Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings
Abstract
:1. Introduction
2. Review Methodology
3. Overview of Different BIPV Typologies
3.1. Standard BIPV Systems
3.2. Concentrating BIPV Systems (BICPVs)
3.3. Photovoltaic–Thermal Systems (BIPVTs)
3.4. Semi-Transparent Photovoltaic Systems (STBIPVs)
4. Applications
4.1. Standard BIPV Systems
4.2. Concentrating BIPV Systems
4.2.1. Opaque BICPVs
4.2.2. Semitransparent BICPVs
4.3. BIPVT Systems
4.4. Semi-Transparent BIPV Systems
5. Discussion and Future Perspectives
5.1. Economical Consideration on the Spread of BIPVs
5.2. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutta, R.; Chanda, K.; Maity, R. Future of Solar Energy Potential in a Changing Climate across the World: A CMIP6 Multi-Model Ensemble Analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Masson, G.; Bosch, E.; Van Rechem, A.; de l’Epine, M. Snapshot of Global PV Markets 2023 Task 1 Strategic PV Analysis and Outreach PVPS; Report IEA-PVPS T1-44:2023; IEA PVPS: Paris, France, 2023; ISBN 978-3-907281-43-7. [Google Scholar]
- International Energy Agency (IEA). Renewable Energy Market Update Outlook for 2023 and 2024. 2023. Available online: https://iea.blob.core.windows.net/assets/63c14514-6833-4cd8-ac53-f9918c2e4cd9/RenewableEnergyMarketUpdate_June2023.pdf (accessed on 28 July 2023).
- Selimefendigil, F.; Şirin, C. Experimental Investigation of a Parabolic Greenhouse Dryer Improved with Copper Oxide Nano-Enhanced Latent Heat Thermal Energy Storage Unit. Int. J. Energy Res. 2021, 46, 3647–3662. [Google Scholar] [CrossRef]
- Boschetti, M.; Vincenzi, D.; Mangherini, G.; Bernardoni, P.; Andreoli, A.; Gjestila, M.; Camattari, R.; Fugattini, S.; Caramori, S.; Cristino, V.; et al. Modular Stand-Alone Photoelectrocatalytic Reactor for Emergent Contaminant Degradation via Solar Radiation. Sol. Energy 2021, 228, 120–127. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.G. Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger Solar Power Plants Increase Local Temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef]
- Gorman, C.E.; Torsney, A.; Gaughran, A.; McKeon, C.M.; Farrell, C.A.; White, C.; Donohue, I.; Stout, J.C.; Buckley, Y.M. Reconciling Climate Action with the Need for Biodiversity Protection, Restoration and Rehabilitation. Sci. Total Environ. 2023, 857, 159316. [Google Scholar] [CrossRef]
- EUR-Lex Directive (EU) 2018/844 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG (accessed on 11 July 2023).
- Zhang, H.; Chen, H.; Liu, H.; Huang, J.; Guo, X.; Li, M. Design and Performance Study of a Low Concentration Photovoltaic-Thermal Module. Int. J. Energy Res. 2018, 42, 2199–2212. [Google Scholar] [CrossRef]
- Dos Santos, Í.P.; Rüther, R. The Potential of Building-Integrated (BIPV) and Building-Applied Photovoltaics (BAPV) in Single-Family, Urban Residences at Low Latitudes in Brazil. Energy Build. 2012, 50, 290–297. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A Review of Solar Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Eiffert, P.; Kiss, G.J. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects; DIANE Publishing: Darby, PA, USA, 2000. [Google Scholar]
- Happle, G.; Shi, Z.; Hsieh, S.; Ong, B.; Fonseca, J.A.; Schlueter, A. Identifying Carbon Emission Reduction Potentials of BIPV in High-Density Cities in Southeast Asia. J. Phys. Conf. Ser. 2019, 1343, 012077. [Google Scholar] [CrossRef]
- Shabunko, V.; Badrinarayanan, S.; Pillai, D.S. Evaluation of In-Situ Thermal Transmittance of Innovative Building Integrated Photovoltaic Modules: Application to Thermal Performance Assessment for Green Mark Certification in the Tropics. Energy 2021, 235, 121316. [Google Scholar] [CrossRef]
- De Boeck, L.; Verbeke, S.; Audenaert, A.; De Mesmaeker, L. Improving the Energy Performance of Residential Buildings: A Literature Review. Renew. Sustain. Energy Rev. 2015, 52, 960–975. [Google Scholar] [CrossRef]
- Polo López, C.S.; Troia, F.; Nocera, F. Photovoltaic Bipv Systems and Architectural Heritage: New Balance between Conservation and Transformation. an Assessment Method for Heritage Values Compatibility and Energy Benefits of Interventions. Sustainability 2021, 13, 5107. [Google Scholar] [CrossRef]
- Tavares, P.; Bernardo, H.; Gaspar, A.; Martins, A. Control Criteria of Electrochromic Glasses for Energy Savings in Mediterranean Buildings Refurbishment. Sol. Energy 2016, 134, 236–250. [Google Scholar] [CrossRef]
- Gratia, E.; De Herde, A. Design of Low Energy Office Buildings. Energy Build. 2003, 35, 473–491. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero Carbon Buildings Refurbishment—A Hierarchical Pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Carlucci, F.; Negendahl, K.; Fiorito, F. Energy Flexibility of Building Systems in Future Scenarios: Optimization of the Control Strategy of a Dynamic Shading System and Definition of a New Energy Flexibility Metric. Energy Build. 2023, 289, 113056. [Google Scholar] [CrossRef]
- Hawila, A.A.W.; Merabtine, A.; Troussier, N.; Bennacer, R. Combined Use of Dynamic Building Simulation and Metamodeling to Optimize Glass Facades for Thermal Comfort. Build. Environ. 2019, 157, 47–63. [Google Scholar] [CrossRef]
- Nageib, A.; Elzafarany, A.M.; Elhefnawy, M.H.; Mohamed, F.O. Using Smart Glazing for Reducing Energy Consumption on Existing Office Building in Hot Dry Climate. HBRC J. 2020, 16, 157–177. [Google Scholar] [CrossRef]
- De Masi, R.F.; Festa, V.; Gigante, A.; Ruggiero, S.; Peter Vanoli, G. The Role of Windows on Building Performance under Current and Future Weather Conditions of European Climates. Energy Build. 2023, 292, 113177. [Google Scholar] [CrossRef]
- Feng, Y.; Duan, Q.; Wang, J.; Baur, S. Approximation of Building Window Properties Using in Situ Measurements. Build. Environ. 2020, 169, 106590. [Google Scholar] [CrossRef]
- Bowden, S.; Wenham, S.R.; Green, M.A. Application of Static Concentrators to Photovoltaic Roof Tiles. Prog. Photovolt. 1995, 3, 413–423. [Google Scholar] [CrossRef]
- Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Brocato, M.; Calabrese, G.; Guidi, V.; Mondardini, L.; Pozzetti, L.; Tonezzer, M.; Vincenzi, D. Building Integrated Low Concentration Solar System for a Self-Sustainable Mediterranean Villa: The Astonyshine House. Energy Build. 2014, 77, 355–363. [Google Scholar] [CrossRef]
- Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L. Low Concentration Solar Louvres for Building Integration. Proc. AIP Conf. Proc. 2013, 1556, 110–113. [Google Scholar]
- Mallick, T.K.; Eames, P.C. Design and Fabrication of Low Concentrating Second Generation PRIDE Concentrator. Sol. Energy Mater. Sol. Cells 2007, 91, 597–608. [Google Scholar] [CrossRef]
- Muhammad-Sukki, F.; Abu-Bakar, S.H.; Ramirez-Iniguez, R.; McMeekin, S.G.; Stewart, B.G.; Sarmah, N.; Mallick, T.K.; Munir, A.B.; Mohd Yasin, S.H.; Abdul Rahim, R. Mirror Symmetrical Dielectric Totally Internally Reflecting Concentrator for Building Integrated Photovoltaic Systems. Appl. Energy 2014, 113, 32–40. [Google Scholar] [CrossRef]
- Shanks, K.; Senthilarasu, S.; Mallick, T.K. Optics for Concentrating Photovoltaics: Trends, Limits and Opportunities for Materials and Design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. [Google Scholar] [CrossRef]
- Royne, A.; Dey, C.J.; Mills, D.R. Cooling of Photovoltaic Cells under Concentrated Illumination: A Critical Review. Sol. Energy Mater. Sol. Cells 2005, 86, 451–483. [Google Scholar] [CrossRef]
- Alharbi, F.H.; Kais, S. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. [Google Scholar] [CrossRef]
- Salem Ahmed, M.; Mohamed, A.S.A.; Maghrabie, H.M. Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions. J. Sol. Energy Eng. Trans. ASME 2019, 141, 041010. [Google Scholar] [CrossRef]
- Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A.; Mahdavi Adeli, M. An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector. Appl. Energy 2010, 87, 2328–2339. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Yan, Z.; Kyeredey Ansah, M. A Review of Designs and Performance of Façade-Based Building Integrated Photovoltaic-Thermal (BIPVT) Systems. Appl. Therm. Eng. 2021, 182, 116081. [Google Scholar] [CrossRef]
- Nagano, K.; Mochida, T.; Shimakura, K.; Murashita, K.; Takeda, S. Development of Thermal-Photovoltaic Hybrid Exterior Wallboards Incorporating PV Cells in and Their Winter Performances. Sol. Energy Mater. Sol. Cells 2003, 77, 265–282. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Athienitis, A.; Park, K.W. Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System. J. Sol. Energy Eng. Trans. ASME 2011, 133, 021002. [Google Scholar] [CrossRef]
- Fraisse, G.; Ménézo, C.; Johannes, K. Energy Performance of Water Hybrid PV/T Collectors Applied to Combisystems of Direct Solar Floor Type. Sol. Energy 2007, 81, 1426–1438. [Google Scholar] [CrossRef]
- Chow, T.T.; Ji, J.; He, W. Photovoltaic-Thermal Collector System for Domestic Application. J. Sol. Energy Eng. Trans. ASME 2007, 129, 205–209. [Google Scholar] [CrossRef]
- Oropeza-Perez, I.; Østergaard, P.A. Active and Passive Cooling Methods for Dwellings: A Review. Renew. Sustain. Energy Rev. 2018, 82, 531–544. [Google Scholar] [CrossRef]
- Reji Kumar, R.; Samykano, M.; Pandey, A.K.; Kadirgama, K.; Tyagi, V.V. Phase Change Materials and Nano-Enhanced Phase Change Materials for Thermal Energy Storage in Photovoltaic Thermal Systems: A Futuristic Approach and Its Technical Challenges. Renew. Sustain. Energy Rev. 2020, 133, 110341. [Google Scholar] [CrossRef]
- Chow, T.T. A Review on Photovoltaic/Thermal Hybrid Solar Technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Şirin, C.; Goggins, J.; Hajdukiewicz, M. A Review on Building-Integrated Photovoltaic/Thermal Systems for Green Buildings. Appl. Therm. Eng. 2023, 229, 120607. [Google Scholar] [CrossRef]
- Ghosh, A. Potential of Building Integrated and Attached/Applied Photovoltaic (BIPV/BAPV) for Adaptive Less Energy-Hungry Building’s Skin: A Comprehensive Review. J. Clean. Prod. 2020, 276, 123343. [Google Scholar] [CrossRef]
- Ghosh, A. Fenestration Integrated BIPV (FIPV): A Review. Sol. Energy 2022, 237, 213–230. [Google Scholar] [CrossRef]
- Romaní, J.; Ramos, A.; Salom, J. Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations. Energies 2022, 15, 3286. [Google Scholar] [CrossRef]
- Masood, F.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Saidur, R.; Alam, M.A.; Akhter, J.; Yusuf, M.; Mehmood, M.; Ali, M. A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors. Sustainability 2022, 14, 5529. [Google Scholar] [CrossRef]
- Masood, F.; Nor, N.B.M.; Elamvazuthi, I.; Saidur, R.; Alam, M.A.; Akhter, J.; Yusuf, M.; Ali, S.M.; Sattar, M.; Baba, M. The Compound Parabolic Concentrators for Solar Photovoltaic Applications: Opportunities and Challenges. Energy Rep. 2022, 8, 13558–13584. [Google Scholar] [CrossRef]
- Li, Z.; Ma, T.; Yang, H.; Lu, L.; Wang, R. Transparent and Colored Solar Photovoltaics for Building Integration. Sol. RRL 2021, 5, 2000614. [Google Scholar] [CrossRef]
- Taşer, A.; Koyunbaba, B.K.; Kazanasmaz, T. Thermal, Daylight, and Energy Potential of Building-Integrated Photovoltaic (BIPV) Systems: A Comprehensive Review of Effects and Developments. Sol. Energy 2023, 251, 171–196. [Google Scholar] [CrossRef]
- Khencha, K.; Wided, B.R.; Hocine, B. Techno-Economic Study of BIPV in Typical Sahara Region in Algeria. J. Econ. Dev. Environ. People 2020, 9, 27–59. [Google Scholar] [CrossRef]
- Choi, W.J.; Joo, H.J.; Park, J.W.; Kim, S.K.; Lee, J.B. Power Generation Performance of Building-Integrated Photovoltaic Systems in a Zero Energy Building. Energies 2019, 12, 2471. [Google Scholar] [CrossRef]
- Eder, G.; Peharz, G.; Trattnig, R.; Bonomo, P.; Saretta, E.; Frontini, F.; Polo Lopez, C.S.; Rose Wilson, H.; Eisenlohr, J.; Martín Chivelet, N.; et al. COLOURED BIPV Market, Research and Development IEA PVPS Task 15, Report IEA-PVPS T15-07: 2019. 2019. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_15_R07_Coloured_BIPV_report.pdf (accessed on 27 July 2023).
- Shabunko, V.; Bieri, M.; Reindl, T. Building Integrated Photovoltaic Facades in Singapore: Online BIPV LCC Calculator. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 1231–1233. [Google Scholar] [CrossRef]
- Corti, P.; Capannolo, L.; Bonomo, P.; De Berardinis, P.; Frontini, F. Comparative Analysis of BIPV Solutions to Define Energy and Cost-Effectiveness in a Case Study. Energies 2020, 13, 3827. [Google Scholar] [CrossRef]
- Saretta, E.; Caputo, P.; Frontini, F. A Review Study about Energy Renovation of Building Facades with BIPV in Urban Environment. Sustain. Cities Soc. 2019, 44, 343–355. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.J.; Wilberforce, T.; Olabi, A.G. Environmental Impacts of Solar Energy Systems: A Review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef]
- Mohammad Bagher, A. Types of Solar Cells and Application. Am. J. Opt. Photonics 2015, 3, 94. [Google Scholar] [CrossRef]
- Radziemska, E. The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells. Renew. Energy 2003, 28, 1–12. [Google Scholar] [CrossRef]
- Lämmle, M.; Kroyer, T.; Fortuin, S.; Wiese, M.; Hermann, M. Development and Modelling of Highly-Efficient PVT Collectors with Low-Emissivity Coatings. Sol. Energy 2016, 130, 161–173. [Google Scholar] [CrossRef]
- Sandnes, B.; Rekstad, J. A Photovoltaic/Thermal (PV/T) Collector with a Polymer Absorber Plate. Experimental Study and Analytical Model. Sol. Energy 2002, 72, 63–73. [Google Scholar] [CrossRef]
- Battisti, R.; Corrado, A. Evaluation of Technical Improvements of Photovoltaic Systems through Life Cycle Assessment Methodology. Energy 2005, 30, 952–967. [Google Scholar] [CrossRef]
- Seng, L.Y.; Lalchand, G.; Sow Lin, G.M. Economical, Environmental and Technical Analysis of Building Integrated Photovoltaic Systems in Malaysia. Energy Policy 2008, 36, 2130–2142. [Google Scholar] [CrossRef]
- Madhusudanan, S.P.; Caroline, C.S.; Batabyal, S.K. Sustainable Energy Harvesting Technologies. In Sulfide and Selenide Based Materials for Emerging Applications; Dalapati, G., Wong, T.S., Subrata, K., Amit, C., Zhuk, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 15–33. ISBN 9780323998604. [Google Scholar]
- Lee, T.D.; Ebong, A.U. A Review of Thin Film Solar Cell Technologies and Challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-Based Solar Cells Manufacturing by Structural Engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Rawat, S.; Gupta, R.; Gohri, S. Performance Assessment of CIGS Solar Cell with Different CIGS Grading Profile. Mater. Today Proc. 2023, 3–6. [Google Scholar] [CrossRef]
- Kumar, N.M. Performance of Single-Sloped Pitched Roof Cadmium Telluride (CdTe) Building-Integrated Photovoltaic System in Tropical Weather Conditions. Beni-Suef Univ. J. Basic Appl. Sci. 2019, 8, 2. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Thermal Performance of Semitransparent CdTe BIPV Window at Temperate Climate. Sol. Energy 2020, 195, 536–543. [Google Scholar] [CrossRef]
- Maurus, H.; Schmid, M.; Blersch, B.; Lechner, P.; Schade, H. PV for BUILDINGS—Benefits and Experiences with Amorphous Silicon in BIPV Applications. Refocus 2004, 5, 22–27. [Google Scholar] [CrossRef]
- Yoon, J.H.; Song, J.; Lee, S.J. Practical Application of Building Integrated Photovoltaic (BIPV) System Using Transparent Amorphous Silicon Thin-Film PV Module. Sol. Energy 2011, 85, 723–733. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Badescu, V. Carnot Factor in Solar Cell Efficiencies. J. Phys. D Appl. Phys. 2000, 33, 3004–3008. [Google Scholar] [CrossRef]
- Dupré, O.; Vaillon, R.; Green, M.A. Physics of the Temperature Coefficients of Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 140, 92–100. [Google Scholar] [CrossRef]
- Gokul, G.; Pradhan, S.C.; Soman, S. Dye-Sensitized Solar Cells as Potential Candidate for Indoor/Diffused Light Harvesting Applications: From BIPV to Self-Powered IoTs; Springer: Singapore, 2019; ISBN 9789811333026. [Google Scholar]
- Yuan, H.; Wang, W.; Xu, D.; Xu, Q.; Xie, J.; Chen, X.; Zhang, T.; Xiong, C.; He, Y.; Zhang, Y.; et al. Outdoor Testing and Ageing of Dye-Sensitized Solar Cells for Building Integrated Photovoltaics. Sol. Energy 2018, 165, 233–239. [Google Scholar] [CrossRef]
- Lim, S.H.; Seok, H.J.; Kwak, M.J.; Choi, D.H.; Kim, S.K.; Kim, D.H.; Kim, H.K. Semi-Transparent Perovskite Solar Cells with Bidirectional Transparent Electrodes. Nano Energy 2021, 82, 105703. [Google Scholar] [CrossRef]
- Wahad, F.; Abid, Z.; Gulzar, S.; Aslam, M.S.; Rafique, S.; Shahid, M.; Altaf, M.; Ashraf, R.S. Semitransparent Perovskite Solar Cells. In Fundamentals of Solar Cell Design; Scrivener Publishing LLC: Beverly, MA, USA, 2023; Chapter 15; pp. 461–503. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, G.; Xia, R.; Huang, J.; Li, X.; Wang, M.; Yip, H.L.; Cao, Y. Semitransparent Organic Solar Cells Based on All-Low-Bandgap Donor and Acceptor Materials and Their Performance Potential. Mater. Today Energy 2021, 21, 100807. [Google Scholar] [CrossRef]
- Çakar, S.; Özacar, M.; Fındık, F. MOFs-Based Dye-Sensitized Photovoltaics. In Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage; Gupta, R.K., Nguyen, T.A., Yasin, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 487–506. ISBN 9780323911795. [Google Scholar]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C.J. Organic Tandem Solar Cells: A Review. Energy Environ. Sci. 2009, 2, 347–363. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, C. Passive Cooling Technology for Photovoltaic Panels for Domestic Houses. Int. J. Low-Carbon Technol. 2014, 9, 118–126. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Striano, V.; Coppola, G. Volume Holographic Optical Elements as Solar Concentrators: An Overview. Appl. Sci. 2019, 9, 193. [Google Scholar] [CrossRef]
- Freier, D.; Ramirez-Iniguez, R.; Jafry, T.; Muhammad-Sukki, F.; Gamio, C. A Review of Optical Concentrators for Portable Solar Photovoltaic Systems for Developing Countries. Renew. Sustain. Energy Rev. 2018, 90, 957–968. [Google Scholar] [CrossRef]
- Chemisana, D. Building Integrated Concentrating Photovoltaics: A Review. Renew. Sustain. Energy Rev. 2011, 15, 603–611. [Google Scholar] [CrossRef]
- Gite, S.S.; Walke, P.V. Photovoltaic Cell With Concentrating Collector—A Review. Int. J. Eng. Res. Technol. 2013, 2, 1–8. [Google Scholar]
- Mangherini, G.; Bernardoni, P.; Baccega, E.; Andreoli, A.; Diolaiti, V.; Vincenzi, D. Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel. Sustainability 2023, 15, 9146. [Google Scholar] [CrossRef]
- Paul, D.I. Experimental Characterisation of Photovoltaic Modules with Cells Connected in Different Configurations to Address Nonuniform Illumination Effect. J. Renew. Energy 2019, 2019, 5168259. [Google Scholar] [CrossRef]
- Michael, J.J.; Iqbal, S.M.; Iniyan, S.; Goic, R. Enhanced Electrical Performance in a Solar Photovoltaic Module Using V-Trough Concentrators. Energy 2018, 148, 605–613. [Google Scholar] [CrossRef]
- Aste, N.; Del Pero, C.; Tagliabue, L.C.; Leonforte, F.; Testa, D.; Fusco, R. Performance Monitoring and Building Integration Assessment of Innovative LSC Components. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 129–133. [Google Scholar] [CrossRef]
- Elsaid, K.; Taha Sayed, E.; Yousef, B.A.A.; Kamal Hussien Rabaia, M.; Ali Abdelkareem, M.; Olabi, A.G. Recent Progress on the Utilization of Waste Heat for Desalination: A Review. Energy Convers. Manag. 2020, 221, 113105. [Google Scholar] [CrossRef]
- Iqbal, A.; Mahmoud, M.S.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A.; Alawadhi, H.; Olabi, A.G. Evaluation of the Nanofluid-Assisted Desalination through Solar Stills in the Last Decade. J. Environ. Manag. 2021, 277, 111415. [Google Scholar] [CrossRef]
- Tadeu, S.; Rodrigues, C.; Tadeu, A.; Freire, F.; Simões, N. Energy Retrofit of Historic Buildings: Environmental Assessment of Cost-Optimal Solutions. J. Build. Eng. 2015, 4, 167–176. [Google Scholar] [CrossRef]
- Micheli, L.; Sarmah, N.; Luo, X.; Reddy, K.S.; Mallick, T.K. Opportunities and Challenges in Micro- and Nano-Technologies for Concentrating Photovoltaic Cooling: A Review. Renew. Sustain. Energy Rev. 2013, 20, 595–610. [Google Scholar] [CrossRef]
- Li, G.; Xuan, Q.; Akram, M.W.; Golizadeh Akhlaghi, Y.; Liu, H.; Shittu, S. Building Integrated Solar Concentrating Systems: A Review. Appl. Energy 2020, 260, 114288. [Google Scholar] [CrossRef]
- Sarmah, N.; Mallick, T.K. Design, Fabrication and Outdoor Performance Analysis of a Low Concentrating Photovoltaic System. Sol. Energy 2015, 112, 361–372. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. BIPV: Merging the Photovoltaic with the Construction Industry. Prog. Photovolt. Res. Appl. 2010, 18, 61–72. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.C. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- Makki, A.; Omer, S.; Sabir, H. Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance. Renew. Sustain. Energy Rev. 2015, 41, 658–684. [Google Scholar] [CrossRef]
- Li, M.; Ji, X.; Li, G.; Wei, S.; Li, Y.F.; Shi, F. Performance Study of Solar Cell Arrays Based on a Trough Concentrating Photovoltaic/Thermal System. Appl. Energy 2011, 88, 3218–3227. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M. Improving Thermodynamic Performance Parameters of Silicon Photovoltaic Cells via Air Cooling. Int. J. Ambient Energy 2014, 35, 193–199. [Google Scholar] [CrossRef]
- Joshi, S.S.; Dhoble, A.S. Photovoltaic -Thermal Systems (PVT): Technology Review and Future Trends. Renew. Sustain. Energy Rev. 2018, 92, 848–882. [Google Scholar] [CrossRef]
- Mellor, A.; Alonso Alvarez, D.; Guarracino, I.; Ramos, A.; Riverola Lacasta, A.; Ferre Llin, L.; Murrell, A.J.; Paul, D.J.; Chemisana, D.; Markides, C.N.; et al. Roadmap for the Next-Generation of Hybrid Photovoltaic-Thermal Solar Energy Collectors. Sol. Energy 2018, 174, 386–398. [Google Scholar] [CrossRef]
- Cabral, D. Development and Performance Comparison of a Modified Glazed CPC Hybrid Solar Collector Coupled with a Bifacial PVT Receiver. Appl. Energy 2022, 325, 119653. [Google Scholar] [CrossRef]
- Bazilian, M.D.; Leenders, F.; Van Der Ree, B.G.C.; Prasad, D. Photovoltaic Cogeneration in the Built Environment. Sol. Energy 2001, 71, 57–69. [Google Scholar] [CrossRef]
- Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M. Performance and Costs of a Roof-Sized PV/Thermal Array Combined with a Ground Coupled Heat Pump. Sol. Energy 2005, 78, 331–339. [Google Scholar] [CrossRef]
- Yang, T.; Athienitis, A.K. A Study of Design Options for a Building Integrated Photovoltaic/Thermal (BIPV/T) System with Glazed Air Collector and Multiple Inlets. Sol. Energy 2014, 104, 82–92. [Google Scholar] [CrossRef]
- Jalalizadeh, M.; Fayaz, R.; Delfani, S.; Mosleh, H.J.; Karami, M. Dynamic Simulation of a Trigeneration System Using an Absorption Cooling System and Building Integrated Photovoltaic Thermal Solar Collectors. J. Build. Eng. 2021, 43, 102482. [Google Scholar] [CrossRef]
- Ge, M.; Zhao, Y.; Xuan, Z.; Zhao, Y.; Wang, S. Experimental Research on the Performance of BIPV/T System with Water-Cooled Wall. Energy Rep. 2022, 8, 454–459. [Google Scholar] [CrossRef]
- Kane, A.; Verma, V.; Singh, B. Optimization of Thermoelectric Cooling Technology for an Active Cooling of Photovoltaic Panel. Renew. Sustain. Energy Rev. 2017, 75, 1295–1305. [Google Scholar] [CrossRef]
- Kossyvakis, D.N.; Voutsinas, G.D.; Hristoforou, E.V. Experimental Analysis and Performance Evaluation of a Tandem Photovoltaic-Thermoelectric Hybrid System. Energy Convers. Manag. 2016, 117, 490–500. [Google Scholar] [CrossRef]
- Elsaid, K.; Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T.; Wilberforce, T.; Baroutaji, A.; Olabi, A.G. Thermophysical Properties of Graphene-Based Nanofluids. Int. J. Thermofluids 2021, 10, 100073. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Intensification of Heat Exchanger Performance Utilizing Nanofluids. Int. J. Thermofluids 2021, 10, 100071. [Google Scholar] [CrossRef]
- Alami, A.H. Effects of Evaporative Cooling on Efficiency of Photovoltaic Modules. Energy Convers. Manag. 2014, 77, 668–679. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Senthilkumar, T. Passive Thermal Regulation of Flat PV Modules by Coupling the Mechanisms of Evaporative and Fin Cooling. Heat Mass Transf. 2016, 52, 1381–1391. [Google Scholar] [CrossRef]
- Pandey, A.K.; Hossain, M.S.; Tyagi, V.V.; Abd Rahim, N.; Selvaraj, J.A.L.; Sari, A. Novel Approaches and Recent Developments on Potential Applications of Phase Change Materials in Solar Energy. Renew. Sustain. Energy Rev. 2018, 82, 281–323. [Google Scholar] [CrossRef]
- Stropnik, R.; Stritih, U. Increasing the Efficiency of PV Panel with the Use of PCM. Renew. Energy 2016, 97, 671–679. [Google Scholar] [CrossRef]
- Rezk, H.; AL-Oran, M.; Gomaa, M.R.; Tolba, M.A.; Fathy, A.; Abdelkareem, M.A.; Olabi, A.G.; El-Sayed, A.H.M. A Novel Statistical Performance Evaluation of Most Modern Optimization-Based Global MPPT Techniques for Partially Shaded PV System. Renew. Sustain. Energy Rev. 2019, 115, 109372. [Google Scholar] [CrossRef]
- Knoop, M.; Stefani, O.; Bueno, B.; Matusiak, B.; Hobday, R.; Wirz-Justice, A.; Martiny, K.; Kantermann, T.; Aarts, M.P.J.; Zemmouri, N.; et al. Daylight: What Makes the Difference? Light. Res. Technol. 2020, 52, 423–442. [Google Scholar] [CrossRef]
- Quek, G.; Wienold, J.; Khanie, M.S.; Erell, E.; Kaftan, E.; Tzempelikos, A.; Konstantzos, I.; Christoffersen, J.; Kuhn, T.; Andersen, M. Comparing Performance of Discomfort Glare Metrics in High and Low Adaptation Levels. Build. Environ. 2021, 206, 108335. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B. Interior Colour Rendering of Daylight Transmitted through a Suspended Particle Device Switchable Glazing. Sol. Energy Mater. Sol. Cells 2017, 163, 218–223. [Google Scholar] [CrossRef]
- Wienold, J.; Christoffersen, J. Evaluation Methods and Development of a New Glare Prediction Model for Daylight Environments with the Use of CCD Cameras. Energy Build. 2006, 38, 743–757. [Google Scholar] [CrossRef]
- Wienold, J.; Iwata, T.; Sarey Khanie, M.; Erell, E.; Kaftan, E.; Rodriguez, R.G.; Yamin Garreton, J.A.; Tzempelikos, T.; Konstantzos, I.; Christoffersen, J.; et al. Cross-Validation and Robustness of Daylight Glare Metrics. Light. Res. Technol. 2019, 51, 983–1013. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful Daylight Illuminances: A Replacement for Daylight Factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Tait, D.B. Solar Heat Gain Coefficients for High-Mass Glazing Blocks. ASHRAE Trans. 2006, 112, 9. [Google Scholar]
- Kralj, A.; Drev, M.; Žnidaršič, M.; Černe, B.; Hafner, J.; Jelle, B.P. Investigations of 6-Pane Glazing: Properties and Possibilities. Energy Build. 2019, 190, 61–68. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Merli, F.; Zinzi, M. Aerogel Glazing Systems for Building Applications: A Review. Energy Build. 2021, 231, 110587. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Duffy, A. Effect of Sky Clearness Index on Transmission of Evacuated (Vacuum) Glazing. Renew. Energy 2017, 105, 160–166. [Google Scholar] [CrossRef]
- Santbergen, R.Ã.; Zolingen, R.J.C. Van The Absorption Factor of Crystalline Silicon PV Cells: A Numerical and Experimental Study. Sol. Energy Mater. Sol. Cells 2008, 92, 432–444. [Google Scholar] [CrossRef]
- Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-Generation Applications for Integrated Perovskite Solar Cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Liu, Z.; Yu, F.; Su, W.; Cai, Z.; Guan, W.; Li, Y.; Sheng, L.; Qi, Z.; et al. Acidochromic Organic Photovoltaic Integrated Device. Chem. Eng. J. 2023, 452, 139479. [Google Scholar] [CrossRef]
- Mazzer, M.; Moser, D. How Solar Energy Could Power Italy without Using More Land. Available online: https://www.nature.com/articles/d43978-021-00048-z (accessed on 28 July 2023).
- Onyx Solar Group LLC. Thecnical Giude. Available online: http://onyxsolardownloads.com/docs/ALL-YOU-NEED/Technical_Guide.pdf (accessed on 28 July 2023).
- Maturi, L.; Sparber, W.; Kofler, B.; Bresciani, W. Analysis and Monitoring Results of a Bipv System in Northern Italy. In Proceedings of the EU PVSEC Proceedings, 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6–10 September 2010; pp. 5131–5134. [Google Scholar]
- Eke, R.; Demircan, C. Shading Effect on the Energy Rating of Two Identical PV Systems on a Building Façade. Sol. Energy 2015, 122, 48–57. [Google Scholar] [CrossRef]
- Martín-Chivelet, N.; Gutiérrez, J.C.; Alonso-Abella, M.; Chenlo, F.; Cuenca, J. Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade. Energies 2018, 11, 1719. [Google Scholar] [CrossRef]
- Devetaković, M.; Djordjević, D.; Radojević, M.; Krstić-Furundžić, A.; Burduhos, B.G.; Martinopoulos, G.; Neagoe, M.; Lobaccaro, G. Photovoltaics on Landmark Buildings with Distinctive Geometries. Appl. Sci. 2020, 10, 6696. [Google Scholar] [CrossRef]
- Nørgaard, P.; Poder, S.H. Perspectives on Solar Power in Dense Urban Areas—With Copenhagen International School as Case Study. J. Eng. 2019, 2019, 5134–5137. [Google Scholar] [CrossRef]
- Geleff, J. How to Create Truly Solar-Powered Architecture. Available online: https://architizer.com/blog/inspiration/stories/cf-moller-solar-tiles/ (accessed on 3 August 2023).
- Naddaf, M.S.; Baper, S.Y. The Role of Double-Skin Facade Configurations in Optimizing Building Energy Performance in Erbil City. Sci. Rep. 2023, 13, 1–18. [Google Scholar] [CrossRef]
- Zanetti, I.; Bonomo, P.; Frontini, F.; Saretta, E. Building Integrated Photovoltaics: Product Overview for Solar Building Skins. SUPSI, 2017. Available online: https://www.solaxess.ch/wp-content/uploads/2018/04/Report-2017_SUPSI_SEAC_BIPV.pdf (accessed on 3 August 2023).
- Saretta, E.; Bonomo, P.; Frontini, F. Active BIPV Glass Facades: Current Trends of Innovation. In Proceedings of the GPD Glass Performance Days 2017—Conference Proceedings GPD Glass Performance Days 2017, Tampere, Finland, 28–30 June 2017; pp. 2–7. Available online: https://api.semanticscholar.org/CorpusID:116363469 (accessed on 24 July 2023).
- Preet, S. Water and Phase Change Material Based Photovoltaic Thermal Management Systems: A Review. Renew. Sustain. Energy Rev. 2018, 82, 791–807. [Google Scholar] [CrossRef]
- Michael, J.J.; S, I.; Goic, R. Flat Plate Solar Photovoltaic-Thermal (PV/T) Systems: A Reference Guide. Renew. Sustain. Energy Rev. 2015, 51, 62–88. [Google Scholar] [CrossRef]
- Guarracino, I.; Mellor, A.; Ekins-Daukes, N.J.; Markides, C.N. Dynamic Coupled Thermal-and-Electrical Modelling of Sheet-and-Tube Hybrid Photovoltaic/Thermal (PVT) Collectors. Appl. Therm. Eng. 2016, 101, 778–795. [Google Scholar] [CrossRef]
- HUANG, B.J.; LIN, T.H.; HUNG, W.C.; SUN, F.S. Performance evaluation of solar photovoltaic/thermal systems. Dig. Liver Dis. 2001, 70, 443–448. [Google Scholar] [CrossRef]
- Li, G.; Pei, G.; Ji, J.; Su, Y. Outdoor Overall Performance of a Novel Air-Gap-Lens-Walled Compound Parabolic Concentrator (ALCPC) Incorporated with Photovoltaic/Thermal System. Appl. Energy 2015, 144, 214–223. [Google Scholar] [CrossRef]
- Cappelletti, A.; Ceccherini Nelli, L.; Reatti, A. Integration and Architectural Issues of a Photovoltaic/Thermal Linear Solar Concentrator. Sol. Energy 2018, 169, 362–373. [Google Scholar] [CrossRef]
- Lu, W.; Wu, Y.; Eames, P. Design and Development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic Concentrator (BFI-ACP-PV). Appl. Energy 2018, 220, 325–336. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Z.; Flor, J.F.; Wu, Y.; Yang, M. Investigation on Designed Fins-Enhanced Phase Change Materials System for Thermal Management of a Novel Building Integrated Concentrating PV. Appl. Energy 2018, 225, 696–709. [Google Scholar] [CrossRef]
- Rahmanian, S.; Rahmanian-Koushkaki, H.; Omidvar, P.; Shahsavar, A. Nanofluid-PCM Heat Sink for Building Integrated Concentrated Photovoltaic with Thermal Energy Storage and Recovery Capability. Sustain. Energy Technol. Assess. 2021, 46, 101223. [Google Scholar] [CrossRef]
- Mammo, E.D.; Sellami, N.; Mallick, T.K. Performance Analysis of a Reflective 3D Crossed Compound Parabolic Concentrating Photovoltaic System for Building Façade Integration. Prog. Photovolt. Res. Appl. 2012, 21, 1095–1103. [Google Scholar] [CrossRef]
- Sellami, N.; Mallick, T.K. Optical Characterisation and Optimisation of a Static Window Integrated Concentrating Photovoltaic System. Sol. Energy 2013, 91, 273–282. [Google Scholar] [CrossRef]
- Sabry, M.; Abdel-Hadi, Y.A.; Ghitas, A. PV-Integrated CPC for Transparent Façades. Energy Build. 2013, 66, 480–484. [Google Scholar] [CrossRef]
- Tang, R.; Wang, J. A Note on Multiple Reflections of Radiation within CPCs and Its Effect on Calculations of Energy Collection. Renew. Energy 2013, 57, 490–496. [Google Scholar] [CrossRef]
- Li, G.; Pei, G.; Ji, J.; Su, Y.; Zhou, H.; Cai, J. Structure Optimization and Annual Performance Analysis of the Lens-Walled Compound Parabolic Concentrator. Int. J. Green Energy 2015, 13, 944–950. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Pei, G.; Ji, J.; Su, Y.; Zhao, B. Optimization Design and Performance Analysis of a Novel Asymmetric Compound Parabolic Concentrator with Rotation Angle for Building Application. Sol. Energy 2017, 158, 808–818. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Lu, Y.; Zhao, X.; Su, Y.; Ji, J.; Pei, G. A General Optimization Strategy for the Annual Performance Enhancement of a Solar Concentrating System Incorporated in the South-Facing Wall of a Building. Indoor Built Environ. 2020, 29, 1386–1398. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Lu, Y.; Zhao, B.; Zhao, X.; Su, Y.; Ji, J.; Pei, G. Design, Optimization and Performance Analysis of an Asymmetric Concentrator-PV Type Window for the Building South Wall Application. Sol. Energy 2019, 193, 422–433. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; He, B.; Xie, L.; Hao, X.; Mallick, T.; Shanks, K.; Chen, M.; Li, Z. Experimental Study on the Comprehensive Performance of Building Curtain Wall Integrated Compound Parabolic Concentrating Photovoltaic. Energy 2021, 227, 120507. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, H.; Wang, X.; Ma, X.; Zhao, Z. Design and Performance Validation on a Solar Louver with Concentrating-Photovoltaic-Thermal Modules. Renew. Energy 2022, 191, 71–83. [Google Scholar] [CrossRef]
- Barone, G.; Zacharopoulos, A.; Buonomano, A.; Forzano, C.; Giuzio, G.F.; Mondol, J.; Palombo, A.; Pugsley, A.; Smyth, M. Concentrating PhotoVoltaic Glazing (CoPVG) System: Modelling and Simulation of Smart Building Façade. Energy 2022, 238, 121597. [Google Scholar] [CrossRef]
- Zarcone, R.; Brocato, M.; Bernardoni, P.; Vincenzi, D. Building Integrated Photovoltaic System for a Solar Infrastructure: Liv-Lib’ Project. Energy Procedia 2016, 91, 887–896. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Chang, R.; Forzano, C.; Giuzio, G.F.; Mondol, J.; Palombo, A.; Pugsley, A.; Smyth, M.; Zacharopoulos, A. Modelling and Simulation of Building Integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) Systems: Comprehensive Energy and Economic Analysis. Renew. Energy 2022, 193, 1121–1131. [Google Scholar] [CrossRef]
- Bernardoni, P.; Mangherini, G.; Gjestila, M.; Andreoli, A.; Vincenzi, D. Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions. Energies 2021, 14, 816. [Google Scholar] [CrossRef]
- Tonezzer, M.; Gutierrez, D.; Vincenzi, D. Luminescent Solar Concentrators—State of the Art and Future Perspectives. In Solar Cell Nanotechnology; Scrivener Publising LLC: Beverly, MA, USA, 2013; Chapter 12; pp. 293–315. [Google Scholar] [CrossRef]
- Corrado, C.; Leow, S.W.; Osborn, M.; Chan, E.; Balaban, B.; Carter, S.A. Optimization of Gain and Energy Conversion Efficiency Using Front-Facing Photovoltaic Cell Luminescent Solar Concentrator Design. Sol. Energy Mater. Sol. Cells 2013, 111, 74–81. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. Transient Analysis, Exergy and Thermo-Economic Modelling of Façade Integrated Photovoltaic/Thermal Solar Collectors. Renew. Energy 2019, 137, 109–126. [Google Scholar] [CrossRef]
- Novelli, N.; Phillips, K.; Shultz, J.; Derby, M.M.; Salvas, R.; Craft, J.; Stark, P.; Jensen, M.; Derby, S.; Dyson, A. Experimental Investigation of a Building-Integrated, Transparent, Concentrating Photovoltaic and Thermal Collector. Renew. Energy 2021, 176, 617–634. [Google Scholar] [CrossRef]
- Pugsley, A.; Zacharopoulos, A.; Mondol, J.D.; Smyth, M. BIPV/T Facades—A New Opportunity for Integrated Collector-Storage Solar Water Heaters? Part 2: Physical Realisation and Laboratory Testing. Sol. Energy 2020, 206, 751–769. [Google Scholar] [CrossRef]
- Pereira, R.; Aelenei, L. Optimization Assessment of the Energy Performance of a BIPV/T-PCM System Using Genetic Algorithms. Renew. Energy 2019, 137, 157–166. [Google Scholar] [CrossRef]
- Sohani, A.; Dehnavi, A.; Sayyaadi, H.; Hoseinzadeh, S.; Goodarzi, E.; Garcia, D.A.; Groppi, D. The Real-Time Dynamic Multi-Objective Optimization of a Building Integrated Photovoltaic Thermal (BIPV/T) System Enhanced by Phase Change Materials. J. Energy Storage 2022, 46, 103777. [Google Scholar] [CrossRef]
- Kim, J.H.; Yu, J.S.; Gaucher-loksts, E.; Roy, B.; Delisle, V.; Kim, J.T. Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments. Energies 2022, 15, 3779. [Google Scholar] [CrossRef]
- Hami, K.; Draoui, B.; Hami, O. The Thermal Performances of a Solar Wall. Energy 2012, 39, 11–16. [Google Scholar] [CrossRef]
- Duan, S.; Jing, C.; Zhao, Z. Energy and Exergy Analysis of Different Trombe Walls. Energy Build. 2016, 126, 517–523. [Google Scholar] [CrossRef]
- Ke, W.; Ji, J.; Zhang, C.; Xie, H.; Tang, Y.; Wang, C. Effects of the PCM Layer Position on the Comprehensive Performance of a Built-Middle PV-Trombe Wall System for Building Application in the Heating Season. Energy 2023, 267, 126562. [Google Scholar] [CrossRef]
- Abed, A.A.; Ahmed, O.K.; Weis, M.M.; Hamada, K.I. Performance Augmentation of a PV/Trombe Wall Using Al2O3/Water Nano-Fluid: An Experimental Investigation. Renew. Energy 2020, 157, 515–529. [Google Scholar] [CrossRef]
- Ahmed, O.K.; Hamada, K.I.; Salih, A.M. Enhancement of the Performance of Photovoltaic/Trombe Wall System Using the Porous Medium: Experimental and Theoretical Study. Energy 2019, 171, 14–26. [Google Scholar] [CrossRef]
- Park, K.E.; Kang, G.H.; Kim, H.I.; Yu, G.J.; Kim, J.T. Analysis of Thermal and Electrical Performance of Semi-Transparent Photovoltaic (PV) Module. Energy 2010, 35, 2681–2687. [Google Scholar] [CrossRef]
- Lu, L.; Law, K.M. Overall Energy Performance of Semi-Transparent Single-Glazed Photovoltaic (PV) Window for a Typical Office in Hong Kong. Renew. Energy 2013, 49, 250–254. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. Energy Savings of Office Buildings by the Use of Semi-Transparent Solar Cells for Windows. Renew. Energy 2005, 30, 281–304. [Google Scholar] [CrossRef]
- He, W.; Zhang, Y.X.; Sun, W.; Hou, J.X.; Jiang, Q.Y.; Ji, J. Experimental and Numerical Investigation on the Performance of Amorphous Silicon Photovoltaics Window in East China. Build. Environ. 2011, 46, 363–369. [Google Scholar] [CrossRef]
- Liao, W.; Xu, S. Energy Performance Comparison among See-through Amorphous-Silicon PV (Photovoltaic) Glazings and Traditional Glazings under Different Architectural Conditions in China. Energy 2015, 83, 267–275. [Google Scholar] [CrossRef]
- Chae, Y.T.; Kim, J.; Park, H.; Shin, B. Building Energy Performance Evaluation of Building Integrated Photovoltaic (BIPV) Window with Semi-Transparent Solar Cells. Appl. Energy 2014, 129, 217–227. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, L.; Peng, J.; Song, A. Comparison of the Overall Energy Performance of Semi-Transparent Photovoltaic Windows and Common Energy-Efficient Windows in Hong Kong. Energy Build. 2016, 128, 511–518. [Google Scholar] [CrossRef]
- Chow, T.T.; Fong, K.F.; He, W.; Lin, Z.; Chan, A.L.S. Performance Evaluation of a PV Ventilated Window Applying to Office Building of Hong Kong. Energy Build. 2007, 39, 643–650. [Google Scholar] [CrossRef]
- Barman, S.; Chowdhury, A.; Mathur, S.; Mathur, J. Assessment of the Efficiency of Window Integrated CdTe Based Semi-Transparent Photovoltaic Module. Sustain. Cities Soc. 2018, 37, 250–262. [Google Scholar] [CrossRef]
- Meng, W.; Jinqing, P.; Hongxing, Y.; Yimo, L. Performance Evaluation of Semi-Transparent CdTe Thin Film PV Window Applying on Commercial Buildings in Hong Kong. Energy Procedia 2018, 152, 1091–1096. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Evaluation of Solar Factor Using Spectral Analysis for CdTe Photovoltaic Glazing. Mater. Lett. 2019, 237, 332–335. [Google Scholar] [CrossRef]
- Kang, J.G.; Kim, J.H.; Kim, J.T. Performance Evaluation of DSC Windows for Buildings. Int. J. Photoenergy 2013, 2013, 472086. [Google Scholar] [CrossRef]
- Yoon, S.; Tak, S.; Kim, J.; Jun, Y.; Kang, K.; Park, J. Application of Transparent Dye-Sensitized Solar Cells to Building Integrated Photovoltaic Systems. Build. Environ. 2011, 46, 1899–1904. [Google Scholar] [CrossRef]
- Morini, M.; Corrao, R. Energy Optimization of BIPV Glass Blocks: A Multi-Software Study. Energy Procedia 2017, 111, 982–992. [Google Scholar] [CrossRef]
- Selvaraj, P.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Investigation of Semi-Transparent Dye-Sensitized Solar Cells for Fenestration Integration. Renew. Energy 2019, 141, 516–525. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Selvaraj, P.; Sundaram, S.; Mallick, T.K. Color Comfort Evaluation of Dye-Sensitized Solar Cell (DSSC) Based Building-Integrated Photovoltaic (BIPV) Glazing after 2 Years of Ambient Exposure. J. Phys. Chem. C 2019, 123, 23834–23837. [Google Scholar] [CrossRef]
- Tong, G.; Son, D.Y.; Ono, L.K.; Liu, Y.; Hu, Y.; Zhang, H.; Jamshaid, A.; Qiu, L.; Liu, Z.; Qi, Y. Scalable Fabrication of >90 Cm2 Perovskite Solar Modules with >1000 h Operational Stability Based on the Intermediate Phase Strategy. Adv. Energy Mater. 2021, 11, 2003712. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Carbon Counter Electrode Mesoscopic Ambient Processed & Characterised Perovskite for Adaptive BIPV Fenestration. Renew. Energy 2020, 145, 2151–2158. [Google Scholar] [CrossRef]
- Bhandari, S.; Ghosh, A.; Roy, A.; Mallick, T.K.; Sundaram, S. Compelling Temperature Behaviour of Carbon-Perovskite Solar Cell for Fenestration at Various Climates. Chem. Eng. J. Adv. 2022, 10, 100267. [Google Scholar] [CrossRef]
- Alrashidi, H.; Issa, W.; Sellami, N.; Sundaram, S.; Mallick, T. Thermal Performance Evaluation and Energy Saving Potential of Semi-Transparent CdTe in Façade BIPV. Sol. Energy 2022, 232, 84–91. [Google Scholar] [CrossRef]
- Yu, J.C.; Sun, J.; Chandrasekaran, N.; Dunn, C.J.; Chesman, A.S.R.; Jasieniak, J.J. Semi-Transparent Perovskite Solar Cells with a Cross-Linked Hole Transport Layer. Nano Energy 2020, 71, 104635. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Institute for Solar Energy Systems Photovoltaic Report. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 24 July 2023).
- Masson, G.; Kaizuka, I. Trends in PV Applications 2022. 2022. Available online: https://iea-pvps.org/wp-content/uploads/2023/02/PVPS_Trend_Report_2022.pdf (accessed on 13 July 2023).
- Europe, S. Solar Skins: An Opportunity for Greener Cities. Available online: https://etip-pv.eu/publications/etip-pv-publications/download/solar-skins-an-opportunity-for-greener-cities (accessed on 3 August 2023).
- Sarkar, D.; Kumar, A.; Sadhu, P.K. A Survey on Development and Recent Trends of Renewable Energy Generation from BIPV Systems. IETE Tech. Rev. (Inst. Electron. Telecommun. Eng. India) 2020, 37, 258–280. [Google Scholar] [CrossRef]
- Alim, M.A.; Tao, Z.; Hassan, M.K.; Rahman, A.; Wang, B.; Zhang, C.; Samali, B. Is It Time to Embrace Building Integrated Photovoltaics? A Review with Particular Focus on Australia. Sol. Energy 2019, 188, 1118–1133. [Google Scholar] [CrossRef]
- Agathokleous, R.A.; Kalogirou, S.A. Status, Barriers and Perspectives of Building Integrated Photovoltaic Systems. Energy 2020, 191, 116471. [Google Scholar] [CrossRef]
- Skandalos, N.; Wang, M.; Kapsalis, V.; D’Agostino, D.; Parker, D.; Bhuvad, S.S.; Udayraj; Peng, J.; Karamanis, D. Building PV Integration According to Regional Climate Conditions: BIPV Regional Adaptability Extending Köppen-Geiger Climate Classification against Urban and Climate-Related Temperature Increases. Renew. Sustain. Energy Rev. 2022, 169, 112950. [Google Scholar] [CrossRef]
- Yang, R.; Zang, Y.; Yang, J.; Wakefield, R.; Nguyen, K.; Shi, L.; Trigunarsyah, B.; Parolini, F.; Bonomo, P.; Frontini, F.; et al. Fire Safety Requirements for Building Integrated Photovoltaics (BIPV): A Cross-Country Comparison. Renew. Sustain. Energy Rev. 2023, 173, 113112. [Google Scholar] [CrossRef]
- Borrebæk, P.O.A.; Jelle, B.P.; Zhang, Z. Avoiding Snow and Ice Accretion on Building Integrated Photovoltaics—Challenges, Strategies, and Opportunities. Sol. Energy Mater. Sol. Cells 2020, 206, 110306. [Google Scholar] [CrossRef]
- Ghosh, A. Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power. Challenges 2020, 11, 9. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mallick, T.K. Hydrophilic and Superhydrophilic Self-Cleaning Coatings by Morphologically Varying ZnO Microstructures for Photovoltaic and Glazing Applications. ACS Omega 2020, 5, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Nundy, S.; Ghosh, A.; Tahir, A.; Mallick, T.K. Role of Hafnium Doping on Wetting Transition Tuning the Wettability Properties of ZnO and Doped Thin Films: Self-Cleaning Coating for Solar Application. ACS Appl. Mater. Interfaces 2021, 13, 25540–25552. [Google Scholar] [CrossRef] [PubMed]
- Kou, Z.; Wang, J.; Tong, X.; Lei, P.; Gao, Y.; Zhang, S.; Cui, X.; Wu, S.; Cai, G. Multi-Functional Electrochromic Energy Storage Smart Window Powered by CZTSSe Solar Cell for Intelligent Managing Solar Radiation of Building. Sol. Energy Mater. Sol. Cells 2023, 254, 112273. [Google Scholar] [CrossRef]
Acronyms | Extended Names |
---|---|
PV | Photovoltaic |
IEA | International Energy Agency |
GHG | Greenhouse Gas |
EPBD | Energy Performance of Buildings Directive |
NZEB | Net-Zero Energy Building |
BIPV | Building-Integrated Photovoltaic |
BICPV | Building-Integrated Concentrating Photovoltaic |
PVT | Photovoltaic–Thermal |
BIPVT | Building-Integrated Photovoltaic–Thermal |
ACPC | Asymmetric Compound Parabolic Concentrator |
CCPC | Crossed Compound Parabolic Concentrator |
a-Si | Amorphous Silicon |
c-Si | Crystalline Silicon |
mc-Si | Monocrystalline |
pc-Si | Polycrystalline |
TF | Thin Film |
CIGS | Copper–Indium–Gallium–Selenide |
CdTe | Cadmium Telluride |
DSSC | Dye-Sensitized Solar Cell |
PSC | Perovskite Solar Cell |
OPV | Organic Photovoltaic |
CPC | Compound Parabolic Concentrator |
FR | Fresnel Reflector |
LSC | Luminescent Solar Concentrator |
STC | Standard Test Conditions |
PCM | Phase-Change Material |
STBIPV | Semi-Transparent Photovoltaic |
CCT | Correlated Color Temperature |
CRI | Color-Rendering Index |
DGP | Daylight Glare Probability |
DGI | Daylight Glare Index |
SHGC | Solar Heat with Gain Coefficient |
SF | Solar Factor |
WICPV | Window-Integrated Concentrating Photovoltaic |
WWR | Window-to-Wall Ratio |
CAGR | Compound Annual Growth Rate |
Authors, Year | PV Technology | Façade Orientation | Research Objective | Location |
---|---|---|---|---|
Eke et al. [139], 2015 | Single- and triple-junction a-Si | East | Shading impact on PV façade | Turkey |
West | ||||
Maturi et al. [138], 2010 | pc-Si | South–Est | Performance monitoring | Italy |
South–West | Simulation projection | |||
Martín-Chivelet et al. [140], 2018 | mc-Si | East | Building refurbishment | Spain |
South | ||||
West | ||||
Devetakovic et al. [141], 2020 | not specified | South | Building refurbishment | Norway |
Nørgaard and Poder [142], 2018 | not specified | East | Building refurbishment | Denmark |
South | ||||
West | ||||
North | ||||
Zanetti et al. [145], 2017 | a-Si | South | Building refurbishment | Switzerland |
North |
Authors, Year | Concentrating Technology | PV Technology | Concentration Ratio | Sun Tracking | Research Objective | Location |
---|---|---|---|---|---|---|
Li et al. [151], 2015 | Air-gap lens-walled CPC | Not specified | 2.4× | No | Outdoor characterization testing | China |
Cappelletti et al. [152], 2018 | semi-parabolic concentrator | mc-Si | 20× | Monoaxial | Performance monitoring | Italy |
Simulation projection | ||||||
Lu et al. [153], [154], 2018 | ACPC | c-Si | 2× | No | Experimental characterization | Not specified |
Improvement due to PCM integration | ||||||
Rahmanian et al. [155], 2021 | Not specified | c-Si | 5× | No | Numerical simulations on PCM heat sink design | Not specified |
Authors, Year | Concentrating Technology | PV Technology | Concentration Ratio | Sun Tracking | Research Objective | Location |
---|---|---|---|---|---|---|
Mammo et al. [156], 2012 | 3D CCPC | Not specified | 3.61× | No | Performance analysis | Not specified |
Sellami et al. [157], 2013 | 3D CPC | Si | 4× | No | Optical characterization and optimization | Not specified |
Sabry et al. [158], 2013 | Linear CPC | Not specified | 3.2× | No | Effect of truncation on the concentrator performance | Location with a latitude of 30◦ |
Tang and Wang [159], 2013 | Air-gap lens-walled CPC | Not specified | Not specified | No | Effect of truncation on the concentrator performance | Different locations |
Xuan et al. [161], 2017; [163], 2019 | Asymmetric lens CPC | mc-Si | 2.50× | No | Effect of rotation angle on the concentrator performance | Not specified |
Li et al. [164], 2021 | ACPC | c-Si | 2.0× | No | Experiment performance evaluation | China |
Liang et al. [165], 2022 | Linear CPC | Not specified | 3.14× | Monoaxial | Design and performance validation | China |
Barone et al. [166], 2022 | Concentrating lens | pc-Si | Not specified | No | Design and performance validation | Multiple locations |
Corrado et al. [171], 2013 | LSC | mc-Si | Configuration-dependent | No | Design and performance validation | Not specified |
Authors, Year | PV Technology | Design Approach | Cooling Fluid | Circulation Technique | Research Objective | Location |
---|---|---|---|---|---|---|
Buonomano et al. [172], 2019 | Not specified | Flat | Water | Forced | Exergy and thermo-economic modeling | Multiple locations |
Novelli et al. [173], 2021 | Triple-junction cell | Concentrating | Air | Forced | Performance investigation | United States |
Pugsley et al. [174], 2020 | mc-Si | Flat | Water | Forced | Physical realization and laboratory testing | Not specified |
Ge et al. [113], 2022 | CIGS | Flat | Bi-fluidic | Forced | Performance investigation | China |
Sohani et al. [176], 2022 | Si | Flat | Air | Forced | Multi-objective performance optimization | Iran |
Kim et al. [177], 2022 | mc-Si | Flat | Air | Natural | Performance assessment | Canada |
Ke et al. [180], 2023 | mc-Si | Flat | Air/PCM | Natural | Effects of the PCM layer’s position on the BIPVT system | China |
Authors, Year | PV Technology | SHGC/SF | WWR | U-value (W/m2K) | Transmittance | Research Objective | Location |
---|---|---|---|---|---|---|---|
Park et al. [183], 2010 | pc-Si | Color-dependent | Not specified | Not specified | Color-dependent | Analysis of the thermal and electrical performance | Korea |
Lu et al. [184], 2013 | Not specified | Not specified | 57% | Not specified | 20% | Energy-saving simulations | China |
Miyazaki et al. [185], 2005 | a-Si | Not specified | 50% | Not specified | 40% | Energy-saving simulations | Japan |
He et al. [186], 2011 | a-Si | Not specified | Not specified | Not specified | Not specified | Performance investigation | China |
Liao and Xu [187], 2015 | a-Si | 26% | Configuration-dependent | 5.18 | 20% | Energy performance comparison | China |
41% | 32% | ||||||
Chae et al. [188], 2014 | a-Si | Configuration-dependent | 30% | Configuration-dependent | Configuration-dependent | Performance comparison | Multiple locations |
Zhang et al. [189], 2016 | a-Si | 47% | 41% | 5.50 | 15% | Energy performance comparison | China |
Barman et al. [191], 2018 | CdTe | Configuration-dependent | 20–50% | 1.81 | Configuration-dependent | Efficiency assessment | India |
Meng et al. [192], 2018 | CdTe | Not specified | 60% | Not specified | 10% | Performance investigation | China |
Kang et al. [194], 2013 | DSSC | Configuration-dependent | Not specified | Not specified | Configuration-dependent | Performance evaluation | Not specified |
Morini and Corrao [196], 2017 | DSSC | Not specified | Not specified | Configuration-dependent | Configuration-dependent | Energy optimization | Not specified |
Ghosh et al. [200], 2020 | PSC | 0.14–0.33 | Not specified | 5.60 | 30% | Performance evaluation | Not specified |
Alrashidi et al. 2022 | CdTe | Configuration-dependent | 100% | Configuration-dependent | Configuration-dependent | Thermal and energy performance | Penryn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangherini, G.; Diolaiti, V.; Bernardoni, P.; Andreoli, A.; Vincenzi, D. Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies 2023, 16, 6901. https://doi.org/10.3390/en16196901
Mangherini G, Diolaiti V, Bernardoni P, Andreoli A, Vincenzi D. Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies. 2023; 16(19):6901. https://doi.org/10.3390/en16196901
Chicago/Turabian StyleMangherini, Giulio, Valentina Diolaiti, Paolo Bernardoni, Alfredo Andreoli, and Donato Vincenzi. 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings" Energies 16, no. 19: 6901. https://doi.org/10.3390/en16196901
APA StyleMangherini, G., Diolaiti, V., Bernardoni, P., Andreoli, A., & Vincenzi, D. (2023). Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings. Energies, 16(19), 6901. https://doi.org/10.3390/en16196901