Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review
Abstract
:1. Introduction
2. Volume, Current Usage, and Composition of Oilfield Brines
3. Impact of Produced Water Chemistry on Lithium Recovery
- Class 1—the low impact parameter—this parameter has a low impact on lithium recovery;
- Class 2—the moderate impact parameter—this parameter has a moderate impact on lithium recovery, its increased or decreased value can affect the process but it can be rather easily adjusted (does not pose a major technological challenge);
- Class 3—the high impact parameter—this parameter strongly affects lithium recovery, its impact can be reduced but it will require additional technological operations, which may result in new problems such as precipitation of sludge, chemical degradation of sorbents, etc.;
- Class 4—the critical parameter—failure to meet the minimum levels of the parameter will result in reduced efficiency and cost-effectiveness of the entire recovery process.
4. Pretreatment of Produced Water Prior to Lithium Recovery
5. Methods of Recovering Lithium from Oilfield Brines Reported in the Scientific Literature
6. Industrial Technologies for Recovering Lithium from Oilfield Brine—Current Status and Future Perspectives
- Pretreatment of oilfield brine, including removal of organic compounds, suspended solids, colloidal silica, and probably borates;
- Recovery of lithium using lithium ion sieves;
- Regeneration of lithium loaded LISs;
- Polishing of produced lithium concentrate (i.e., removal of calcium, magnesium, strontium, and other impurities);
- Concentration of polished solution of lithium salt using reverse osmosis, membrane processes or evaporation until reaching a concentration at which precipitation of lithium carbonate is possible or precipitation of lithium phosphate and dissolution precipitate in acidic solution, and subsequent operations necessary to obtain a concentrated lithium salt solution;
- Lithium carbonate precipitation as a final step.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stringfellow, W.T.; Dobson, P.F. Technology for the recovery of lithium from geothermal brines. Energies 2021, 14, 6805. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Li, L.; Deshmane, V.G.; Paranthaman, M.P.; Bhave, R.; Moyer, B.A.; Harrison, S. Lithium recovery from aqueous resources and batteries: A brief review. Johns. Matthey Technol. Rev. 2018, 62, 161–176. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, B.; Lü, Y.; Wang, C.; Chen, Y. A review of lithium extraction from natural resources. Int. J. Miner. Metall. Mater. 2023, 30, 209–224. [Google Scholar] [CrossRef]
- Talens Peiró, L.; Villalba Méndez, G.; Ayres, R.U. Lithium: Sources, production, uses, and recovery outlook. JOM 2013, 65, 986–996. [Google Scholar] [CrossRef]
- Murphy, O.; Haji, M.N. A review of technologies for direct lithium extraction from low Li+ concentration aqueous solutions. Front. Chem. Eng. 2022, 4, 1008680. [Google Scholar] [CrossRef]
- Greim, P.; Solomon, A.A.; Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 2020, 11, 4570. [Google Scholar] [CrossRef]
- Knapik, E.; Rotko, G.; Marszałek, M.; Piotrowski, M. Comparative study on lithium recovery with ion-selective adsorbents and extractants: Results of multi-stage screening test with the use of brine simulated solutions with increasing complexity. Energies 2023, 16, 3149. [Google Scholar] [CrossRef]
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Lim, M.K.; Chen, W.-Q.; Teng, L.; Wang, P.; Wang, H.; Zhang, C.; Yao, C.; Ghadimi, P. Critical systemic risk sources in global lithium-ion battery supply networks: Static and dynamic network perspectives. Renew. Sustain. Energy Rev. 2023, 173, 113083. [Google Scholar] [CrossRef]
- Alessia, A.; Alessandro, B.; Maria, V.-G.; Carlos, V.-A.; Francesca, B. Challenges for sustainable lithium supply: A critical review. J. Clean. Prod. 2021, 300, 126954. [Google Scholar] [CrossRef]
- Marcinov, V.; Klimko, J.; Takáčová, Z.; Pirošková, J.; Miškufová, A.; Sommerfeld, M.; Dertmann, C.; Friedrich, B.; Oráč, D. Lithium production and recovery methods: Overview of lithium losses. Metals 2023, 13, 1213. [Google Scholar] [CrossRef]
- Kumar, A.; Fukuda, H.; Hatton, T.A.; Lienhard, J.H. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Lett. 2019, 4, 1471–1474. [Google Scholar] [CrossRef]
- Ooi, K.; Miyai, Y.; Katoh, S. Recovery of lithium from seawater by manganese oxide adsorbent. Sep. Sci. Technol. 1986, 21, 755–766. [Google Scholar] [CrossRef]
- Suud, E.M.; Suryantini; Mubarok, M.Z. Lithium extraction method from geothermal brine to find suitable method for geothermal fields in Indonesia: A Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1159, 012011. [Google Scholar] [CrossRef]
- Warren, I. Techno-Economic Analysis of Lithium Extraction from Geothermal Brines; National Renewable Energy Laboratory: Golden, CO, USA, 2021. [Google Scholar]
- Ighalo, J.O.; Amaku, J.F.; Olisah, C.; Adeola, A.O.; Iwuozor, K.O.; Akpomie, K.G.; Conradie, J.; Adegoke, K.A.; Oyedotun, K.O. Utilisation of adsorption as a resource recovery technique for lithium in geothermal water. J. Mol. Liq. 2022, 365, 120107. [Google Scholar] [CrossRef]
- Weinand, J.M.; Vandenberg, G.; Risch, S.; Behrens, J.; Pflugradt, N.; Linßen, J.; Stolten, D. Low-carbon lithium extraction makes deep geothermal plants cost-competitive in future energy systems. Adv. Appl. Energy 2023, 11, 100148. [Google Scholar] [CrossRef]
- Sanjuan, B.; Gourcerol, B.; Millot, R.; Rettenmaier, D.; Jeandel, E.; Rombaut, A. Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics 2022, 101, 102385. [Google Scholar] [CrossRef]
- EuGeLi: Lithium Extraction from Geothermal Brines in Europe. Available online: https://www.Brgm.Fr/En/Current-Project/Eugeli-Lithium-Extraction-Geothermal-Brines-Europe (accessed on 29 July 2023).
- French Lithium for Electric Vehicle Batteries. Available online: https://www.eramet.com/en/activities/innovate-design/eugeli-project (accessed on 29 July 2023).
- Vulcan Zero Carbon Lithium™ Project Phase One dfs Results and Resources-Reserves Update. Available online: https://v-er.eu/vulcan-zero-carbon-lithium-project-phase-one-dfs-results-and-resources-reserves-update/ (accessed on 29 July 2023).
- Harris, P. Albemarle to Double Silver Peak Lithium Production. Available online: https://www.mining-journal.com/energy-minerals-news/news/1402126/ablemarle-to-double-silver-peak-lithium-production (accessed on 29 July 2023).
- Sutijan, S.; Darma, S.A.; Hananto, C.M.; Sujoto, V.S.H.; Anggara, F.; Jenie, S.N.A.; Astuti, W.; Mufakhir, F.R.; Virdian, S.; Utama, A.P.; et al. Lithium separation from geothermal brine to develop critical energy resources using high-pressure nanofiltration technology: Characterization and optimization. Membranes 2023, 13, 86. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Wei, Z.; Hu, J.; Guo, Y.; Deng, T. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. Chem. Eng. J. 2021, 410, 128320. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, K.; Guo, F.; Xu, L.; Xie, Y.; Deng, T. Novel LIS-doped mixed matrix membrane absorbent with high structural stability for sustainable lithium recovery from geothermal water. Desalination 2022, 527, 115570. [Google Scholar] [CrossRef]
- Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef] [PubMed]
- Amakiri, K.T.; Ogolo, N.A.; Angelis-Dimakis, A.; Albert, O. Physicochemical assessment and treatment of produced water: A case study in Niger Delta Nigeria. Pet Res. 2023, 8, 87–95. [Google Scholar] [CrossRef]
- Clark, C.E.; Veil, J.A. Produced Water Volumes and Management Practices in the United States; U.S. Department of Energy—National Energy Technology Laboratory: Houston, TX, USA, 2009. [Google Scholar]
- Veil, J.U.S. Produced Water Volumes and Management Practices in 2012; The Ground Water Protection Council: Oklahoma City, OK, USA, 2015. [Google Scholar]
- Veil, J.U.S. Produced Water Volumes and Management Practices in 2017; Ground Water Research and Education Foundation: Oklahoma City, OK, USA, 2020. [Google Scholar]
- Eyitayo, S.I.; Watson, M.C.; Kolawole, O.; Xu, P.; Lawal, K.A.; Wigwe, M.E.; Giussani, A. Novel systematic approach for produced water volume quantification applicable for beneficial reuse. Environ. Sci. Adv. 2023, 2, 508–528. [Google Scholar] [CrossRef]
- Armenta, M. Mechanisms and Control of Water Inflow to Wells in Gas Reservoirs with Bottom Water Drive. Doctoral Dissertation, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2003. [Google Scholar]
- Miranda, M.A.; Ghosh, A.; Mahmodi, G.; Xie, S.; Shaw, M.; Kim, S.; Krzmarzick, M.J.; Lampert, D.J.; Aichele, C.P. Treatment and recovery of high-value elements from produced water. Water 2022, 14, 880. [Google Scholar] [CrossRef]
- Dolan, F.C.; Cath, T.Y.; Hogue, T.S. Assessing the feasibility of using produced water for irrigation in Colorado. Sci. Total Environ. 2018, 640–641, 619–628. [Google Scholar] [CrossRef]
- McCurdy, R. Underground Injection Wells for Produced Water Disposal. Proceedings of the Technical Workshops for the Hydraulic Fracturing Study: Water Resources Management. 2011. Available online: https://user-content.perma.cc/media/2014/10/19/5/37/3WF-8E9B/ (accessed on 29 July 2023).
- Mallants, D.; Šimůnek, J.; Torkzaban, S. Determining water quality requirements of coal seam gas produced water for sustainable irrigation. Agric. Water Manag. 2017, 189, 52–69. [Google Scholar] [CrossRef]
- Jaffar, S.; Khaliq, A.; Ahmed, M.; Al-Wardy, M.; Al-Busaidi, A.; Choudri, B.S. Wastewater and sludge management and research in Oman: An overview. J. Air Waste Manag. Assoc. 2017, 67, 267–278. [Google Scholar] [CrossRef]
- Alley, B.; Beebe, A.; Rodgers, J., Jr.; Castle, J.W. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere 2011, 85, 74–82. [Google Scholar] [CrossRef]
- Knapik, E.; Chruszcz-Lipska, K. Chemistry of reservoir fluids in the aspect of CO2 injection for selected oil reservoirs in Poland. Energies 2020, 13, 6456. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B. Wody towarzyszące złożom węglowodorów jako potencjalne źródło jodu, litu i strontu. Miner. Res. Manag. 2016, 32, 31–44. [Google Scholar] [CrossRef]
- Hitchon, B.; Underschultz, J.R.; Bachu, S. Industrial Mineral Potential of Alberta Formation Waters; Alberta Research Council: Edmonton, AB, Canada; Alberta Geological Survey: Edmonton, AB, Canada, 1993. [Google Scholar]
- Li, J.; Chen, F.; Ling, Z.; Li, T. Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: Geochemical and Li isotopic evidence. Ore Geol. Rev. 2021, 139, 104481. [Google Scholar] [CrossRef]
- Yu, X.; Wang, C.; Huang, H.; Wang, J.; Yan, K. Lithium and brine geochemistry in the Qianjiang Formation of the Jianghan Basin, central China. Sci. Rep. 2023, 13, 4445. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, B.; Bachu, S.; Underschultz, J.R.; Yuan, L.P. Industrial Mineral Potential of Alberta Formation Waters; Alberta Research Council: Edmonton, AB, Canada; Alberta Geological Survey: Edmonton, AB, Canada, 1995. [Google Scholar]
- Bukowski, K.; Czapowski, G. Wody Mineralne Jako Źródło Surowców Chemicznych. Available online: http://surowce-chemiczne.pgi.gov.pl/wody_min.htm (accessed on 29 July 2023).
- Dawoud, H.D.; Saleem, H.; Alnuaimi, N.A.; Zaidi, S.J. Characterization and treatment technologies applied for produced water in Qatar. Water 2021, 13, 3573. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and teuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Collins, A.G. Geochemistry of Liquids, Gases, and Rocks from the Smackover Formation; U.S. Bureau of Mines: Washington, DC, USA, 1974. [Google Scholar]
- Knapik, E.; Chruszcz-Lipska, K.; Łukańko, Ł.; Wysocki, S. Reuse of flowback water from hydraulic fracturing for drilling mud preparation and secondary hydrocarbon recovery. Energies 2021, 14, 5921. [Google Scholar] [CrossRef]
- Engle, M.A.; Reyes, F.R.; Varonka, M.S.; Orem, W.H.; Ma, L.; Ianno, A.J.; Schell, T.M.; Xu, P.; Carroll, K.C. Geochemistry of formation waters from the Wolfcamp and “Cline” Shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chem. Geol. 2016, 425, 76–92. [Google Scholar] [CrossRef]
- Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties, 1st ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Petersková, M.; Valderrama, C.; Gibert, O.; Cortina, J.L. Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents. Desalination 2012, 286, 316–323. [Google Scholar] [CrossRef]
- Yousef, R.; Qiblawey, H.; El-Naas, M.H. Adsorption as a process for produced water treatment: A review. Processes 2020, 8, 1657. [Google Scholar] [CrossRef]
- Zaman, H.G.; Baloo, L.; Pendyala, R.; Singa, P.K.; Ilyas, S.U.; Kutty, S.R.M. Produced water treatment with conventional adsorbents and MOF as an alternative: A review. Materials 2021, 14, 7607. [Google Scholar] [CrossRef]
- Sanchez-Rosario, R.; Hildenbrand, Z.L. Produced water treatment and valorization: A techno-economical review. Energies 2022, 15, 4619. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The formation, stabilization and separation of oil–water emulsions: A review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Purchas, D.; Sutherland, K. (Eds.) Handbook of Filter Media, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2002; ISBN 9780080507774. [Google Scholar]
- Freedman, D.E.; Riley, S.M.; Jones, Z.L.; Rosenblum, J.S.; Sharp, J.O.; Spear, J.R.; Cath, T.Y. Biologically active filtration for fracturing flowback and produced water treatment. J. Water Process Eng. 2017, 18, 29–40. [Google Scholar] [CrossRef]
- Doyle, D.H.; Brown, A.B. Produced Water Treatment and Hydrocarbon Removal with Organoclay. In Proceedings of the SPE 63100 Presented at the 2000 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 1–4 October 2000. [Google Scholar]
- Janks, J.S.; Cadena, F. Investigations into the Use of Modified Zeolites for Removing Benzenes, Toluene and Xylene from Saline Produced Water. In Produced Water: Technological/Environmental Issues and Solutions; Ray, J.P., Engelhardt, F.R., Eds.; Plenum Publishing Corp.: New York, NY, USA, 1992; pp. 473–488. [Google Scholar]
- Knapik, E.; Chruszcz-Lipska, K.; Stopa, J.; Marszałek, M.; Makara, A. Separation of BTX fraction from reservoir brines by sorption onto hydrophobized biomass in a fixed-bed-column system. Energies 2020, 13, 1064. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Wang, Z. Oilfield produced water treatment with surface modified fiber ball media filtration. Water Sci. Technol. 2002, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Water Chemistry and Pretreatment. Fouling Prevention. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Guidelines-for-Feedwater-Manual-Exc-45-D01578-en.pdf (accessed on 29 July 2023).
- Pretreatment for Membrane Processes. Available online: https://www.amtaorg.com/wp-content/uploads/12_Pretreatment.pdf (accessed on 29 July 2023).
- Çakmakce, M.; Kayaalp, N.; Koyuncu, I. Desalination of produced water from oil production fields by membrane processes. Desalination 2008, 222, 176–186. [Google Scholar] [CrossRef]
- Patrick, B.; Tsang, P.E.; Christopher, J.; Martin, P.E. Economic evaluation of treating oilfield produced water for potable use. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Bakersfield, CA, USA, 16–18 March 2004. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Harrison, S. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids; DE-EE0002790; Department of Energy, Geothermal Technologies Program: Washington, DC, USA, 2014. [Google Scholar]
- Perez, W.; Barrientos, H.A.C.; Suarez, C.; Bravo, M. Method for the Production of Battery Grade Lithium Carbonate from Natural and Industrial Brines. U.S. Patent No. 8691169, 8 April 2014. [Google Scholar]
- Laitala, H.; Karonen, J.; Haavanlammi, L. Process and Equipment for Producing Pure Lithium-Containing Solution. U.S. Patent No. 9725787, 8 August 2017. [Google Scholar]
- Christopher, D.H.; Stewart, M.; Rice, J. The Recovery and Separation of Mineral Values from Geothermal Brines; BuMines OFR 81-75; Hazen Research, Inc.: Golden, CO, USA; US Bureau of Mines: Washington, DC, USA, 1975. [Google Scholar]
- Díaz Nieto, C.H.; Mata, M.A.; Palacios, C.J.O.; Palacios, N.A.; Torres, W.R.; Vera, M.L.; Flexer, V. Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery. Electrochim. Acta 2023, 454, 142401. [Google Scholar] [CrossRef]
- Yang, H.-J.; Li, Q.-H.; Li, B.; Guo, F.-Q.; Meng, Q.-F.; Li, W. Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine. Int. J. Miner. Metall. Mater. 2012, 19, 290–294. [Google Scholar] [CrossRef]
- Jang, E.; Jang, Y.; Chung, E. Lithium recovery from shale gas produced water using solvent extraction. Appl. Geochem. 2017, 78, 343–350. [Google Scholar] [CrossRef]
- Lee, J.; Chung, E. Lithium recovery by solvent extraction from simulated shale gas produced water—Impact of organic compounds. Appl. Geochem. 2020, 116, 104571. [Google Scholar] [CrossRef]
- Zante, G.; Trébouet, D.; Boltoeva, M. Solvent extraction of lithium from simulated shale gas produced water with a bifunctional ionic liquid. Appl. Geochem. 2020, 123, 104783. [Google Scholar] [CrossRef]
- Jang, Y.; Chung, E. Adsorption of lithium from shale gas produced water using titanium based adsorbent. Ind. Eng. Chem. Res. 2018, 57, 8381–8387. [Google Scholar] [CrossRef]
- Jang, Y.; Chung, E. Influence of alkanes on lithium adsorption and desorption of a H2TiO3 ion sieve adsorbent in synthetic shale gas-produced water. Ind. Eng. Chem. Res. 2019, 58, 21897–21903. [Google Scholar] [CrossRef]
- Jang, Y.; Chung, E. Lithium adsorptive properties of H2TiO3 adsorbent from shale gas produced water containing organic compounds. Chemosphere 2019, 221, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Seip, A.; Safari, S.; Pickup, D.M.; Chadwick, A.V.; Ramos, S.; Velasco, C.A.; Cerrato, J.M.; Alessi, D.S. Lithium recovery from hydraulic fracturing flowback and produced water using a selective ion exchange sorbent. Chem. Eng. J. 2021, 426, 130713. [Google Scholar] [CrossRef]
- Tian, L.; Liu, Y.; Tang, P.; Yang, Y.; Wang, X.; Chen, T.; Bai, Y.; Tiraferri, A.; Liu, B. Lithium extraction from shale gas flowback and produced water using H1.33Mn1.67O4 adsorbent. Resour. Conserv. Recycl. 2022, 185, 106476. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Wan, P.; Gasem, K.; Wang, K.; He, T.; Adidharma, H.; Fan, M. Extraction of lithium with functionalized lithium ion-sieves. Prog. Mater. Sci. 2016, 84, 276–313. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Ma, P. Research progress on new types of H2TiO3 lithium-ion sieves: A review. Metals 2023, 13, 977. [Google Scholar] [CrossRef]
- Yu, H.; Naidu, G.; Zhang, C.; Wang, C.; Razmjou, A.; Han, D.S.; He, T.; Shon, H. Metal-based adsorbents for lithium recovery from aqueous resources. Desalination 2022, 539, 115951. [Google Scholar] [CrossRef]
- Tangkas, I.W.C.W.H.; Sujoto, V.S.H.; Astuti, W.; Jenie, S.N.A.; Anggara, F.; Utama, A.P.; Petrus, H.T.B.M.; Sutijan. Synthesis of titanium ion sieves and its application for lithium recovery from artificial Indonesian geothermal brine. J. Sustain. Metall. 2023, 9, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Orooji, Y.; Nezafat, Z.; Nasrollahzadeh, M.; Shafiei, N.; Afsari, M.; Pakzad, K.; Razmjou, A. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 2022, 529, 115624. [Google Scholar] [CrossRef]
- Ventura, S.; Bhamidi, S.; Hornbostel, M.; Anoop, N. Selective Recovery of Lithium from Geothermal Brines; Publication Number: CEC500-2020-020; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Richter, A. Successful Production of Battery-Grade Geothermal Lithium Carbonate, France. Think GeoEnergy. Available online: https://www.thinkgeoenergy.com/successful-production-of-battery-grade-geothermal-lithium-carbonate-france/ (accessed on 29 July 2023).
- Ryabtsev, A.D.; Kotsupalo, N.P.; Kurakov, A.A.; Nemkov, N.M.; Vakhromeev, A.G. Rational use of multicomponent brines extracted together with oil. Theor. Found. Chem. Eng. 2020, 54, 756–761. [Google Scholar] [CrossRef]
- Jadar Project Website. Available online: https://riotintoserbia.com/ (accessed on 29 July 2023).
- Cinovec Lithium Project Website. Available online: https://britishlithium.co.uk/project/cinovec-lithium-czech-republic/ (accessed on 29 July 2023).
- 5 Ongoing Lithium Projects in Africa. Available online: https://venturesafrica.com/5-ongoing-lithium-projects-in-africa/ (accessed on 29 July 2023).
- Xiao, F. Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements. Sci. Total Environ. 2021, 770, 145283. [Google Scholar] [CrossRef]
- CompLithium. Technologia Kompleksowego Odzysku Litu i Użytkowej z Odpadowych Wód Złożowych. Available online: https://complithium.agh.edu.pl/ (accessed on 29 July 2023).
- Standard Lithium Ltd. Arkansas Smackover Projects. Available online: https://www.standardlithium.com/projects/arkansas-smackover (accessed on 29 July 2023).
- Standard Lithium and Lanxess Finalize Plan for First Commercial Lithium Project in Arkansas. Available online: https://www.standardlithium.com/investors/news-events/press-releases/detail/113/standard-lithium-and-lanxess-finalize-plan-for-first (accessed on 29 July 2023).
- Standard Lithium Ltd. NI 43—101 Technical Report, Preliminary Economic Assessment of LANXESS Smackover Project. Available online: https://d1io3yog0oux5.cloudfront.net/standardlithium/files/pages/standardlithium/db/369/description/PEA_.pdf (accessed on 29 July 2023).
- Standard Lithium Signs Joint Development Agreement with Koch Technology Solutions. Available online: https://www.standardlithium.com/investors/news-events/press-releases/detail/143/standard-lithium-signs-joint-development-agreement-with (accessed on 29 July 2023).
- Standard Lithium Ltd. Preliminary Economic Assessment of Sw Arkansas Lithium Project, Ni 43—101 Technical Report. Available online: https://d1io3yog0oux5.cloudfront.net/standardlithium/files/pages/standardlithium/db/369/description/Standard_Lithium_SW_Arkansas_Lithium_Project_PEA_-_November_25th.pdf (accessed on 29 July 2023).
- Brown, C.J. Process for Recovery of Lithium from Brine. International. Patent Appl. No. PCT/CA2020/000069, 9 June 2020. [Google Scholar]
- Indigo Exploration Outlines Exploration Plan to Advance its Alberta Lithium Brines Projects. Available online: https://www.newsfilecorp.com/release/162761/Indigo-Exploration-Outlines-Exploration-Plan-to-Advance-its-Alberta-Lithium-Brines-Projects (accessed on 29 July 2023).
- E3 Metals Corp. NI 43-101 Technical Report, Preliminary Economic Assessment, Clearwater Lithium Project, Alberta, Canada. Available online: https://www.e3lithium.ca/_resources/reports/technical/20210917-NI43-101-PEA-Report-Amended-Final.pdf?v=0.511 (accessed on 29 July 2023).
- E3 Lithium Announces Field Pilot Plant on Track for August Start as Construction Continues. Available online: https://www.e3lithium.ca/newsroom/news-releases/e3-lithium-announces-field-pilot-plant-on-track-for-august-start-as-construction-continues (accessed on 29 July 2023).
- Alessi, D.; Safarimohsen-Abad, S. Sorbent Compositions and Methods of Manufacture for Use in Concentrating Lithium from Brines. International Patent Appl. No. PCT/CA2020/051763, 18 December 2020. [Google Scholar]
- Jastrzebska, R.; Sharma, M. Lithium Manganese Oxide Spinel Sorbent Compounds and Methods of Synthesis. International Patent Appl. No. PCT/CA2021/051782, 10 December 2021. [Google Scholar]
- Empire Metals Corp. Fox Creek Project Website. Available online: https://www.empiremetalscorp.com/fox-creek/ (accessed on 29 July 2023).
- Mceachern, P.M.; Wong, N.; Andric, M. Method and Apparatus for the Treatment of Water with the Recovery of Metals. U.S. Patent Appl. No. 16/624744, 24 September 2020. [Google Scholar]
- Lazerson, J.; Marks, A. Method for the Production of Lithium Carbonate from Salt Brines. U.S. Patent Appl. No. 16/348,109, 12 September 2019. [Google Scholar]
- MGX Minerals Announces Filing of Notice of Work for Drilling at GC Lithium (LCT) Project, British Columbia. Available online: https://www.mgxminerals.com/_files/ugd/b0543a_2d053839e7904b00a5e3b000155293f0.pdf (accessed on 29 July 2023).
- NI 43-101 Technical Report, on the Lithium Brines of the Clear Hills Property Alberta, Canada Prepared for Prism Diversified Ltd. Calgary Alberta by Edward Lyons Tekhne Research Inc. Available online: https://www.miningdataonline.com/reports/ClearHills_TechnicalReport_04152018.pdf (accessed on 29 July 2023).
- Volt Lithium Meets Key Milestone with Start-Up of Pilot Project. Available online: https://voltlithium.com/wp-content/uploads/2023/04/23-03-29-Pilot-Announcement-1.pdf (accessed on 29 July 2023).
- Prairie Lithium Acquires Oil Wells Slated for Abandonment to Advance their Lithium Resource Research. Available online: https://www.businesswire.com/news/home/20220920005109/en/Prairie-Lithium-Acquires-Oil-Wells-Slated-for-Abandonment-to-Advance-their-Lithium-Resource-Research (accessed on 29 July 2023).
- Prairie Lithium Direct Lithium Extraction (DLE) Technology—Presentation. Available online: https://www.prairielithium.ca/_files/ugd/74e06a_8611aa698f6a49bdb31ea09134058b3f.pdf (accessed on 29 July 2023).
- Prairie Lithium Website. Available online: https://www.prairielithium.ca/about (accessed on 29 July 2023).
- Ireland, I. Methods and Systems for Recovery of Valuable Target Species from Brine Solutions. International Patent Appl. No. PCT/CA2021/050591, 29 April 2021. [Google Scholar]
- Recion Technologies, Inc. Website. Available online: https://reciontechnologies.com/# (accessed on 29 July 2023).
- Safarimohsen-Abad, S.; Alessi, D. Lithium Extraction Process. International Patent Appl. No. PCT/CA2021/050523, 16 April 2021. [Google Scholar]
- PetroChina Produces First Batch of Lithium Carbonate from Gas-Field Water. Available online: https://www.globaltimes.cn/page/202301/1283176.shtml (accessed on 29 July 2023).
- Reva, M.V.; Chomko, D.F.; Chomko, F. Prospects lithium extraction from produced water in oil and gas fields of Ukrainian. Geoinformatics 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Karshigina, Z.B.; Abisheva, Z.S.; Bochevskaya, E.G.; Toilanbay, G.A. Recovery of lithium from oil and gas field brines. Tsvetnye Met. 2020, 7, 26–32. [Google Scholar] [CrossRef]
- Ryabtsev, A.D.; Titarenko, V.I.; Kotsupalo, N.P.; Menzheres, L.T.; Mamylova, E.V.; Kurakov, A.A.; Nemkov, N.M.; Kurakov, A.A.; Antonov, S.A.; Gushchina, E.P. Method of obtaining lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate. U.S. Patent No. 11396452, 26 July 2022. [Google Scholar]
- U.S. Oil and Natural Gas Wells by Production Rate. Available online: https://www.eia.gov/petroleum/wells/ (accessed on 27 August 2023).
- Geothermal Explained. Use of Geothermal Energy. Available online: https://www.eia.gov/energyexplained/geothermal/use-of-geothermal-energy.php (accessed on 27 August 2023).
- Toba, A.-L.; Nguyen, R.T.; Cole, C.; Neupane, G.; Paranthaman, M.P. U.S. lithium resources from geothermal and extraction feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. [Google Scholar] [CrossRef]
Location | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | Li+ | Sr2+ | Br− |
---|---|---|---|---|---|---|---|---|---|
g/L | mg/L | ||||||||
Qianjiang Formation of the Jianghan Basin, China, sample QJ50 [44] | 85.8 | 1.44 | 1.24 | 0.24 | 132.9 | 4.62 | 119 | - | 371 |
Qianjiang Formation of the Jianghan Basin, China, sample QJ52 [44] | 124.1 | 2.62 | 0.66 | 0.09 | 191.7 | 4.30 | 150 | - | 583 |
Qianjiang Formation of the Jianghan Basin, China, sample QJ16 [44] | 101.8 | 4.03 | 3.32 | 0.26 | 172.1 | 0.39 | 80 | 263 | 400 |
Smackover Formation, field Kerlin, county Columbia, sample 140 [49] | 71.4 | 8.34 | 45.70 | 2.97 | 196.1 | 0.55 | 445 | 2980 | 5850 |
Smackover Formation, field Pine Tree, county Columbia, sample 199 [49] | 63.0 | 3.02 | 39.80 | 2.12 | 201.5 | 0.18 | 277 | 2760 | 5640 |
Smackover Formation, field Yantis, county Wood, sample 226 [49] | 75.4 | 7.43 | 26.90 | 4.51 | 192.0 | 0.20 | 505 | 2670 | 3080 |
Carboniferous formation in west Poland [50] | 53.0 | 3.06 | 36.00 | 2.538 | 165.0 | 2.09 | 81 | 2347 | - |
Leduc Formation, Alberta, Canada, sample D-31 [42] | 61.0 | 3.90 | 22.80 | 2.00 | 145.0 | 0.22 | 140 | 660 | 436 |
Swan Hills Formation, Alberta, Canada, sample RCAH37-576B [42] | 69.6 | 4.60 | 24.37 | 2.25 | 147.4 | 0.21 | 118 | 845 | 462 |
Wolfcamp Shale—tight oil, USA [51] | 45.1 | 0.90 | 2.77 | 0.38 | 75.4 | 0.65 | 28 | 421 | 639 |
Bakken—tight oil, USA [51] | 91.7 | 5.31 | 17.00 | 1.34 | 177.8 | 0.76 | 57 | 1450 | 874 |
Marcellus Formation, USA [51] | 43.7 | 0.87 | 18.95 | 1.67 | 116.1 | 0.05 | 127 | 3693 | 1126 |
Parameter | Expected Impact on Lithium Recovery | Methods to Reduce/Maximize the Impact of the Parameter | How the Increased Value of the Parameter Affects the Process | Parameter Class |
---|---|---|---|---|
Li+ content in brine, mg/L | The higher the lithium content, the more favorable the process, with no upper limit limiting recovery. Based on the practice of companies such as Vulcan Energy Resources and Standard Lithium Ltd., the minimum concentration of lithium in brine should be no less than 100 mg/L. | Thermal preconcentration should be used. For sorbents, maximize contact time (by decreasing the flow rate of brine or increasing the volume of the sorption bed). | Very favorably | 4 |
Mg2+ content, in brine, mg/L | High concentration of magnesium is a major technological obstacle. Competitive sorption of Li+ and Mg2+ occurs, and Mg2+ also causes fouling of membranes. | Mg2+ can be removed from brine or lithium concentrate by precipitation but it leads to solid waste. | Unfavorably | 3 at Mg2+:Li+ ratio > 10, 2 at Mg2+:Li+ ratio < 10 |
Ca2+ content, in brine, mg/L | Calcium, like Mg2+, readily precipitates and will block the surface of sorbents and membranes but is not much competition for lithium sorption. | Ca2+ can be removed in the brine pretreatment by chemical methods, generating small amounts of solid waste. | Unfavorably | 2 at Ca2+ > 1 wt%, 1 at Ca2+ < 1 wt% |
Na+ content, in brine, mg/L | Competitive sorption of lithium and sodium occurs, the presence of sodium in the lithium-bearing concentrate deteriorates the purity of the final product. | The presence of sodium in reservoir waters is unavoidable, the possibilities for its removal are limited (practically impossible). | Unfavorably | 3 at Na+:Li+ > 1000, 2 at Na+:Li+ < 1000 |
pH | Lithium sorption is favored in alkaline environments, at pH > 8. The technology for regenerating sorbents and membranes containing captured lithium involves washing them with acidic solutions (usually HCl, at pH~5). At pH < 4, the structure of Mn-based sorbents can be damaged. | Brine will require pH correction during pretreatment with NaOH or Ca(OH)2—a typical low-cost procedure. For waters with high salinity, TDS > 100 g/L, pH correction may lead to salt precipitation. | Favorably | 2 at pH < 4 1 at pH > 7 |
Total dissolved solids, g/L | High TDS values indicate high water mineralization and thus the presence of ions competing for lithium sorption. | Depending on the content of individual ions, different pretreatment methods can be applied. | Unfavorably | 3 at TDS > 200 g/L, 2 at TDS < 200 g/L |
Chloride content, wt% | The anions themselves do not adversely affect the recovery of lithium (difference in ionic radius and charge) but their occurrence is linked to the presence of Na+, Mg2+, K+ cations. | No special pretreatment. | Unfavorably | 2 at Cl− > 5 wt%, 1 at Cl− < 5 wt% |
Other anions (SO42−, S2−, HCO3−) | Carbonates, bicarbonates, sulfides, sulfates are not stable and easily precipitate with changes in temperature, pressure and pH. This is a technological complication, but it does not hinder the recovery of lithium itself. | During pH adjustment, carbonates and some sulfides will precipitate, brine will require an additional filtration. | Unfavorably | 2 at sum of SO42−, S2−, HCO3− > 5 g/L |
Suspended solids, g/L | Solid particles (kerogen, bitumen, corrosion products, precipitated minerals) can mechanically deposit on the surface of sorbents and membranes hindering lithium recovery. | Suspended solids are removed during a typical pretreatment. | Unfavorably | 1 |
Oil and grease content, g/L | Dissolved and dispersed hydrocarbons may form a sticky film on the surface of sorbents/membranes hindering lithium recovery. | Oil compounds are removed during a typical pretreatment but require more advanced methods. | Unfavorably | 2 |
Recommending Institution | DuPont [64] | The American Membrane Technology Association [65] |
---|---|---|
Recommended water quality | Oil and grease < 0.1 mg/L TOC < 3 mg/L COD < 10 mg/L Fe2+ < 4 mg/L Fe3+ < 0.05 mg/L Mn < 0.05 mg/L Al3+ < 0.05 mg/L | Turbidity < 0.5 NTU TOC < 2 mg/L Fe < 0.1 mg/L Mn < 0.05 mg/L Oil and grease < 0.1 mg/L SDI 15 < 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapik, E.; Rotko, G.; Marszałek, M. Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review. Energies 2023, 16, 6628. https://doi.org/10.3390/en16186628
Knapik E, Rotko G, Marszałek M. Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review. Energies. 2023; 16(18):6628. https://doi.org/10.3390/en16186628
Chicago/Turabian StyleKnapik, Ewa, Grzegorz Rotko, and Marta Marszałek. 2023. "Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review" Energies 16, no. 18: 6628. https://doi.org/10.3390/en16186628
APA StyleKnapik, E., Rotko, G., & Marszałek, M. (2023). Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review. Energies, 16(18), 6628. https://doi.org/10.3390/en16186628