The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm
Abstract
:1. Introduction
2. Multi-Objective Model for Optimal Scheduling
2.1. Analysis of the Water–Wind–Light Complementary Principle
2.2. Forecast of Renewable Energy Generation Capacity
2.3. Constraint Condition
- (1)
- Storage capacity constraints:
- (2)
- Output constraints of hydropower station units:
- (3)
- Water balance constraint:
2.4. Net Residual System Load
2.5. Objective Function
- (1)
- Maximum power generation
- (2)
- Minimum output power fluctuation
3. The Solved Algorithm
3.1. Multi-Objective Pigeon-Inspired Optimization (MOPIO) Algorithm
3.1.1. Sorting Mechanism of Pareto
3.1.2. Consolidation Operator
3.2. Multi-Objective Fractional Pigeon-Inspired Optimization (MOFPIO) Algorithm
The Adaptive Fractional Calculus Strategy
- (1)
- Fractional calculus
- (2)
- Pigeon flock algorithm for fractional optimization
4. Water–Wind–Light Complementary Optimization
4.1. Population Initialization
4.2. Algorithm Process
5. Scenario Setting
6. Experimental Verification
6.1. Pareto Solution Set Analysis
6.2. Results of the Optimization Calculation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Q.; Yin, Z. The optimal path for China to achieve the “Dual Carbon” target from the perspective of energy structure optimization. Sustainability 2023, 15, 10305. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, X.; Xiu, J.; Li, D.; Cheng, Q.; Li, M. Optimal dispatch of integrated energy system under “Double Carbon” target. J. Phys. Conf. Ser. 2023, 2527, 012028. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, H.; Li, M.; Zhang, Y.; Gong, X.; He, D.; Liu, L. Research on the structural optimization of the clean energy industry in the context of dual carbon strategy—A case study of Sichuan province, China. Sustainability 2023, 15, 2993. [Google Scholar] [CrossRef]
- Ma, J.; Huang, S. Research on China’s renewable energy policy system under the background of “Dual Carbon”. E3S Web Conf. 2023, 369, 02006. [Google Scholar] [CrossRef]
- Lei, K.; Chang, J.; Wang, X.; Guo, A.; Wang, Y.; Ren, C. Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power. Renew. Energy 2023, 215, 118903. [Google Scholar] [CrossRef]
- Xiong, H.; Mònica, E.; Poul, A. Multi-objective optimization of a hydro-wind-photovoltaic power complementary plant with a vibration avoidance strategy. Appl. Energy 2021, 301, 117459. [Google Scholar] [CrossRef]
- Ponnuru, S.; Kumar, R.; Swaroopan, N. Intelligent control and power management of wind-solar integration of renewable energy sources using microgrid. Mater. Today Proc. 2020, 45, 2323–2328. [Google Scholar] [CrossRef]
- Chao, M.; Lu, L. Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements. Renew. Energy 2022, 198, 637–653. [Google Scholar]
- Poonam, S.; Manjaree, P.; Laxmi, S. Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique. Energy 2023, 269, 126756. [Google Scholar]
- Wang, X.; Bie, Z.; Liu, F.; Kou, Y.; Jiang, L. Bi-level planning for integrated electricity and natural gas systems with wind power and natural gas storage. Int. J. Electr. Power Energy Syst. 2020, 118, 105738. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Wang, X.; Yu, L. Bi-level optimal sizing and energy management of hybrid electric propulsion systems. Appl. Energy 2020, 260, 114134. [Google Scholar] [CrossRef]
- Mohammad, A.; Reza, S. Achieving sustainability and cost-effectiveness in power generation: Multi-objective dispatch of solar, wind, and hydro units. Sustainability 2023, 15, 2407. [Google Scholar]
- Kamel, O.; Abdelaziz, A.; Diab, A. Damping oscillation techniques for wind farm DFIG integrated into inter-connected power system. Electr. Power Compon. Syst. 2020, 48, 1551–1570. [Google Scholar] [CrossRef]
- Daqaq, F.; Kamel, S.; Ouassaid, M.; Ellaia, R.; Agwa, A.M. Non-dominated sorting manta ray foraging optimization for multi-objective optimal power flow with wind/solar/small- hydro energy sources. Fractal. Frac. 2022, 6, 194. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J. Optimal capacity allocation of wind-light-water multi-energy complementary capacity based on improved multi-objective optimization algorithm. Front. Energy Res. 2023, 10, 1115769. [Google Scholar]
- Zhang, X.; Campana, P.; Bi, X.; Egusquiza, M.; Xu, B.; Wang, C.; Egusquiza, E. Capacity configuration of a hydro-wind-solar-storage bundling system with transmission constraints of the receiving-end power grid and its techno-economic evaluation. Energy Convers. Manag. 2022, 270, 116177. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, J.; Pan, L.; Sun, D. Research on capacity allocation optimization of a wind-photovoltaic-hybrid-battery power generation system with multi-energy complementary. E3S Web Conf. 2022, 358, 01039. [Google Scholar] [CrossRef]
- Dong, J.; Dou, Z.; Si, S.; Wang, Z.; Liu, L. Optimization of capacity configuration of wind–solar–diesel–storage using improved sparrow search algorithm. J. Electr. Eng. Technol. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Yang, H.; Yu, Q.; Liu, J.; Jia, Y.; Yang, G.; Ackom, E.; Dong, Z.Y. Optimal wind-solar capacity allocation with coordination of dynamic regulation of hydropower and energy intensive controllable load. IEEE Access 2020, 8, 110129–110139. [Google Scholar] [CrossRef]
- Yalcinoz, T.; Krzysztof, R. Multi-objective environmental-economic load dispatch considering generator constraints and wind power using improved multi-objective particle swarm optimization. Adv. Electr. Comput. Eng. 2020, 20, 3–10. [Google Scholar] [CrossRef]
- Kamel, O.; Diab, A.; Do, T.; Mossa, M.A. A novel hybrid ant colony-particle swarm optimization techniques based tuning STATCOM for grid code compliance. IEEE Access 2020, 8, 41566–41587. [Google Scholar] [CrossRef]
- Gaojun, M.; Yanwen, D.; Pau, G.; Linlin, Y.; Wenyi, T. Multi-objective capacity optimization configuration of independent wind-photovoltaic- hydrogen-battery system based on improved MOSSA algorithm. Front. Energy Res. 2023, 10, 1077462. [Google Scholar] [CrossRef]
- Chen, K.; Peng, H.; Gao, Z.; Zhang, J.; Chen, P.; Ruan, J.; Wang, Y. Day-ahead operation analysis of wind and solar power generation coupled with hydrogen energy storage system based on adaptive simulated annealing particle swarm algorithm. Energies 2022, 15, 9581. [Google Scholar] [CrossRef]
- Behera, S.; Behera, S.; Barisal, A.K.; Sahu, P. Dynamic economic emission dispatch of thermal-wind-solar system with constriction factor-based particle swarm optimization algorithm. World J. Eng. 2020, 18, 217–227. [Google Scholar] [CrossRef]
- He, Y.; Guo, S.; Zhou, J.; Wu, F.; Huang, J.; Pei, H. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies. Energy Convers. Manag. 2021, 229, 113779. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Liang, J. A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm. Sci. China Informat. Sci. 2019, 62, 070206. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, J. A novel high-level target navigation pigeon-inspired optimization for global optimization problems. Appl. Intell. 2022, 53, 14918–14960. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; Sun, L.; Xue, H. Ultra-short-term prediction model of photovoltaic power generation based on chaos-RBF neural network. Power Syst. Technol. 2018, 42, 1110–1116. [Google Scholar]
- Yao, Q.; Wang, Y.; Yang, Y. Range estimation of few-shot underwater sound source in shallow water based on transfer learning and residual CNN. J. Syst. Eng. Electron. 2023, 34, 839–850. [Google Scholar] [CrossRef]
- Wang, X.; Mei, Y.; Cai, H.; Cong, X. A new fluctuation index: Characteristics and application to hydro-wind systems. Energies 2016, 9, 114. [Google Scholar] [CrossRef]
- Yuan, G.; Duan, H. Robust control for UAV close formation using LADRC via sine-powered pigeon-inspired optimization. Drones 2023, 7, 238. [Google Scholar] [CrossRef]
- Zheng, Z.; Duan, H.; Deng, Y. Extended search pigeon-inspired optimized MPPT controller for solar quadcopter. Aircr. Eng. Aerospace Technol. 2023, 95, 706–714. [Google Scholar] [CrossRef]
- Fu, X.; Chan, F.; Niu, B.; Chung, N.S.; Qu, T. A multi-objective pigeon inspired optimization algorithm for fuzzy production scheduling problem considering mould maintenance. Sci. China Informat. Sci. 2019, 62, 70202. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Deng, X. A prediction method based on fractional order displacement for dynamic multi-objective optimization. ISA Transact. 2022, 130, 163–176. [Google Scholar] [CrossRef] [PubMed]
Scene | Strategy | f1/(MW) | f2/(MW) | ||||
---|---|---|---|---|---|---|---|
Mean | Maximum | Minimum | Mean | Maximum | Minimum | ||
Winter typical day | MOPSO | −20,601 | −18,708 | −22,296 | 160,819.714 | 237,488.430 | 109,465.108 |
MOPIO | −17,796 | −12,836 | −23,255 | 106,477.734 | 199,398.268 | 51,896.166 | |
MOFPIO | −18,933 | −12,204 | −24,731 | 66,400.307 | 141,018.920 | 17,148.577 | |
Summer typical day | MOPSO | −20,119 | −17,951 | −22,080 | 158,386.402 | 233,775.129 | 118,635.451 |
MOPIO | −18,114 | −13,230 | −23,247 | 121,981.394 | 236,722.120 | 69,499.731 | |
MOFPIO | −19,018 | −11,748 | −25,505 | 88,828.491 | 176,687.155 | 34,676.793 |
Scene | Running Mode | Standard Deviation/MW | |
---|---|---|---|
Winter typical day | Isolated operation | 207.4235 | |
Complementary operation | MOPSO | 141.5279 | |
MOPIO | 133.4022 | ||
MOFPIO | 103.2126 | ||
Summer typical day | Isolated operation | 172.2947 | |
Complementary operation | MOPSO | 146.6313 | |
MOPIO | 113.4815 | ||
MOFPIO | 26.6062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ge, P.; Duan, N.; Wang, J.; Lv, J.; Liu, M.; Wang, B. The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm. Energies 2023, 16, 6787. https://doi.org/10.3390/en16196787
Wang K, Ge P, Duan N, Wang J, Lv J, Liu M, Wang B. The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm. Energies. 2023; 16(19):6787. https://doi.org/10.3390/en16196787
Chicago/Turabian StyleWang, Kangping, Pengjiang Ge, Naixin Duan, Jili Wang, Jinli Lv, Meng Liu, and Bin Wang. 2023. "The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm" Energies 16, no. 19: 6787. https://doi.org/10.3390/en16196787
APA StyleWang, K., Ge, P., Duan, N., Wang, J., Lv, J., Liu, M., & Wang, B. (2023). The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm. Energies, 16(19), 6787. https://doi.org/10.3390/en16196787