Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
Abstract
:1. Introduction
2. Features of Hydrogen Combustion
2.1. Effects on Flame Stability
2.2. Effects on Pollutant Emissions
2.3. Effects on Radiant Energy Transfer
2.4. Effects on Materials
3. Gas Turbine and Piston Engines Power Generation
3.1. Hydrogen Piston Engines
3.2. Hydrogen Gas Turbines
4. Hard-to-Abate Industry
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Global Hydrogen Review; Technical Report; IEA: Paris, France, 2021. [Google Scholar]
- International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector; Flagship Report; IEA: Paris, France, 2021. [Google Scholar]
- Gubbi, S.; Cole, R.; Emerson, B.; Noble, D.; Steele, R.; Sun, W.; Lieuwen, T. Air Quality Implications of Using Ammonia as a Renewable Fuel: How Low Can NOx Emissions Go? ACS Energy Lett. 2023, 8, 4421–4426. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Nakao, M.; Ito, E.; Nose, M.; Saitoh, K.; Tsukagoshi, K. Development of Low NOx Combustion System with EGR for 780–1700 °C-Class Gas Turbine; Technical Review 1; MITSUBISHI-HITACHI Heavy Industries: Tokyo, Japan, 2013. [Google Scholar]
- Ditaranto, M.; Li, H.L.; Lovas, T. Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of combustion 802 and emissions performance. Int. J. Greenh. Gas Control 2015, 37, 377–383. [Google Scholar] [CrossRef]
- Ditaranto, M.; Heggset, T.; Berstad, D. Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of 804 process performance. Energy 2020, 192, 116646. [Google Scholar] [CrossRef]
- Panigrahy, S.; Mohamed, A.; Wang, P.; Bourque, G.; Curran, H. When hydrogen is slower than methane to ignite. Proc. Combust. Inst. 2023, 39, 253–263. [Google Scholar] [CrossRef]
- Safta, C.; Madnia, C. Autoignition and structure of nonpremixed CH4/H2 flames: Detailed and reduced kinetic models. Combust. Flame 2006, 144, 64–73. [Google Scholar] [CrossRef]
- Gersen, S.; Anikin, N.B.; Mokhov, H.B. Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine. Int. J. Hydrogen Energy 2008, 33, 1957–1964. [Google Scholar] [CrossRef]
- Donohoe, N.; Heufer, A.; Metcalfe, W.K.; Curran, H.J.; Davis, M.L.; Mathieu, O.; Plichta, D.; Morones, A.; Petersen, E.L.; Güthe, F. Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combust. Flame 2014, 161, 1432–1443. [Google Scholar] [CrossRef]
- Park, S. Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure. Int. J. Hydrogen Energy 2021, 46, 25712–25725. [Google Scholar] [CrossRef]
- Sankaran, R.; Im, H.R. Effects of Hydrogen Addition on the Markstein Length and Flammability Limit of Stretched Methane/Air Premixed Flames. Combust. Sci. Technol. 2006, 178, 1585–1611. [Google Scholar] [CrossRef]
- Imteyaz, B.A.; Nemitallah, M.A.; Abdelhafez, A.A.; Habib, M.A. Combustion Behavior and Stability Map of Hydrogen-Enriched Oxy-Methane Premixed Flames in a Model Gas Turbine Combustor. Int. J. Hydrogen Energy 2018, 43, 16652–16666. [Google Scholar] [CrossRef]
- Nemitallah, M.A.; Imteyaz, B.; Abdelhafez, A.; Habib, M.A. Experimental and Computational Study on Stability Characteristics of Hydrogen-Enriched Oxy-Methane Premixed Flames. Appl. Energy 2019, 250, 433–443. [Google Scholar] [CrossRef]
- ETN Global. Addressing the Combustion Challenges of Hydrogen Addition to Natural Gas; ETN Position Paper; European Turbine Network: Brussels, Belgium, 2022. [Google Scholar]
- Boschek, E.; Griebel, P.; Jansohn, P. Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures. In Proceedings of the GT2007, ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, QC, Canada, 14–17 May 2007; ASME: New York, NY, USA, 2007. number GT2007-27496. [Google Scholar]
- Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 2006, 146, 302–311. [Google Scholar] [CrossRef]
- Hu, E.; Huang, Z.; He, J.; Jin, C.; Zheng, J. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy 2009, 34, 4876–4888. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Lin, W.; Li, G.; Hu, Z.; Zhang, M.; Huang, Z. Effect of hydrogen enrichment on flame broadening of turbulent premixed flames in thin reaction regime. Int. J. Hydrogen Energy 2021, 46, 1210–1218. [Google Scholar] [CrossRef]
- Schefer, R.W.; Wicksall, D.; Agrawal, A.K. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc. Combust. Inst. 2002, 29, 843–851. [Google Scholar] [CrossRef]
- Cicoria, D.; Chan, C. Effects of turbulence and strain rate on hydrogen-enriched high Karlovitz number lean premixed methane flames. Fuel 2018, 211, 754–766. [Google Scholar] [CrossRef]
- Mashruk, S. Nitric Oxide Formation Analysis Using Chemical Reactor Modelling and Laser Induced Fluorescence Measurements on Industrial Swirl Flames. Ph.D. Thesis, School of Engineering, Cardiff University, Cardiff, UK, 2020. [Google Scholar]
- Lavadera, M.; Brackmann, C.; Konnov, A. Experimental and modeling study of laminar burning velocities and nitric oxide formation in premixed ethylene/air flames. Proc. Combust. Inst. 2021, 38, 395–404. [Google Scholar] [CrossRef]
- Konnov, A.A. Yet another kinetic mechanism for hydrogen combustion. Combust. Flame 2019, 203, 14–22. [Google Scholar] [CrossRef]
- Glarborg, P.; Miller, J.; Ruscic, B.; Klippenstein, S. Modeling nitrogen chemistry in combustion. Prog. Eneegy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef]
- Song, Y.; Marrodán, L.; Vin, N.; Herbinet, O.; Assaf, E.; Fittchen, C.; Stagni, A.; Faravelli, T.; Alzueta, M.; Battin-Leclerc, F. The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor. Proc. Combust. Inst. 2019, 37, 667–675. [Google Scholar] [CrossRef]
- Metcalfe, W.; Burke, S.; Ahmed, S.; Curran, H. A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels. Int. J. Chem. Kinet. 2013, 45, 638–675. [Google Scholar] [CrossRef]
- Lieuwen, T.; McDonell, V.; Petersen, E.; Santavicca, D. Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J. Eng. Gas Turbines Power 2008, 130, 011506. [Google Scholar] [CrossRef]
- Matalon, M.; Matkowsky, B.J. Flames as gasdynamic discontinuities. J. Fluid Mech. 1982, 124, 239–259. [Google Scholar] [CrossRef]
- Clavin, P.; Williams, F. Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 1982, 116, 251–282. [Google Scholar] [CrossRef]
- Sivashinsky, G. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
- Law, C.K.; Jomaas, G.; Bechtold, J.K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment. Proc. Combust. Inst. 2005, 30, 159–167. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Law, C.K.; Saha, A. Cellular instability in Le < 1 turbulent expanding flames. Proc. Combust. Inst. 2019, 37, 2611–2618. [Google Scholar]
- Creta, F.; Lapenna, P.E.; Lamioni, R.; Fogla, N.; Matalon, M. Propagation of premixed flames in the presence of Darrieus–Landau and thermal diffusive instabilities. Combust. Flame 2020, 216, 256–270. [Google Scholar] [CrossRef]
- Rocco, G.; Battista, F.; Picano, F.; Troiani, G.; Casciola, C.M. Curvature effects in turbulent premixed flames of H 2/air: A DNS study with reduced chemistry. Flow Turbul. Combust. 2015, 94, 359–379. [Google Scholar] [CrossRef]
- Berger, L.; Attili, A.; Pitsch, H. Synergistic interactions of thermodiffusive instabilities and turbulence in lean hydrogen flames. Combust. Flame 2022, 244, 112254. [Google Scholar] [CrossRef]
- Cecere, D.; Giacomazzi, E.; Picchia, F.R.; Arcidiacono, N.M. Direct Numerical Simulation of a Turbulent Lean Premixed CH4/H2-Air Slot Flames. Combust. Flame 2016, 165, 384–401. [Google Scholar] [CrossRef]
- Troiani, G.; Lapenna, P.E.; Alessio, F.D.; Creta, F. Experimental dataset of H2/CH4-air Bunsen flames: Interplay of intrinsic instabilities and turbulence. In Proceedings of the 11th European Combustion Meeting, Rouen, France, 26–28 April 2023; pp. 1320–1325. [Google Scholar]
- Troiani, G.; Giacomazzi, E.; Marrocco, M.; Di Nardo, A.; Scaccia, S.; Calchetti, G.; Cecere, D.; Assettati, A.; Guidarelli, G.; Stringola, C.; et al. La Combustione di Idrogeno nella Transizione Energetica e Sperimentazione Atmosferica di un Bruciatore con Miscele Metano/Idrogeno in Aria; Technical Report D2.2.5.2 of POR-H2 Project; ENEA, Casaccia Research Centre: Rome, Italy, 2023. [Google Scholar]
- Bechtold, J.; Matalon, M. The dependence of the Markstein length on stoichiometry. Combust. Flame 2001, 127, 1906–1913. [Google Scholar] [CrossRef]
- Troiani, G.; Creta, F.; Matalon, M. Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 2015, 35, 1451–1459. [Google Scholar] [CrossRef]
- Creta, F.; Lamioni, R.; Lapenna, P.E.; Troiani, G. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 2016, 94, 053102. [Google Scholar] [CrossRef]
- Lapenna, P.E.; Troiani, G.; Lamioni, R.; Creta, F. Mitigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 2021, 38, 2885–2892. [Google Scholar] [CrossRef]
- Troiani, G.; Lapenna, P.; Lamioni, R.; Creta, F. Self-wrinkling induced by Darrieus-Landau instability in turbulent premixed Bunsen flames from low to moderately high Reynolds numbers. Phys. Rev. Fluids 2022, 7, 053202. [Google Scholar] [CrossRef]
- Lamioni, R.; Lapenna, P.E.; Troiani, G.; Creta, F. Strain rates, flow patterns and flame surface densities in hydrodynamically unstable, weakly turbulent premixed flames. Proc. Combust. Inst. 2019, 37, 1815–1822. [Google Scholar] [CrossRef]
- Brower, M.; Petersen, E.; Metcalfe, W.; Curran, H.J.; Furi, M.; Bourque, G.; Aluri, N.; Guthe, F. Ignition Delay Time and Laminar Flame Speed Calculations or Natural Gas/Hydrogen Blends at Elevated Pressures. J. Eng. Gas Turbines Power 2012, 135, 021504. [Google Scholar] [CrossRef]
- Ebi, D.; Jansohn, P. Boundary Layer Flashback Limits of Hydrogen-Methane-Air Flames in a Generic Swirl Burner at Gas Turbine Relevant Conditions. In Proceedings of the ASME Turbo Expo 2020, Turbomachinery Technical Conference and Exposition, London, UK, 22–26 June 2020. [Google Scholar]
- Beita, J.; Talibi, M.; Sadasivuni, S.; Balach, R. Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review. Hydrogen 2021, 2, 33–57. [Google Scholar] [CrossRef]
- Xiaoxiao, S.; Abbott, D.; Singh, A.V.; Gauthier, P.; Sethi, B. Numerical Investigation of Potential Cause of Instabilities in a Hydrogen Micromix Injector Array. In Proceedings of the ASME Turbo Expo 2021, Turbomachinery Technical Conference and Exposition, Virtual, 7–11 June 2021. [Google Scholar]
- Cecere, D.; GCarpenella, S.; Giacomazzi, E.; Arcidiacono, N.; Di Nardo, A.; Antonelli, M. Analisi di Meccanismi Chimici e Fluidodinamici in Fiamme Premiscelate Metano/Idrogeno/Aria; Technical Report D2.2.5.1 of POR-H2 Project; ENEA: Stockholm, Sweden, 2023. [Google Scholar]
- Altarawneh, M.; Saeed, A.; Al-Harahsheh, M.; Dlugogorski, B.Z. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212–259. [Google Scholar] [CrossRef]
- Hayakawa, A.; Arakawa, Y.; Mimoto, R.; Somarathne, K.K.A.; Kudo, T.; Kobayashi, H. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. Int. J. Hydrogen Energy 2017, 42, 14010–14018. [Google Scholar] [CrossRef]
- Cheong, P.; Chang, K.F.; Lai, Y.H.; Ho, S.K.; Sou, I.K.; Tam, K.W. A ZigBee-Based Wireless Sensor Network Node for Ultraviolet Detection of Flame. IEEE Trans. Ind. Electron. 2011, 58, 5271–5277. [Google Scholar] [CrossRef]
- Djuric, Z.; Radulovic, K.; Trbojevic, N.; Lazic, A. Silicon resonant cavity enhanced UV flame detector. In Proceedings of the 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595), Nis, Serbia, 12–15 May 2002; Volume 1, pp. 239–242. [Google Scholar] [CrossRef]
- Pauchard, A.; Manic, D.; Flanagan, A.; Besse, P.; Popovic, R. A method for spark rejection in ultraviolet flame detectors. IEEE Trans. Ind. Electron. 2000, 47, 168–174. [Google Scholar] [CrossRef]
- Starikov, D.; Boney, C.; Pillai, R.; Bensaoula, A. Dual-band UV/IR optical sensors for fire and flame detection and target recognition. In Proceedings of the ISA/IEEE Sensors for Industry Conference, New Orleans, LA, USA, 27–29 January 2004; pp. 36–40. [Google Scholar] [CrossRef]
- Howell, J.; Siegel, R.; Menguc, M. Thermal Radiation Heat Transfer, 5th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, NY, USA, 2010. [Google Scholar]
- Modest, M.; Haworth, D. Radiative Heat Transfer in Turbulent Combustion Systems; Springer Briefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Caliot, C.; Flamant, G. Pressurized Carbon Dioxide as Heat Transfer Fluid: Influence of Radiation on Turbulent Flow Characteristics in Pipe. AIMS Energy 2014, 3, 172–182. [Google Scholar] [CrossRef]
- Rothman, L.E.A. The HITRAN 2008 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef]
- Rothman, L.; Gordon, I.; Barber, R.; Dothe, H.; Gamache, R.; Goldman, A.; Perevalov, V.; Tashkun, S.J.T. HITEMP, The High-Temperature Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Zhang, H.; Modest, M. Evaluation of the Planck–Mean Absorption Coefficients from HITRAN and HITEMP Databases. J. Quant. Spectrosc. Radiat. Transf. 2002, 73, 649–653. [Google Scholar] [CrossRef]
- Kochanov, R.V. HITRAN Application Programming Interface (HAPI). User Guide. In Harvard-Smithsonian Center for Astrophysics—Atomic and Molecular Physics Division; Manual ver. 4.3; Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics: Cambridge, MA, USA, 2019. [Google Scholar]
- Wang, L.; Haworth, D.; Turns, S.; Modest, M. Interactions Among Soot, Thermal Radiation, and NOx Emissions in Oxygen-Enriched Turbulent Nonpremixed Flames: A CFD Modeling Study. Combust. Flame 2005, 141, 170–179. [Google Scholar] [CrossRef]
- Wang, L.; Modest, M.; Haworth, D.; Turns, S. Modeling Nongray Soot and Gas-Phase Radiation in Luminous Turbulent Nonpremixed Jet Flames. Combust. Theory Model. 2005, 9, 479–498. [Google Scholar] [CrossRef]
- Moss, J.; Stewart, C. Spectrally Resolved Measurements of Radiative Heat Transfer in a Gas Turbine Combustor. Exp. Therm. Fluid Sci. 2004, 28, 575–583. [Google Scholar] [CrossRef]
- Ebara, T.; Iki, N.; Takahashi, S.; Park, W. Effect of Radiation Reabsorption on Laminar Burning Velocity of Methane Premixed Flame Containing with Steam and Carbon Dioxide. JSME Int. J. Ser.-Fluids Therm. Eng. 2006, 49, 260–264. [Google Scholar] [CrossRef]
- Mercer, G.; Weber, R. Radiation Enhanced Combustion Wave Speeds. Proc. R. Soc. Lond. A 1997, 453, 1543–1549. [Google Scholar] [CrossRef]
- Cecere, D.; Carpenella, S.; Quaranta, I.; Giacomazzi, E.; Sorrentino, G.; Sabia, P.; Ariemma, G. Large Eddy Simulation of Hydrogen/Air MILD combustion in a cyclonic burner. In Proceedings of the 10th Turbulence, Heat and Mass Transfer (THMT23), Rome, Italy, 11–15 September 2023. [Google Scholar]
- Ripoll, J.F.; Pitsch, H. Modelling Turbulence-Radiation Interactions for Large Sooting Turbulent Flames. In Annual Research Briefs; Center for Turbulence Research, Stanford University: Stanford, CA, USA, 2002; pp. 41–52. [Google Scholar]
- Turns, S. An Introduction to Combustion: Concepts and Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Pisciotta, M.; Pilorge, H.; Feldmann, J.; Jacobson, R.; Davids, J.; Swett, S.; Sasso, Z.; Wilcox, J. Current state of industrial heating and opportunities for decarbonization. Prog. Energy Combust. Sci. 2022, 91, 100982. [Google Scholar] [CrossRef]
- Wu, L.; Kobayashi, N.; Li, Z.; Huang, H. Experimental study on the effects of hydrogen addition on the emission and heat transfer characteristics of laminar methane diffusion flames with oxygen-enriched air. Int. J. Hydrogen Energy 2016, 41, 2023–2036. [Google Scholar] [CrossRef]
- Michler, T.; Schweizer, F.; Wackermann, K. Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys. Metals 2021, 11, 423. [Google Scholar] [CrossRef]
- Stefan, E.; Talic, B.; Gruber, A.; Peters, T.A. Materials challenges in hydrogen-fuelled gas turbines. Int. Mater. Rev. 2022, 67, 461–486. [Google Scholar] [CrossRef]
- Min’ko, N.I.; Varavin, V.V. Effect of Water on the Structure and Properties of Glass (Review). Glass Ceram. 2007, 64, 3–6. [Google Scholar] [CrossRef]
- Zier, M.; Stenzel, P.; Kotzur, L.; Stolten, D. A review of decarbonization options for the glass industry. Energy Convers. Manag. X 2021, 10, 100083. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions in 2022; Technical Report; IEA: Paris, France, 2023. [Google Scholar]
- Wrobel, K.; Wrobel, J.; Tokarz, W.; Lach, J.; Podsadni, K.; Czerwinski, A. Hydrogen Internal Combustion Engine Vehicles: A Review. Energies 2022, 15, 8937. [Google Scholar] [CrossRef]
- Stepien, Z. A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Faizal, M.; Chuah, L.; Lee, C.; Hameed, A.; Lee, J.; Shankar, M. Review of hydrogen fuel for internal combustion engines. J. Mech. Eng. Res. Dev. 2019, 42, 35–46. [Google Scholar]
- Wang, J.; Huang, Z.; Fang, Y.; Liu, B.; Zeng, K.; Miao, H.; Jiang, D. Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends. Int. J. Hydrogen Energy 2007, 32, 3555–3564. [Google Scholar] [CrossRef]
- Fayaz, H.; Saidur, R.; Razali, N.; Anuar, F.; Saleman, A.; Islam, M. An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 2012, 16, 5511–5528. [Google Scholar] [CrossRef]
- Heffel, J. NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation. Int. J. Hydrogen Energy 2003, 28, 901–908. [Google Scholar] [CrossRef]
- Goldmeer, J. Fuel Flexible Gas Turbines as Enablers for a Low or Reduced Carbon Energy Ecosystem; Technical Report GEA33861; Electrify Europe: Vienna, Austria, 2018. [Google Scholar]
- Wakayama, N.; Morimoto, K.; Kashiwagi, A.; Saito, T. Development of Hydrogen Rotary Engine Vehicle. In Proceedings of the World Hydrogen Energy Conference, Lyon, France, 13–16 June 2006. [Google Scholar]
- AGORA. Flexibility in Thermal Power Plants; AGORA Energiewende: Berlin, Germany, 2017. [Google Scholar]
- IRENA. Power System Flexibility for the Energy Transition—Part 1: Overview for Policy Makers; Technical Report; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2018. [Google Scholar]
- Gonzalez-Salazar, M.; Kirsten, T.; Prchlik, L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 2018, 82, 1497–1513. [Google Scholar] [CrossRef]
- Hiddemann, M.; Stevens, M.; Hummel, F. Increased Operational Flexibility from the GT26 (2011) Upgrade. In Proceedings of the Power-Gen Asia, Bangkok, Thailand, 3–5 October 2012. [Google Scholar]
- Zuming, L.; Iftekhar, A. New operating strategy for a combined cycle gas turbine power plant. Energy Convers. Manag. 2018, 171, 1675–1684. [Google Scholar]
- Prina, M.; Fanali, L.; Manzolini, G.; Moser, D.; Sparber, W. Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study. Energy 2018, 160, 33–43. [Google Scholar] [CrossRef]
- Larfeldt, J. Technology options and plant design issues for fuel-flexible gas turbines. In Fuel Flexible Energy Generation; Woodhead Publishing: Thorston, UK, 2016; pp. 271–291. [Google Scholar]
- Kido, H.; Nakahara, M.; Hashimoto, J.; Barat, D. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen. JSME Int. J. Ser. B 2002, 45, 355–362. [Google Scholar] [CrossRef]
- Moccia, V.; D’Alessio, J. Characterization of CH4-H2-Air mixtures in the high-pressure DHARMA reactor. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization (ECOS), Perugia, Italy, 26–29 June 2012; pp. 287–503. [Google Scholar]
- Tuncer, O.; Acharya, S.; Uhm, J. Dynamics and flashback characteristics of confined premixed hydrogen-enriched methane flames. Int. J. Hydrogen Energy 2009, 34, 496–506. [Google Scholar] [CrossRef]
- AIAA. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modelling; AIAA-Book, Progress in Astronautics and Aeronautics; American Institute of Aeronautics and Astronautics: Liston, FL, USA, 2005; Volume 210. [Google Scholar]
- Abbott, D. Practical examples of the impact of variations in gas composition on gas turbine operation and performance. In Proceedings of the Gas to Power Europe Forum, Berlin, Germany, 23–25 January 2012. [Google Scholar]
- Ferguson, D.; Richard, G.A.; Straub, D. Fuel Interchangeability for Lean Premixed Combustion in Gas Turbine Engines. In Turbo Expo: Power for Land, Sea and Air; Number ASME Paper No: GT2008-51261; ASME: New York, NY, USA, 2009; pp. 973–981. [Google Scholar]
- Bruschi, R.; Giacomazzi, E.; Giulietti, E.; Stringola, C.; Nobili, M.; Pagliaroli, T.; Giammartini, S. An Optical Technique for the Identification and Tracking of Combustion Instabilities. In Proceedings of the 7th Mediterranean Combustion Symposium, Sardinia, Italy, 11–15 September 2011; The Combustion Institute: Pittsburg, PA, USA, 2011. [Google Scholar]
- OXSENSIS. Oxsensis Dynamic Pressure Measurement on a GE 9E Gas Turbine; Technical Review OXC10041; OXSENSIS Ltd.: Oxfordshire, UK, 2020. [Google Scholar]
- ETN Global. Proposed NOx Emissions Reporting for Hydrogen-Containing Fuels; ETN Position Paper; European Turbine Network: Brussels, Belgium, 2023. [Google Scholar]
- Chiesa, P.; Lozza, G.; Mazzocchi, L. Using Hydrogen as Gas Turbine Fuel. J. Eng. Gas Turbines Power 2005, 127, 73–80. [Google Scholar] [CrossRef]
- Ansaldo Energia. Ansaldo Energia Solutions for Hydrogen Combustion: Fast-Forward to a Hydrogen Fueled Future; Technical Report; Ansaldo Energia: Genoa, Itlay, 2021. [Google Scholar]
- Clean Hydrogen Partnership. Clean Hydrogen Joint Undertaking, Strategic Research and Innovation Agenda 2021–2027; Annex to GB Decision no. CleanHydrogen-GB-2022-02; Technical Report; Hydrogen Europe: Brussels, Belgium, 2022. [Google Scholar]
- ETN Global. Hydrogen Gas Turbines—The Path Towards a Zero-Carbon Gas Turbine; Technical Report; European Turbine Network: Brussels, Belgium, 2020. [Google Scholar]
- Bothien, M.R.; Ciani, A.; Wood, J.P.; Fruechtel, G. Toward Decarbonized Power Generation with Gas Turbines by Using Sequential Combustion for Burning Hydrogen. J. Eng. Gas Turbines Power 2019, 141, 121013. [Google Scholar] [CrossRef]
- Funke, H.H.W.; Beckmann, N.; Abanteriba, S. An overview on dry low NOx micromix combustor development for hydrogen-rich 735 gas turbine applications. Int. J. Hydrogen Energy 2019, 44, 6978–6990. [Google Scholar] [CrossRef]
- Franco, A.; Giovannini, C. Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy Transition. Energies 2023, 16, 6098. [Google Scholar] [CrossRef]
- TENOVA. TSX SmartBurner Burning up to 100% Hydrogen; Technical Report; TENOVA: Castellanza, Italy, 2020. [Google Scholar]
- TENOVA. Hydrogen-Ready SmartBurner for Heat Treatment Furnaces; Technical Report; TENOVA: Castellanza, Italy, 2021. [Google Scholar]
- LINDE. REBOX Flameless Oxyfuel Technology; Technical Report 31910_LCS_1017; LINDE AG, Gases Division: Dublin, Ireland, 2017. [Google Scholar]
- von Scheele, J.; Zilka, V. Succesful Use of Flameless Oxyfuel in Steel Reheating. In Proceedings of the METAL 2020, Brno, Czech Republic, 20–22 May 2020. [Google Scholar]
- Gomez, R.S.; Gomes, K.C.; Gurgel, J.M.A.M.; Alves, L.B.; Magalhães, H.L.F.; Queiroga, R.A.; Sousa, G.C.P.; Oliveira, A.S.; Vilela, A.F.; Silva, B.T.A.; et al. Investigating the Drying Process of Ceramic Sanitary Ware at Low Temperature. Energies 2023, 16, 4242. [Google Scholar] [CrossRef]
- ARUP Kiwa. Industrial Boilers—Study to Develop Cost and Stock Assumptions for Options to Enable or Require Hydrogen-Ready Industrial Boilers; Study 285177-11; ARUP Group Limited: London, UK, 2022. [Google Scholar]
- Wang, T.; Zhang, H.; Zhang, Y.; Wang, H.; Lyu, J.; Yue, G. Efficiency and emissions of gas-fired industrial boiler fueled with hydrogen-enriched nature gas: A case study of 108 t/h steam boiler. Int. J. Hydrogen Energy 2022, 47, 28188–28203. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen, Sizing Today’s Opportunities; Report Prepared by the Iea for the f20, Japan; IEA: Paris, France, 2019. [Google Scholar]
- AECOM. Start-Up and Shut-Down Times of Power CCUS Facilities; BEIS Research Paper, Summary of Study Report 2020/031; AECOM, Department for Business, Energy & Industrial Strategy: Tokyo, Japan, 2020. [Google Scholar]
- International Energy Agency. World Energy Outlook; Technical Report; IEA: Paris, France, 2019. [Google Scholar]
Combustion | Vol. | |Complexity|CAPEX/OPEX |
---|---|---|
Non-premixed/diluted | 0–100% | Higher |
DLE lean premixed comb. | ∼44–63% heavy duty (100–500 MWe) | |
∼43–55% industrial (30–100 MWe) | ||
∼35% aeroderivative (1–30 MWe) | ||
∼20–32% microturbine (0.1–1 MWe) |
KPI | Unit | SoA 2020 | Target 2024 | Target 2030 |
---|---|---|---|---|
fuel content | % by mass | 0–5 | 0–23 | 0–100 |
% by volume | 0–30 | 0–70 | 0–100 | |
emissions | ppmv at 15% dry | <25 at 30% vol. | <25 at 70% vol. | <25 at 100% vol. |
<31 at 30% vol. | <29 at 70% vol. | <24 at 100% vol. | ||
Max. content at start-up | % by mass | 0.7 | 3 | 100 |
% by volume | 5 | 20 | 100 | |
Max. electrical efficiency loss | % points | 10 at 30% vol. | 10 at 70% vol. | 10 at 100% vol. |
Min. ramp rate | % load/minute | 10 at 30% vol. | 10 at 70% vol. | 10 at 100% vol. |
accepted fluctuations | % by mass/minute | |||
% by volume/minute |
Applications | Processes | Equipments |
---|---|---|
Food | Hot water production, steam production, drying | Boiler, cogeneration, direct flame oven, dryer |
Chemicals | Steam production, drying, cracking, direct heat at high temperature | Boiler, cogeneration, direct flame oven, dryer |
Vehicle production | Varnishing, environmental heating, drying, hardening, welding, pressing | Boiler (also at high pressure), direct flame oven, dryer |
Metals | Steel lamination and melting, melting of non-ferrous metals, thermal treatments | Various type of ovens |
Refining | Distillation, reforming, isomerization, cracking, calcination, hydro-treatment, catalyzer regenaration, steam production | Oven, boiler, cogeneration |
Paper | Hot water production, steam production, drying, refining, finishing | Boiler, cogeneration, direct flame dryer |
Glass | Raw material melting, conditioning, annealing, molding, pressing | Gas oven for melting, annealing oven |
Ceramic | Cooking of raw materials, drying, molding, finishing | Gas oven, dryer with recuperated heat, boiler for hot water |
Cement | Cooking of raw materials | Lime kiln: regenerative (parallel fluxes) or vertical kilns (older) |
Non-metallic minerals | Drying, melting, calcination, evaporation, separation | gas dryer, oven, boiler, CHP |
Applications | Equipments | Temperature [°C] | Fuels | Hydrogen Barriers 5 |
---|---|---|---|---|
Glass | Melting ovens | 1400–1600 | Natural gas, oil, LPG | Low radiation, unknown effects of the different combustion products emission |
Lime | Rotary kilns | 1450–2000 | Coal gas, -rich syngas | Higher content in combustion products |
Steel | Ovens for heating and thermal treatments | 800–1400 | Natural gas, coal gas, syngas, LPG | No barriers, for both raw material and combustion emissions |
Ceramic | Roller kilns | 1250–1800 | Natural gas, LPG, diesel, kerosene | Higher content in combustion products |
Hot water, steam, drying | Boilers | 1200–1400 | Natural gas | Volumes higher than 10% for a certain power |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacomazzi, E.; Troiani, G.; Di Nardo, A.; Calchetti, G.; Cecere, D.; Messina, G.; Carpenella, S. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies 2023, 16, 7174. https://doi.org/10.3390/en16207174
Giacomazzi E, Troiani G, Di Nardo A, Calchetti G, Cecere D, Messina G, Carpenella S. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies. 2023; 16(20):7174. https://doi.org/10.3390/en16207174
Chicago/Turabian StyleGiacomazzi, Eugenio, Guido Troiani, Antonio Di Nardo, Giorgio Calchetti, Donato Cecere, Giuseppe Messina, and Simone Carpenella. 2023. "Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition" Energies 16, no. 20: 7174. https://doi.org/10.3390/en16207174
APA StyleGiacomazzi, E., Troiani, G., Di Nardo, A., Calchetti, G., Cecere, D., Messina, G., & Carpenella, S. (2023). Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies, 16(20), 7174. https://doi.org/10.3390/en16207174