A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning
Abstract
:1. Introduction
2. Principle and Method
2.1. KPCA Reducing Dimensions
2.2. Bagging Algorithm
2.3. Gaussian Mixture Regression Model
2.4. Bayesian Network Information Fusion
3. Steps Based on KPCA-Bagging-GMR
4. Results and Discussion
4.1. Research Object
4.2. Simulation Experiment of Pulverizer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslick, J.C.; Zamarripa, M.A.; Ma, J.; Wang, M.; Bhattacharya, I.; Rychener, B.; Pinkston, P.; Bhattacharyya, D.; Zitney, S.E.; Burgard, A.P.; et al. Predictive Modeling of a Subcritical Pulverized-Coal Power Plant for Optimization: Parameter Estimation, Validation, and Application. Appl. Energy 2022, 319, 119226. [Google Scholar] [CrossRef]
- Saif-ul-Allah, M.W.; Khan, J.; Ahmed, F.; Hussain, A.; Gillani, Z.; Bazmi, A.A.; Khan, A.U. Convolutional Neural Network Approach for Reduction of Nitrogen Oxides Emissions from Pulverized Coal-Fired Boiler in a Power Plant for Sustainable Environment. Comput. Chem. Eng. 2023, 176, 108311. [Google Scholar] [CrossRef]
- Agrawal, V.; Panigrahi, B.K.; Subbarao, P.M.V. Review of Control and Fault Diagnosis Methods Applied to Coal Mills. J. Process Control. 2015, 32, 138–153. [Google Scholar] [CrossRef]
- Hong, X.; Xu, Z.; Zhang, Z. Abnormal Condition Monitoring and Diagnosis for Coal Mills Based on Support Vector Regression. IEEE Access 2019, 7, 170488–170499. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Song, S.; Cao, G.; Yu, M.; Cheng, H.; Zhu, Z.; Wang, S.; Xu, L.; Li, Q. A Bran-New Performance Evaluation Model of Coal Mill Based on GA-IFCM-IDHGF Method. Meas. J. Int. Meas. Confed. 2022, 195, 126171. [Google Scholar] [CrossRef]
- Banik, R.; Das, P.; Ray, S.; Biswas, A. Wind Power Generation Probabilistic Modeling Using Ensemble Learning Techniques. Mater. Today Proc. 2019, 26, 2157–2162. [Google Scholar] [CrossRef]
- Zhong, X.; Ban, H. Crack Fault Diagnosis of Rotating Machine in Nuclear Power Plant Based on Ensemble Learning. Ann. Nucl. Energy 2022, 168, 108909. [Google Scholar] [CrossRef]
- Wen, X.; Li, K.; Wang, J. NOx Emission Predicting for Coal-Fired Boilers Based on Ensemble Learning Methods and Optimized Base Learners. Energy 2023, 264, 126171. [Google Scholar] [CrossRef]
- Cai, J.; Ma, X.; Li, Q. On-Line Monitoring the Performance of Coal-Fired Power Unit: A Method Based on Support Vector Machine. Appl. Therm. Eng. 2009, 29, 2308–2319. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J. Prediction Model for Rotary Kiln Coal Feed Based on Hybrid SVM. Procedia Eng. 2011, 15, 681–687. [Google Scholar] [CrossRef]
- Yao, Z.; Romero, C.; Baltrusaitis, J. Combustion Optimization of a Coal-Fired Power Plant Boiler Using Artificial Intelligence Neural Networks. Fuel 2023, 344, 128145. [Google Scholar] [CrossRef]
- Doner, N.; Ciddi, K.; Yalcin, I.B.; Sarivaz, M. Artificial Neural Network Models for Heat Transfer in the Freeboard of a Bubbling Fluidised Bed Combustion System. Case Stud. Therm. Eng. 2023, 49, 103145. [Google Scholar] [CrossRef]
- Yu, Z.; Yousaf, K.; Ahmad, M.; Yousaf, M.; Gao, Q.; Chen, K. Efficient Pyrolysis of Ginkgo Biloba Leaf Residue and Pharmaceutical Sludge (Mixture) with High Production of Clean Energy: Process Optimization by Particle Swarm Optimization and Gradient Boosting Decision Tree Algorithm. Bioresour. Technol. 2020, 304, 123020. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Chen, W.; Jia, L.; Zhang, Y.; Lu, Y. Cluster Analysis Based on Attractor Particle Swarm Optimization with Boundary Zoomed for Working Conditions Classification of Power Plant Pulverizing System. Neurocomputing 2013, 117, 54–63. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Chen, H.; Chen, X.; Zhou, Y.; Wu, X.; Chen, L.; Cen, K. Coal Mill Model Considering Heat Transfer Effect on Mass Equations with Estimation of Moisture. J. Process Control. 2021, 104, 178–188. [Google Scholar] [CrossRef]
- Niemczyk, P.; Dimon Bendtsen, J.; Peter Ravn, A.; Andersen, P.; Søndergaard Pedersen, T. Derivation and Validation of a Coal Mill Model for Control. Control. Eng. Pract. 2012, 20, 519–530. [Google Scholar] [CrossRef]
- Dai, Q.; Ye, R.; Liu, Z. Considering Diversity and Accuracy Simultaneously for Ensemble Pruning. Appl. Soft Comput. J. 2017, 58, 75–91. [Google Scholar] [CrossRef]
- Shiue, Y.R.; You, G.R.; Su, C.T.; Chen, H. Balancing Accuracy and Diversity in Ensemble Learning Using a Two-Phase Artificial Bee Colony Approach. Appl. Soft Comput. 2021, 105, 107212. [Google Scholar] [CrossRef]
- Khoder, A.; Dornaika, F. Ensemble Learning via Feature Selection and Multiple Transformed Subsets: Application to Image Classification. Appl. Soft Comput. 2021, 113, 108006. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Liu, D.; Shang, J.; Chen, M. Principal Component Analysis-Based Ensemble Detector for Incipient Faults in Dynamic Processes. IEEE Trans. Ind. Inform. 2021, 17, 5391–5401. [Google Scholar] [CrossRef]
- Lu, H.; Su, H.; Zheng, P.; Gao, Y.; Du, Q. Weighted Residual Dynamic Ensemble Learning for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6912–6927. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Zhang, J. A Heterogeneous Ensemble Learning Method for Neuroblastoma Survival Prediction. IEEE J. Biomed. Health Inform. 2022, 26, 1472–1483. [Google Scholar] [CrossRef]
- Farrell, A.; Wang, G.; Rush, S.A.; Martin, J.A.; Belant, J.L.; Butler, A.B.; Godwin, D. Machine Learning of Large-Scale Spatial Distributions of Wild Turkeys with High-Dimensional Environmental Data. Ecol. Evol. 2019, 9, 5938–5949. [Google Scholar] [CrossRef] [PubMed]
- Kuang, F.; Xu, W.; Zhang, S. A Novel Hybrid KPCA and SVM with GA Model for Intrusion Detection. Appl. Soft Comput. J. 2014, 18, 178–184. [Google Scholar] [CrossRef]
- Cao, L.J.; Chua, K.S.; Chong, W.K.; Lee, H.P.; Gu, Q.M. A Comparison of PCA, KPCA and ICA for Dimensionality Reduction in Support Vector Machine. Neurocomputing 2003, 55, 321–336. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, M.; Xu, X.; Zhang, N. Fault Diagnosis of Rolling Bearings with Noise Signal Based on Modified Kernel Principal Component Analysis and DC-ResNet. CAAI Trans. Intell. Technol. 2023, 8, 1014–1028. [Google Scholar] [CrossRef]
- Sha, X.; Diao, N. Robust Kernel Principal Component Analysis and Its Application in Blockage Detection at the Turn of Conveyor Belt. Measurement 2023, 206, 112283. [Google Scholar] [CrossRef]
- Liu, Z.; Han, H.G.; Dong, L.X.; Yang, H.Y.; Qiao, J.F. Intelligent Decision Method of Sludge Bulking Using Recursive Kernel Principal Component Analysis and Bayesian Network. Control. Eng. Pract. 2022, 121, 105038. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Sheng, H.; Xiao, J.; Wang, P. Lithium Iron Phosphate Battery Electric Vehicle State-of-Charge Estimation Based on Evolutionary Gaussian Mixture Regression. IEEE Trans. Ind. Electron. 2017, 64, 544–551. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y. Bayesian Entropy Network for Fusion of Different Types of Information. Reliab. Eng. Syst. Saf. 2020, 195, 106747. [Google Scholar] [CrossRef]
- Singh, P.; Bose, S.S. Ambiguous D-Means Fusion Clustering Algorithm Based on Ambiguous Set Theory: Special Application in Clustering of CT Scan Images of COVID-19. Knowl-Based Syst. 2021, 231, 107432. [Google Scholar] [CrossRef]
Location | Auxiliary Variables |
---|---|
Pulverizer Inlet | inlet primary air flow, inlet primary air pressure, inlet primary air temperature, and coal feed |
Pulverizer Outlet | separator air powder mixture temperature and separator outlet pressure |
Pulverizer classifying | seal air and primary air pressure difference |
Hydraulic power unit | loaded oil pressure and hydraulic oil temperature |
Pulverizer motor | motor bearing temperature and thrust bearing oil groove oil temperature |
Number | I | II | III | IV | V |
---|---|---|---|---|---|
Modeling approach | KPCA–GMR | PCA–Bagging–GMR | MDS–Bagging–GMR | KPCA–Bagging–GMR | Proposed Method |
Fusion mode | Bayes fusion | Bayes fusion | Bayes fusion | Mean fusion | Bayes fusion |
RSEM | 2.6667 | 4.7652 | 2.7653 | 0.6979 | 0.6045 |
COR | 91.34% | 85.23% | 78.45% | 99.34% | 99.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Si, F.; Dong, Y.; Ren, S. A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning. Energies 2023, 16, 6671. https://doi.org/10.3390/en16186671
Jin S, Si F, Dong Y, Ren S. A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning. Energies. 2023; 16(18):6671. https://doi.org/10.3390/en16186671
Chicago/Turabian StyleJin, Shengxiang, Fengqi Si, Yunshan Dong, and Shaojun Ren. 2023. "A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning" Energies 16, no. 18: 6671. https://doi.org/10.3390/en16186671
APA StyleJin, S., Si, F., Dong, Y., & Ren, S. (2023). A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning. Energies, 16(18), 6671. https://doi.org/10.3390/en16186671