The Potential for Rooftop Photovoltaic Systems in Nepal
Abstract
:1. Introduction
2. Method
2.1. Rooftop Area Estimation
2.2. Solar Insolation Estimation
2.3. Estimating the RPV Potential
3. Results
3.1. Validation of the Rooftop Area
3.2. Potential for RPV
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ADB. Nepal Energy Sector Assessment, Strategy, and Roadmap. Asian Development Bank. 2017. Available online: https://www.adb.org/sites/default/files/publication/356466/nepal-energy-assessment-road-map.pdf (accessed on 10 January 2022).
- UNDP. In Depth UNDP in Nepal. 2021. Available online: https://www.np.undp.org/content/nepal/en/home/energy-environment-climate-and-disaster-risk-management/in-depth.html (accessed on 10 January 2022).
- WECS. Electricity Demand Forecast Report (2015–2040). 17 January 2017. Available online: http://www.wecs.gov.np/uploaded/Electricity-Demand-Forecast-Report-2014-2040.pdf (accessed on 10 January 2022).
- Nepal Electricity Authority. Nepal Electricity Authority: A Year in Review. Fiscal Year 2019/2020; Kathmandu: Bagmati, Nepal, 2020. [Google Scholar]
- United States Agency for International Development (USAID). Nepal Hydropower Development Program. 2018. Available online: https://www.usaid.gov/nepal/fact-sheets/nepal-hydropower-development-program (accessed on 10 January 2022).
- Lohani, S.P.; Blakers, A. 100% renewable energy with pumped-hydro-energy storage in Nepal. Clean Energy 2021, 5, 243–253. [Google Scholar] [CrossRef]
- Lohani, S.P.; Gurung, P.; Gautam, B.; Fulford, D.; Jeuland, M. Current Status, Prospects, and Implications of Renewable Energy for Achieving Sustainable Development Goals in Nepal. Sustain. Dev. 2022; in press. [Google Scholar] [CrossRef]
- Gyawali, S.K. Socio-Economic Impacts of Hydropower Development: A case Study of Budhigandaki Hydropower Affected Darbungphaat and Majhitaar Villages of Gorkha and Dhading Districts. In Proceedings of the IOE Graduate Conference, Kathmandu, Nepal, 19–22 October 2019; pp. 65–77. [Google Scholar]
- Evans, S. Solar is Now ‘Cheapest Electricity in History’, Confirms IEA. CarbonBrief. 2020. Available online: https://www.carbonbrief.org/solar-is-now-cheapest-electricity-in-history-confirms-iea (accessed on 10 January 2022).
- Vorrath, S. New Rooftop Solar Milestone, as Australia Tops 3GW in 2021. RenewEconomy. Available online: https://reneweconomy.com.au/new-rooftop-solar-milestone-as-australia-tops-3gw-in-2021/ (accessed on 20 August 2022).
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 10 October 2021).
- Boz, M.B.; Calvert, K.; Brownson, J.R. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR. AIMS Energy 2015, 3, 401–420. [Google Scholar] [CrossRef]
- Kodysh, J.B.; Omitaomu, O.A.; Bhaduri, B.L.; Neish, B.S. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain. Cities Soc. 2013, 8, 31–41. [Google Scholar] [CrossRef]
- Brito, M.C.; Redweik, P.; Catita, C.; Freitas, S.; Santos, M. 3D solar potential in the urban environment: A case study in lisbon. Energies 2019, 12, 3457. [Google Scholar] [CrossRef] [Green Version]
- Redweik, P.; Catita, C.; Brito, M. Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 2013, 97, 332–341. [Google Scholar] [CrossRef]
- Jurasz, J.K.; Dąbek, P.B.; Campana, P.E. Can a city reach energy self-sufficiency by means of rooftop photovoltaics? Case study from Poland. J. Clean. Prod. 2020, 245, 118813. [Google Scholar] [CrossRef]
- Castellanos, S.; Sunter, D.A.; Kammen, D.M. Rooftop solar photovoltaic potential in cities: How scalable are assessment approaches? Environ. Res. Lett. 2017, 12, 125005. [Google Scholar] [CrossRef]
- Kurdgelashvili, L.; Li, J.; Shih, C.H.; Attia, B. Estimating technical potential for rooftop photovoltaics in California, Arizona and New Jersey. Renew. Energy 2016, 95, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, H.; Peter, S. Assessment of Roof Façade Potentials for Solar Use in Europe; Insitute for Sustainable Solutions and Innovations (ISUSI): Aachen, Germany, 2003. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Asif, M.; Stach, E. Rooftop PV potential in the residential sector of the kingdom of Saudi Arabia. Buildings 2017, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Banerjee, R. Estimation of rooftop solar photovoltaic potential of a city. Sol. Energy 2015, 115, 589–602. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M.H. Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi—Pakistan. Renew. Energy 2016, 90, 188–203. [Google Scholar] [CrossRef]
- Wiese, F.; Bökenkamp, G.; Wingenbach, C.; Hohmeyer, O. An open source energy system simulation model as an instrument for public participation in the development of strategies for a sustainable future. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 490–504. [Google Scholar] [CrossRef]
- Pfenninger, S.; DeCarolis, J.; Hirth, L.; Quoilin, S.; Staffell, I. The importance of open data and software: Is energy research lagging behind? Energy Policy 2017, 101, 211–215. [Google Scholar] [CrossRef]
- OpenStreetMap. 2021. Available online: https://www.openstreetmap.org/search?query=Kathmandu#map=19/27.68616/85.33343 (accessed on 10 January 2022).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov (accessed on 15 July 2021).
- Hetrick, W.A.; Rich, P.M.; Barnes, F.J.; Weiss, S.B. GIS-based solar radiation flux models. Am. Soc. Photogramm. Remote Sens. Tech. Pap. 1993, 3, 132–143. [Google Scholar]
- Fu, P.; Rich, P.M. Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at Landscape Scales. In Proceedings of the 19th Annual ESRI User Conference, San Diego, CA, USA, 1–24 February 1999. [Google Scholar]
- Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. [Google Scholar] [CrossRef]
- Pillai, I.R.; Banerjee, R. Methodology for estimation of potential for solar water heating in a target area. Sol. Energy 2007, 81, 162–172. [Google Scholar] [CrossRef]
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Mishra, T.; Rabha, A.; Kumar, U.; Arunachalam, K.; Sridhar, V. Assessment of solar power potential in a hill state of India using remote sensing and Geographic Information System. Remote Sens. Appl. Soc. Environ. 2020, 19, 100370. [Google Scholar] [CrossRef]
- Gastli, A.; Charabi, Y. Solar electricity prospects in Oman using GIS-based solar radiation maps. Renew. Sustain. Energy Rev. 2010, 14, 790–797. [Google Scholar] [CrossRef]
- Mahtta, R.; Joshi, P.K.; Jindal, A.K. Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renew. Energy 2014, 71, 255–262. [Google Scholar] [CrossRef]
- Charfi, W.; Chaabane, M.; Mhiri, H.; Bournot, P. Performance evaluation of a solar photovoltaic system. Energy Rep. 2018, 4, 400–406. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Bergamasco, L.; Asinari, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Sol. Energy 2011, 85, 1041–1055. [Google Scholar] [CrossRef]
- CBS, Center Bureau of Statistics 2021, National Planning Commission, Government of Nepal. Available online: https://cbs.gov.np/population/ (accessed on 10 February 2022).
- The World Bank. (n.d.). Urban Population—Nepal|Data. 2020. Retrieved 19 September 2021. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL?locations=NP (accessed on 10 January 2022).
- Himalayan News Service. Electricity Consumption Increases to 267 Units. The Himalayan Times. 2020. Available online: https://thehimalayantimes.com/business/electricity-consumption-increases-to-267-units (accessed on 10 January 2022).
- White Paper; Ministry of Energy Water Resource and Irrigation. Energy, Water Resource and Irrigation Sector’s Current Situation and Future Prospects. 2018. Available online: https://moewri.gov.np/storage/listies/May2020/white-paper-2075-with-annex02.pdf (accessed on 10 January 2022).
- Solar Electric Manufacturer’s Association Nepal (SEMAN). Solar Energy Technology in Nepal. 2019. Available online: https://www.semannepal.org.np/publications/solar-energy-technology-in-nepal (accessed on 5 August 2019).
- IRENA. Renewable Power Generation Costs in 2019. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf (accessed on 31 March 2021).
- National Planning Commission. 15th Plan Approach Paper. 2019. Available online: https://npc.gov.np/images/category/15th_Plan_Approach_Paper2.pdf (accessed on 10 January 2022).
Parameter | Value | Parameter | Value |
---|---|---|---|
DEM Resolution | 30 m | Slope Aspect Input | DEM |
Latitude | 27.70 | Time Configuration * | Whole Year with Monthly Interval (2020) |
Sky Size | 200 | Calculation Directions | 32 |
Day Interval Hour | 14 | Hour Interval | 0.5 |
Zenith Division | 8 | Azimuth Number | 8 |
Diffuse Proportion | 0.3 | Diffuse Model Type | Uniform Sky |
Z-units | 0.0001 | Transmittivity | 0.5 |
Study | Year | Location | ARA |
---|---|---|---|
Pillai & Banerjee [31] | 2007 | Pune, India | 0.30 |
Izquierdo et al. [30] | 2008 | Spain | 0.22–0.43 |
Wiginton et al. [32] | 2010 | Ontario, Canada | 0.3 |
Singh & Banerjee [21] | 2015 | Mumbai, India | 0.28 |
Mishra et al. [33] | 2020 | Uttarakhand, India | 0.25 |
Method | Rooftop Area per Person (sqm) |
---|---|
Manual Digitization | 19.2 |
Household Survey | 21.5 |
OpenStreetMap | 20.8 |
City | Population * | Total Rooftop Area (Million m2) | Rooftop Area per Person (m2) |
---|---|---|---|
Kathmandu | 682,751 | 14.40 | 21.09 |
Pokhara | 529,842 | 9.97 | 18.82 |
Biratnagar | 225,396 | 4.11 | 18.23 |
Butwal | 57,220 | 1.31 | 22.89 |
Nepalgunj | 122,236 | 2.52 | 20.62 |
Average Rooftop Area per person | 20.3 |
Month/City | Biratnagar GWh | Nepalgunj GWh | Kathmandu GWh | Pokhara GWh | Butwal GWh |
---|---|---|---|---|---|
January | 10.09 | 5.8 | 40.7 | 24.8 | 3.2 |
February | 12.1 | 7.2 | 36.5 | 22.4 | 3.9 |
March | 18.1 | 10.9 | 54.2 | 33.5 | 5.8 |
April | 21.5 | 13.1 | 64.2 | 39.9 | 6.8 |
May | 24.5 | 15.2 | 73.6 | 45.9 | 7.8 |
June | 24.4 | 15.2 | 73.5 | 45.9 | 7.7 |
July | 24.9 | 15.4 | 74.8 | 46.7 | 7.9 |
August | 23.1 | 14.2 | 69.2 | 43.1 | 7.3 |
September | 19.4 | 11.7 | 58.0 | 36.0 | 6.2 |
October | 14.2 | 8.5 | 42.8 | 26.3 | 4.5 |
November | 10.4 | 6.1 | 31.5 | 19.2 | 3.3 |
December | 9.1 | 5.2 | 27.6 | 16.7 | 2.9 |
Total (GWh) | 211.9 | 96.0 | 636.0 | 394.0 | 67.3 |
Per Capita (MWh) | 0.9 | 1.1 | 1.2 | 1.0 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafle, U.; Anderson, T.; Lohani, S.P. The Potential for Rooftop Photovoltaic Systems in Nepal. Energies 2023, 16, 747. https://doi.org/10.3390/en16020747
Kafle U, Anderson T, Lohani SP. The Potential for Rooftop Photovoltaic Systems in Nepal. Energies. 2023; 16(2):747. https://doi.org/10.3390/en16020747
Chicago/Turabian StyleKafle, Ural, Timothy Anderson, and Sunil Prasad Lohani. 2023. "The Potential for Rooftop Photovoltaic Systems in Nepal" Energies 16, no. 2: 747. https://doi.org/10.3390/en16020747
APA StyleKafle, U., Anderson, T., & Lohani, S. P. (2023). The Potential for Rooftop Photovoltaic Systems in Nepal. Energies, 16(2), 747. https://doi.org/10.3390/en16020747