.; Wang, Z.; Wang, J.; Sun, X.; Liu, Z.; Sun, B.; Sun, J. Prediction of Hydrate Formation and Plugging in the Trial Production Pipes of Offshore Natural Gas Hydrates. J. Cleaner Prod. 2021, 316, 128262. [Google Scholar] [CrossRef]
- Mellari, S. Experimental investigation and modeling of the pressure drop of ice slurry flow in horizontal pipe. Int. J. Refrig. 2023, 147, 134–142. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Lang, C.; Zhang, L.; Yang, L.; Guo, X. An Improved Model for Predicting the Critical Velocity in the Removal of Hydrate Particles from Solid Surfaces. Chem. Phys. Lett. 2021, 779, 138832. [Google Scholar] [CrossRef]
- Sakurai, S.; Hoskin, B.; Choi, J.; Nonoue, T.; May, E.F.; Kumar, A.; Norris, B.W.E.; Aman, Z.M. Investigating Hydrate Formation Rate and the Viscosity of Hydrate Slurries in Water-Dominant Flow: Flowloop Experiments and Modelling. Fuel 2021, 292, 120193. [Google Scholar] [CrossRef]
- Wei, N.; Sun, W.; Meng, Y.; Zhou, S.; Li, G.; Guo, P.; Dong, K.; Li, Q. Sensitivity Analysis of Multiphase Flow in Annulus during Drilling of Marine Natural Gas Hydrate Reservoirs. J. Nat. Gas Sci. Eng. 2016, 36, 692–707. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Lu, X. Three-Dimensional Eulerian Modeling of Gas-Liquid-Solid Flow with Gas Hydrate Dissociation in a Vertical Pipe. Chem. Eng. Sci. 2019, 196, 145–165. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Zhao, X.; Wang, Z.; Yin, Z.; Wang, J. Multiphase Flow in Wellbores and Variation Laws of the Bottom Hole Pressure in Gas Hydrate Drilling. Acta Pet. Sin. 2012, 33, 881–886. [Google Scholar]
- Gao, Y.; Sun, B.; Xu, B.; Wu, X.; Chen, Y.; Zhao, X.; Chen, L. A Wellbore/Formation-Coupled Heat-Transfer Model in Deepwater Drilling and Its Application in the Prediction of Hydrate-Reservoir Dissociation. SPE J. 2016, 22, 756–766. [Google Scholar] [CrossRef]
- Kang, Q.; Song, S.; Yu, J.; Shi, B.; Chen, Y.; Lv, X.; Liu, Y.; Bai, Z.; Hong, B.; Wang, W.; et al. Simulation of Upward Gas-Hydrate Slurry Multiphase Flow in a Vertical Concentric Annulus for Natural Gas Hydrate Solid Fluidization Exploitation. Phys. Fluids 2021, 33, 103102. [Google Scholar] [CrossRef]
Authors | Multiphysics Process | Numerical Approach | Research Object |
---|---|---|---|
Nazridoust and Ahmadi [58] | Heat and mass transfer, fluid flow, intrinsic kinetics, and porous media | Two-dimensional CFD | Porous sandstone cores |
Sean et al. [61,62] | Heat and mass transfer, fluid flow, and intrinsic kinetics | Three-dimensional CFD | Hydrate balls at the laboratory scale |
Liang et al. [63] | Heat and mass transfer, fluid flow, intrinsic kinetics, and porous media | Two-dimensional CFD | Porous media at the laboratory scale |
Chen et al. [67] | Heat and mass transfer, fluid flow, intrinsic kinetics, porous media, and three-phase gas–liquid–solid flow | Two-dimensional CFD | Porous sandstone cores |
Wan et al. [71] | Heat and mass transfer, intrinsic kinetics, porous media, multi-phase flow, and geomechanical solid deformation | The volume finite element method coupled with the finite element method | Porous sandstone cores |
Balakin et al. [76,77] | Two-phase liquid–solid flow | Three-dimensional Eulerian–Eulerian CFD | Slurry flow in pipelines |
Xu et al. [78] | Heat and mass transfer, intrinsic kinetics, two-phase liquid–solid flow, and the dynamic evolution of the hydrate particles | Three-dimensional Eulerian–Eulerian CFD coupled with PBM | slurry flow in the horizontal pipe |
Wei et al. [84] | Heat and mass transfer, intrinsic kinetics, and two-phase gas–liquid flow | Two-dimensional self-developed code | Wellbore flow during drilling |
Kang et al. [88] | Heat and mass transfer, intrinsic kinetics, and multi-phase flow | Two-dimensional self-developed code | Slurry flow in the annulus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Z.-J.; Lu, H.-F.; Zheng, S.-F.; Xing, D.-H.; Li, X.; Liu, L. Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates. Energies 2023, 16, 7184. https://doi.org/10.3390/en16207184
Ning Z-J, Lu H-F, Zheng S-F, Xing D-H, Li X, Liu L. Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates. Energies. 2023; 16(20):7184. https://doi.org/10.3390/en16207184
Chicago/Turabian StyleNing, Zi-Jie, Hong-Feng Lu, Shao-Fei Zheng, Dong-Hui Xing, Xian Li, and Lei Liu. 2023. "Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates" Energies 16, no. 20: 7184. https://doi.org/10.3390/en16207184
APA StyleNing, Z. -J., Lu, H. -F., Zheng, S. -F., Xing, D. -H., Li, X., & Liu, L. (2023). Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates. Energies, 16(20), 7184. https://doi.org/10.3390/en16207184