Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050
Abstract
:1. Introduction
- To what extent are wind and photovoltaic solar energy used directly?
- How much do renewable technologies contribute to future growing energy demand?
- What is the amount of energy coming from fossil fuels?
- What is the amount of renewable energy that must be incorporated until 2050?
- What other technologies of renewable origin are called to integrate the energy mix?
1.1. Literature Review and State of the Art
1.2. Research Location
2. Methodology
Long-Term Projection Model
- -
- The input of the energy system consists of energy demands and existing energy production units or resources (wind turbines, power plants, etc.).
- -
- Simulation (defining the simulation and operation of each plant and system including technical limitations such as transmission capacity, etc.).
- -
- Results (Reports in terms of energy production) for the year of analysis, in this case to 2050.
3. Base Year and Its Input Parameters
3.1. Renewable Energy Potentials in Mexico
3.2. Referential Cartography to Identify Existing Energy Potentials in Mexico
3.2.1. Hydropower
3.2.2. Solar Photovoltaic Power
3.2.3. Wind Power
3.2.4. Biomass Power
3.3. Expected Energy Demand by 2050
4. Results
4.1. Power Mix Generate by 2050
4.2. Expected Development in Transportation
4.3. Main Policies Currently Developed in Mexico That Will Impact Decarbonization by 2050
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASOLMEX | Mexican Association of Solar Energy (In English) |
BEV | Battery electric vehicles |
CHP | Combined heat and power |
CO2 | Carbon dioxide |
COP 27 | Conference Of Parties 27 |
ESS | Energy storage solution |
GHG | Greenhouse gas |
IRENA | International Renewable Energy Agency |
PRODESEN | National Electric System Development Program (In English) |
PV | Photovoltaic |
RE | Renewable energy |
TES | Thermal energy storage |
V2B | Vehicle to building |
V2G | Vehicle to grid |
V2H | Vehicle to home |
References
- Satrovic, E.; Adedoyin, F.F. The Role of Energy Transition and International Tourism in Mitigating Environmental Degradation: Evidence from SEE Countries. Energies 2023, 16, 1002. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, Z.; Khan, S.A.; Alvarado, R. Towards Environmental Sustainability in E−7 Countries: Assessing the Roles of Natural Resources, Economic Growth, Country Risk, and Energy Transition. Resour. Policy 2023, 82, 103486. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Jurado, F.; Tostado-Véliz, M.; Arevalo, P. Decarbonization of the Galapagos Islands. Proposal to Transform the Energy System into 100% Renewable by 2050. Renew. Energy 2022, 189, 199–220. [Google Scholar] [CrossRef]
- Murshed, M. Efficacies of Technological Progress and Renewable Energy Transition in Amplifying National Electrification Rates: Contextual Evidence from Developing Countries. Util. Policy 2023, 81, 101512. [Google Scholar] [CrossRef]
- Campion, N.; Nami, H.; Swisher, P.R.; Vang Hendriksen, P.; Münster, M. Techno-Economic Assessment of Green Ammonia Production with Different Wind and Solar Potentials. Renew. Sustain. Energy Rev. 2023, 173, 113057. [Google Scholar] [CrossRef]
- Spiru, P. Assessment of Renewable Energy Generated by a Hybrid System Based on Wind, Hydro, Solar, and Biomass Sources for Decarbonizing the Energy Sector and Achieving a Sustainable Energy Transition. Energy Rep. 2023, 9, 167–174. [Google Scholar] [CrossRef]
- Icaza, D.; Borge-Diez, D.; Galindo, S.P. Analysis and Proposal of Energy Planning and Renewable Energy Plans in South America: Case Study of Ecuador. Renew. Energy 2022, 182, 314–342. [Google Scholar] [CrossRef]
- McCauley, D.; Ramasar, V.; Heffron, R.J.; Sovacool, B.K.; Mebratu, D.; Mundaca, L. Energy Justice in the Transition to Low Carbon Energy Systems: Exploring Key Themes in Interdisciplinary Research. Appl. Energy 2019, 233–234, 916–921. [Google Scholar] [CrossRef]
- Oliveira, J.C.; Nogueira, M.C.; Madaleno, M. Do the Reduction of Traditional Energy Consumption and the Acceleration of the Energy Transition Bring Economic Benefits to South America? Energies 2023, 16, 5527. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Arias Reyes, P.; Jurado, F.; Tostado-Véliz, M. Smart Strategies for the Penetration of 100% Renewable Energy for the Ecuadorian Amazon Region by 2050. J. Clean. Prod. 2023, 382, 135298. [Google Scholar] [CrossRef]
- Khojasteh, M.; Faria, P.; Lezama, F.; Vale, Z. A Novel Adaptive Robust Model for Scheduling Distributed Energy Resources in Local Electricity and Flexibility Markets. Appl. Energy 2023, 342, 121144. [Google Scholar] [CrossRef]
- Diezmartínez, C.V. Clean Energy Transition in Mexico: Policy Recommendations for the Deployment of Energy Storage Technologies. Renew. Sustain. Energy Rev. 2021, 135, 110407. [Google Scholar] [CrossRef]
- Rivera, G.; Felix, A.; Mendoza, E. A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico. Int. J. Environ. Res. Public Health 2020, 17, 7791. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C. Boycott Products from States with Dirty Energy. Nature 2017, 551, 294–295. [Google Scholar] [CrossRef]
- Villanueva Ulfgard, R.; Villanueva, C. The Power to Transform? Mexico’s ‘Fourth Transformation’ under President Andrés Manuel López Obrador. Globalizations 2020, 17, 1027–1042. [Google Scholar] [CrossRef]
- Energía, S. de Reporte Anual del Potencial de Mitigación de GEI en el Sector Eléctrico. Available online: http://www.gob.mx/sener/articulos/reporte-anual-del-potencial-de-mitigacion-de-gei-en-el-sector-electrico (accessed on 1 August 2023).
- De La Peña, L.; Guo, R.; Cao, X.; Ni, X.; Zhang, W. Accelerating the Energy Transition to Achieve Carbon Neutrality. Resour. Conserv. Recycl. 2022, 177, 105957. [Google Scholar] [CrossRef]
- Cajot, S.; Peter, M.; Bahu, J.-M.; Guignet, F.; Koch, A.; Maréchal, F. Obstacles in Energy Planning at the Urban Scale. Sustain. Cities Soc. 2017, 30, 223–236. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The Technical and Economic Impact of One Potential 100% Renewable Energy Scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Cheng, C.; Blakers, A.; Stocks, M.; Lu, B. 100% Renewable Energy in Japan. Energy Convers. Manag. 2022, 255, 115299. [Google Scholar] [CrossRef]
- Oyewo, A.S.; Aghahosseini, A.; Ram, M.; Lohrmann, A.; Breyer, C. Pathway towards Achieving 100% Renewable Electricity by 2050 for South Africa. Sol. Energy 2019, 191, 549–565. [Google Scholar] [CrossRef]
- Blakers, A.; Lu, B.; Stocks, M. 100% Renewable Electricity in Australia. Energy 2017, 133, 471–482. [Google Scholar] [CrossRef]
- Elizondo, A.; Pérez-Cirera, V.; Strapasson, A.; Fernández, J.C.; Cruz-Cano, D. Mexico’s Low Carbon Futures: An Integrated Assessment for Energy Planning and Climate Change Mitigation by 2050. Futures 2017, 93, 14–26. [Google Scholar] [CrossRef]
- Hillman, A.J.; Hitt, M.A. Corporate Political Strategy Formulation: A Model of Approach, Participation, and Strategy Decisions. Acad. Manag. Rev. 1999, 24, 825. [Google Scholar] [CrossRef]
- Abdul, D.; Wenqi, J.; Sameeroddin, M. Prioritization of Ecopreneurship Barriers Overcoming Renewable Energy Technologies Promotion: A Comparative Analysis of Novel Spherical Fuzzy and Pythagorean Fuzzy AHP Approach. Technol. Forecast. Soc. Change 2023, 186, 122133. [Google Scholar] [CrossRef]
- Ojekemi, O.S.; Ağa, M. In the Era of Globalization, Can Renewable Energy and Eco-Innovation Be Viable for Environmental Sustainability in BRICS Economies? Env. Sci. Pollut. Res. 2023, 30, 85249–85262. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, L.; Burandt, T.; Löffler, K.; Oei, P.-Y. Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD). Energies 2019, 12, 3270. [Google Scholar] [CrossRef]
- Zheng, J.; Du, J.; Wang, B.; Klemeš, J.J.; Liao, Q.; Liang, Y. A Hybrid Framework for Forecasting Power Generation of Multiple Renewable Energy Sources. Renew. Sustain. Energy Rev. 2023, 172, 113046. [Google Scholar] [CrossRef]
- Mexico Electricity Production, 2002–2023|CEIC Data. Available online: https://www.ceicdata.com/en/indicator/mexico/electricity-production (accessed on 28 August 2023).
- Lerman, L.V.; Gerstlberger, W.; Ferreira Lima, M.; Frank, A.G. How Governments, Universities, and Companies Contribute to Renewable Energy Development? A Municipal Innovation Policy Perspective of the Triple Helix. Energy Res. Soc. Sci. 2021, 71, 101854. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The Effect of Renewable Energy Consumption on Economic Growth: Evidence from the Renewable Energy Country Attractive Index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Macedo, D.P.; Marques, A.C. Is the Energy Transition Ready for Declining Budgets in RD&D for Fossil Fuels? Evidence from a Panel of European Countries. J. Clean. Prod. 2023, 417, 138102. [Google Scholar] [CrossRef]
- Tafarte, P.; Lehmann, P. Quantifying Trade-Offs for the Spatial Allocation of Onshore Wind Generation Capacity—A Case Study for Germany. Ecol. Econ. 2023, 209, 107812. [Google Scholar] [CrossRef]
- Lee, K.-H.; Lee, D.-W.; Baek, N.-C.; Kwon, H.-M.; Lee, C.-J. Preliminary Determination of Optimal Size for Renewable Energy Resources in Buildings Using RETScreen. Energy 2012, 47, 83–96. [Google Scholar] [CrossRef]
- Li, C.; Zhou, D.; Zheng, Y. Techno-Economic Comparative Study of Grid-Connected PV Power Systems in Five Climate Zones, China. Energy 2018, 165, 1352–1369. [Google Scholar] [CrossRef]
- Kozlovski, E.; Bawah, U. A Financial Decision Support Framework for the Appraisal of Renewable Energy Infrastructures in Developing Economies. Int. J. Energy Sect. Manag. 2015, 9, 176–203. [Google Scholar] [CrossRef]
- Faria, P.; Vale, Z. Demand Response in Electrical Energy Supply: An Optimal Real Time Pricing Approach. Energy 2011, 36, 5374–5384. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, J.; Yuan, J.; Xiao, Z.; Gang, W. Application and Performance Analysis of 100% Renewable Energy Systems Serving Low-Density Communities. Renew. Energy 2021, 176, 433–446. [Google Scholar] [CrossRef]
- Girard, A.; Gago, E.J.; Ordoñez, J.; Muneer, T. Spain’s Energy Outlook: A Review of PV Potential and Energy Export. Renew. Energy 2016, 86, 703–715. [Google Scholar] [CrossRef]
- Nykvist, B.; Whitmarsh, L. A Multi-Level Analysis of Sustainable Mobility Transitions: Niche Development in the UK and Sweden. Technol. Forecast. Soc. Change 2008, 75, 1373–1387. [Google Scholar] [CrossRef]
- Alexander, M.J.; James, P.; Richardson, N. Energy Storage against Interconnection as a Balancing Mechanism for a 100% Renewable UK Electricity Grid. IET Renew. Power Gener. 2015, 9, 131–141. [Google Scholar] [CrossRef]
- de Moura, G.N.P.; Legey, L.F.L.; Howells, M. A Brazilian Perspective of Power Systems Integration Using OSeMOSYS SAMBA—South America Model Base—And the Bargaining Power of Neighbouring Countries: A Cooperative Games Approach. Energy Policy 2018, 115, 470–485. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V. Energy System Analysis of 100% Renewable Energy Systems—The Case of Denmark in Years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Doepfert, M.; Castro, R. Techno-Economic Optimization of a 100% Renewable Energy System in 2050 for Countries with High Shares of Hydropower: The Case of Portugal. Renew. Energy 2021, 165, 491–503. [Google Scholar] [CrossRef]
- Menapace, A.; Thellufsen, J.Z.; Pernigotto, G.; Roberti, F.; Gasparella, A.; Righetti, M.; Baratieri, M.; Lund, H. The Design of 100% Renewable Smart Urb an Energy Systems: The Case of Bozen-Bolzano. Energy 2020, 207, 118198. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. On the Road to 100% Renewable Energy Systems in Isolated Islands. Energy 2020, 198, 117321. [Google Scholar] [CrossRef]
- Arévalo, P.; Cano, A.; Jurado, F. Mitigation of Carbon Footprint with 100% Renewable Energy System by 2050: The Case of Galapagos Islands. Energy 2022, 245, 123247. [Google Scholar] [CrossRef]
- Bamisile, O.; Wang, X.; Adun, H.; Joseph Ejiyi, C.; Obiora, S.; Huang, Q.; Hu, W. A 2030 and 2050 Feasible/Sustainable Decarbonization Perusal for China’s Sichuan Province: A Deep Carbon Neutrality Analysis and EnergyPLAN. Energy Convers. Manag. 2022, 261, 115605. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N. Zero Carbon Energy System of South East Europe in 2050. Appl. Energy 2016, 184, 1517–1528. [Google Scholar] [CrossRef]
- Meschede, H.; Bertheau, P.; Khalili, S.; Breyer, C. A Review of 100% Renewable Energy Scenarios on Islands. WIREs Energy Environ. 2022, 11, e450. [Google Scholar] [CrossRef]
- Lopez, G.; Aghahosseini, A.; Child, M.; Khalili, S.; Fasihi, M.; Bogdanov, D.; Breyer, C. Impacts of Model Structure, Framework, and Flexibility on Perspectives of 100% Renewable Energy Transition Decision-Making. Renew. Sustain. Energy Rev. 2022, 164, 112452. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Lund, H.; Thellufsen, J.Z.; Sorknæs, P.; Mathiesen, B.V. Review and Validation of EnergyPLAN. Renew. Sustain. Energy Rev. 2022, 168, 112724. [Google Scholar] [CrossRef]
- Yang, D.; Liu, D.; Huang, A.; Lin, J.; Xu, L. Critical Transformation Pathways and Socio-Environmental Benefits of Energy Substitution Using a LEAP Scenario Modeling. Renew. Sustain. Energy Rev. 2021, 135, 110116. [Google Scholar] [CrossRef]
- Hainoun, A.; Seif Aldin, M.; Almoustafa, S. Formulating an Optimal Long-Term Energy Supply Strategy for Syria Using MESSAGE Model. Energy Policy 2010, 38, 1701–1714. [Google Scholar] [CrossRef]
- Chen, T.; Pipattanasomporn, M.; Rahman, I.; Jing, Z.; Rahman, S. MATPLAN: A Probability-Based Planning Tool for Cost-Effective Grid Integration of Renewable Energy. Renew. Energy 2020, 156, 1089–1099. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A Review of Computer Tools for Analysing the Integration of Renewable Energy into Various Energy Systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Lund, H.; Thellufsen, J.Z.; Sorknæs, P.; Mathiesen, B.V.; Chang, M.; Madsen, P.T.; Kany, M.S.; Skov, I.R. Smart Energy Denmark. A Consistent and Detailed Strategy for a Fully Decarbonized Society. Renew. Sustain. Energy Rev. 2022, 168, 112777. [Google Scholar] [CrossRef]
- Kamani, D.; Ardehali, M.M. Long-Term Forecast of Electrical Energy Consumption with Considerations for Solar and Wind Energy Sources. Energy 2023, 268, 126617. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Fulli, G.; Yesilbudak, M.; Covrig, C.-F. A Survey on the Critical Issues in Smart Grid Technologies. Renew. Sustain. Energy Rev. 2016, 54, 396–405. [Google Scholar] [CrossRef]
- Mishra, A.; Jha, A.V.; Appasani, B.; Ray, A.K.; Gupta, D.K.; Ghazali, A.N. Emerging Technologies and Design Aspects of next Generation Cyber Physical System with a Smart City Application Perspective. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 699–721. [Google Scholar] [CrossRef]
- Mastoi, M.S.; Zhuang, S.; Munir, H.M.; Haris, M.; Hassan, M.; Alqarni, M.; Alamri, B. A Study of Charging-Dispatch Strategies and Vehicle-to-Grid Technologies for Electric Vehicles in Distribution Networks. Energy Rep. 2023, 9, 1777–1806. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Cameron, M.A.; Hennessy, E.M.; Petkov, I.; Meyer, C.B.; Gambhir, T.K.; Maki, A.T.; Pfleeger, K.; Clonts, H.; McEvoy, A.L.; et al. 100% Clean and Renewable Wind, Water, and Sunlight (WWS) All-Sector Energy Roadmaps for 53 Towns and Cities in North America. Sustain. Cities Soc. 2018, 42, 22–37. [Google Scholar] [CrossRef]
- Vidal-Amaro, J.J.; Sheinbaum-Pardo, C. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 47–66. [Google Scholar] [CrossRef]
- Burke, M.J.; Stephens, J.C. Political Power and Renewable Energy Futures: A Critical Review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.-F.; Parra, R. Renewable Energy Research Progress in Mexico: A Review. Renew. Sustain. Energy Rev. 2014, 32, 140–153. [Google Scholar] [CrossRef]
- Mejía-Montero, A.; Alonso-Serna, L.; Altamirano-Allende, C. Chapter 17—The Role of Social Resistance in Shaping Energy Transition Policy in Mexico: The Case of Wind Power in Oaxaca. In The Regulation and Policy of Latin American Energy Transitions; Noura Guimarães, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 303–318. ISBN 978-0-12-819521-5. [Google Scholar]
- Echeverri Martinez, R.; Zayas Pérez, B.E.; Espinosa Reza, A.; Rodríguez-Martínez, A.; Caicedo Bravo, E.; Alfonso Morales, W. Optimal Planning, Design and Operation of a Regional Energy Mix Using Renewable Generation. Study Case: Yucatan Peninsula. Int. J. Sustain. Energy 2021, 40, 283–309. [Google Scholar] [CrossRef]
- Arenas-López, J.P.; Badaoui, M. Analysis of the Offshore Wind Resource and Its Economic Assessment in Two Zones of Mexico. Sustain. Energy Technol. Assess. 2022, 52, 101997. [Google Scholar] [CrossRef]
- Dunlap, A. More Wind Energy Colonialism(s) in Oaxaca? Reasonable Findings, Unacceptable Development. Energy Res. Soc. Sci. 2021, 82, 102304. [Google Scholar] [CrossRef]
- Zárate-Toledo, E.; Wood, P.; Patiño, R. In Search of Wind Farm Sustainability on the Yucatan Coast: Deficiencies and Public Perception of Environmental Impact Assessment in Mexico. Energy Policy 2021, 158, 112525. [Google Scholar] [CrossRef]
- Martínez-Mendoza, E.; Rivas-Tovar, L.A.; García-Santamaría, L.E. Wind Energy in the Isthmus of Tehuantepec: Conflicts and Social Implications. Environ. Dev. Sustain. 2021, 23, 11706–11731. [Google Scholar] [CrossRef]
- Sovacool, B.K. Clean, Low-Carbon but Corrupt? Examining Corruption Risks and Solutions for the Renewable Energy Sector in Mexico, Malaysia, Kenya and South Africa. Energy Strategy Rev. 2021, 38, 100723. [Google Scholar] [CrossRef]
- Bouquet, E. State-Led Land Reform and Local Institutional Change: Land Titles, Land Markets and Tenure Security in Mexican Communities. World Dev. 2009, 37, 1390–1399. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Mohammadi, S.; Khastieva, D.; Hesamzadeh, M.R.; Bertsch, V.; Bunn, D. An Optimal Real-Time Pricing Strategy for Aggregating Distributed Generation and Battery Storage Systems in Energy Communities: A Stochastic Bilevel Optimization Approach. Int. J. Electr. Power Energy Syst. 2023, 147, 108770. [Google Scholar] [CrossRef]
- Villante, C. A Novel SW Tool for the Evaluation of Expected Benefits of V2H Charging Devices Utilization in V2B Building Contexts. Energies 2023, 16, 2969. [Google Scholar] [CrossRef]
- Geografía de México. Wikipedia, la Enciclopedia Libre. 2023. Available online: https://es.wikipedia.org/wiki/M%C3%A9xico (accessed on 7 August 2023).
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN—Advanced Analysis of Smart Energy Systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Case Studies. EnergyPLAN. 2013. Available online: https://www.energyplan.eu/useful_resources/casestudies/ (accessed on 7 August 2023).
- Documentation. EnergyPLAN. 2013. Available online: https://www.energyplan.eu/training/documentation/ (accessed on 7 August 2023).
- Mexico—Countries & Regions. Available online: https://www.iea.org/countries/mexico (accessed on 7 August 2023).
- Energía, S. de Balance Nacional de Energía. Available online: http://www.gob.mx/sener/articulos/balance-nacional-de-energia-296106 (accessed on 7 August 2023).
- Electricity in Mexico. Available online: https://www.statista.com/study/136740/electricity-in-mexico/ (accessed on 28 August 2023).
- México—Consumo de Electricidad 2021|Datosmacro.com. Available online: https://datosmacro.expansion.com/energia-y-medio-ambiente/electricidad-consumo/mexico (accessed on 8 August 2023).
- Outlook. Available online: https://www.irena.org/Energy-Transition/Outlook (accessed on 8 August 2023).
- Padilla, F. Energía Renovable En México ¿Cuál Es Su Potencial? Available online: https://www.ric.mx/cultura/energia/energia-renovable-en-mexico/ (accessed on 8 August 2023).
- BID. ¿Cuál es el potencial de la energía renovable en México y Centroamérica? Sostenibilidad. 2014. Available online: https://blogs.iadb.org/sostenibilidad/es/cual-es-el-potencial-de-la-energia-renovable-en-mexico-y-centroamerica/ (accessed on 7 August 2023).
- Energy & Commerce. Potencial de la energía eólica en México 2021. Energy & Commerce. 2021. Available online: https://energyandcommerce.com.mx/potencial-de-la-energia-eolica-en-mexico-2021/ (accessed on 7 August 2023).
- Energía, S. de Programa de Desarrollo del Sistema Eléctrico Nacional 2023–2037. Available online: http://www.gob.mx/sener/articulos/programa-de-desarrollo-del-sistema-electrico-nacional-2023-2037 (accessed on 8 August 2023).
- Twenergy Estados líderes en la producción de energías renovables en México. Available online: https://twenergy.com/energia/energias-renovables/estados-lideres-energias-renovables-mexico/ (accessed on 28 August 2023).
- Energy Transition Law|Climate Policy Database. Available online: https://climatepolicydatabase.org/policies/energy-transition-law (accessed on 29 August 2023).
- Programa de Desarrollo del Sistema Eléctrico Nacional 2017–2031|Ariae. Available online: https://www.ariae.org/servicio-documental/programa-de-desarrollo-del-sistema-electrico-nacional-2017-2031 (accessed on 8 August 2023).
- CEMIE-Hidro Potencial Hidroeléctrico de México. Available online: https://www.imta.gob.mx/biblioteca/libros/Potencial-Hidroelectrico-Mexico-1era-Parte.pdf (accessed on 10 September 2023).
- Mapas de Recursos Solares de Mexico. Available online: https://solargis.com/es/maps-and-gis-data/download/mexico (accessed on 8 August 2023).
- Generación distribuida Alcanza 100,000 Contratos de Interconexión: Asolmex. Energía Hoy. 2019. Available online: https://162.214.97.163/~energiah/2019/08/06/generacion-distribuida-alcanza-100000-contratos-de-interconexion-asolmex/ (accessed on 7 August 2023).
- Asociación Mexicana de Energía Eólica El Potencial Eólico Mexicano. Available online: https://amdee.org/Publicaciones/AMDEE-PwC-El-potencial-eolico-mexicano.pdf (accessed on 7 August 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info (accessed on 17 October 2020).
- Intelligence, S. Bioenergía. Available online: https://www.oise.mx/biomasa (accessed on 9 August 2023).
- La biomasa en México, un negocio por desarrollar|RETEMA. Available online: https://www.retema.es/actualidad/biomasa-mexico-un-negocio-desarrollar (accessed on 9 August 2023).
- Instituto Nacional de Estadística y Geografía (INEGI). Available online: https://www.inegi.org.mx/ (accessed on 9 August 2023).
- Welcome to Global Land Cover Viewer. Available online: http://lcviewer.vito.be/2019/Mexico (accessed on 9 August 2023).
- Simon, S.; Naegler, T.; Gils, H.C. Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America. Energies 2018, 11, 907. [Google Scholar] [CrossRef]
- Basheer, M.A.; Boelens, L.; Bijl, R. van der Bus Rapid Transit System: A Study of Sustainable Land-Use Transformation, Urban Density and Economic Impacts. Sustainability 2020, 12, 3376. [Google Scholar] [CrossRef]
- Lozano, F.J.; Lozano-García, D.F.; Castellanos, A.M.; Flores-Tlacuahuac, A. Residual Biomass Use for Energy Generation. In Energy Issues and Transition to a Low Carbon Economy: Insights from Mexico; Lozano, F.J., Mendoza, A., Molina, A., Eds.; Strategies for Sustainability; Springer International Publishing: Cham, Switzerland, 2022; pp. 237–270. ISBN 978-3-030-75661-1. [Google Scholar]
- Zhang, N.; Sun, Q.; Yang, L.; Li, Y. Event-Triggered Distributed Hybrid Control Scheme for the Integrated Energy System. IEEE Trans. Ind. Inform. 2022, 18, 835–846. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Transactions on Industrial Informatics 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N.; Yang, J.; Wang, Y.; Kang, C. Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. IEEE Trans. Smart Grid 2019, 10, 1452–1464. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Men, Y.; Chen, B.; Lu, X. Optimal Energy Storage System and Smart Switch Placement in Dynamic Microgrids With Applications to Marine Energy Integration. IEEE Trans. Sustain. Energy 2023, 14, 1205–1216. [Google Scholar] [CrossRef]
- Martinez, N.; Komendantova, N. The Effectiveness of the Social Impact Assessment (SIA) in Energy Transition Management: Stakeholders’ Insights from Renewable Energy Projects in Mexico. Energy Policy 2020, 145, 111744. [Google Scholar] [CrossRef]
- Castrejon-Campos, O. Evolution of Clean Energy Technologies in Mexico: A Multi-Perspective Analysis. Energy Sustain. Dev. 2022, 67, 29–53. [Google Scholar] [CrossRef]
- Santillán Vera, M.; García Manrique, L.; Rodríguez Peña, I.; De La Vega Navarro, A. Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition. Energy Policy 2023, 173, 113316. [Google Scholar] [CrossRef]
Year | Electricity Supply GWh | Consumption GWh | Consumption Per Capita kWh |
---|---|---|---|
2021 | 336,958 | 300,957 | 2375.30 |
2020 | 325,506 | 292,530 | 2289.10 |
2019 | 318,078 | 278,883 | 2203.30 |
2018 | 332,010 | 291,182 | 2323.40 |
2017 | 309,143 | 265,575 | 2141.00 |
2016 | 303,036 | 263,298 | 2145.60 |
2015 | 297,867 | 256,557 | 2114.20 |
(PJ/a) | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|
Transport (incl. electricity) | 2269 | 2194 | 1839 | 1710 |
Heat (incl. electricity) | 1538 | 1538 | 2131 | 2618 |
Power | 1331 | 1331 | 2565 | 3367 |
For the transport | 14 | 14 | 413 | 573 |
For the heat | 170 | 170 | 243 | 400 |
2020 | 2030 | 2040 | 2050 | % in 2050 | |
---|---|---|---|---|---|
Nuclear | 12 | 0 | 0 | 0 | 0 |
Oil & coal | 70 | 15 | 0 | 0 | 0 |
Gas | 200 | 170 | 120 | 70 | 7 |
Hydrogen | 0 | 0 | 0 | 0 | 0 |
Hydro | 35 | 75 | 115 | 145 | 14.5 |
Wind | 25 | 100 | 170 | 250 | 25 |
PV | 20 | 110 | 210 | 300 | 30 |
Biomass | 5 | 15 | 25 | 25 | 2.5 |
Geothermal | 22 | 30 | 35 | 42 | 4.2 |
CSP | 0 | 35 | 80 | 138 | 13.8 |
Ocean | 0 | 6 | 10 | 20 | 2 |
Total | 389 | 556 | 765 | 1000 | 100% |
Source | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|
Oil Products | 2150 | 1700 | 900 | 0 |
Natural gas | 50 | 75 | 100 | 150 |
Biofuels | 100 | 130 | 150 | 200 |
Electricity | 0 | 400 | 1000 | 1650 |
RE Hidrogen | 0 | 75 | 250 | 450 |
Total | 2300 | 2380 | 2400 | 2450 |
Policies | Year | Status | Jurisdiction |
---|---|---|---|
General Law of Climate Change (Mexico) | 2022 | In force | National |
Heavy-duty Vehicle Emission Standards | 2021 | In force | National |
2022 Package against inflation & famine-Transport fuel and power subsidies | 2022 | In force | National |
Draft standard PROY-NOM-014-ENER-2020, Energy efficiency of alternating current, single-phase, induction electric motors, squirrel cage type, cooled with air, in nominal power from 0.180 kW to 2.238 kW. Limits, testing method and labelling. | 2021 | In force | National |
Nationally Determined Contribution (NDC) to the Paris Agreement (2022 Update)-Mexico | 2022 | In force | National |
NOM-031-ENER-2019: Energy efficiency of LED luminaires for roads and public outdoor areas. Specifications and testing methods | 2021 | In force | National |
Nationally Determined Contribution (NDC) to the Paris Agreement: Mexico | 2022 | In force | National |
Special Program on Climate Change 2021–2024 | 2021 | In force | National |
Photovoltaic Power Plant at Central de Abasto (CEFV CEDA) | 2021 | In force | National |
Draft standard PROY-NOM-022-ENER/SE-2020, Energy efficiency and user safety requirements for self-contained commercial refrigeration appliances. Limits, testing methods and labeling. | 2021 | In force | National |
Official Mexican Standard NOM-013-ASEA-2021. Facilities for Storage and Regasification of LNG | 2021 | Announced | National |
NOM-012-ENER-2019: Energy efficiency in condensing and evaporating units for refrigeration. Limits, testing and labelling methods | 2020 | In force | National |
Emissions Trading System | 2020 | In force | National |
Transition Strategy to Promote the Use of Cleaner Technologies and Fuels | 2020 | In force | National |
Increased electricity prices | 2020 | In force | National |
National Programme for the Sustainable Use of Energy 2020–2024 | 2020 | In force | National |
“Hoy No Circula” Programme | 2019 | In force | City/Municipal |
Call for Third-party Verifiers for the Guidelines for the prevention and comprehensive control of methane emissions from the hydrocarbons sector. | 2019 | In force | National |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Icaza-Alvarez, D.; Galan-Hernandez, N.D.; Orozco-Guillen, E.E.; Jurado, F. Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050. Energies 2023, 16, 7121. https://doi.org/10.3390/en16207121
Icaza-Alvarez D, Galan-Hernandez ND, Orozco-Guillen EE, Jurado F. Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050. Energies. 2023; 16(20):7121. https://doi.org/10.3390/en16207121
Chicago/Turabian StyleIcaza-Alvarez, Daniel, Nestor Daniel Galan-Hernandez, Eber Enrique Orozco-Guillen, and Francisco Jurado. 2023. "Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050" Energies 16, no. 20: 7121. https://doi.org/10.3390/en16207121
APA StyleIcaza-Alvarez, D., Galan-Hernandez, N. D., Orozco-Guillen, E. E., & Jurado, F. (2023). Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050. Energies, 16(20), 7121. https://doi.org/10.3390/en16207121