Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues
Abstract
:1. Introduction
2. Natural and Manufactured Hydrogen
2.1. Different Types of Hydrogen
2.1.1. Manufactured Hydrogen
2.1.2. Naturally Occurring Hydrogen
2.2. Natural Hydrogen
2.2.1. Origins
- Natural radiolysis of deep groundwater by the radioactive elements available in the high-radioactivity rocks.
- The serpentinization process in which hot groundwater reacts with the iron-rich formations, e.g., ophiolites, and natural hydrogen is released.
- The deep-seated origin in which natural hydrogen comes out from the Earth’s core, or mantle.
- The change in the in situ stress regime may lead to fault reactivation, earthquakes, and activity of the regional tectonics.
2.2.2. Visible Exposures
2.2.3. Extraction Technologies
- If natural hydrogen is trapped in an underground space, it can be extracted by drilling a single wellbore. The impermeable formations, such as salt rocks, can act as cap rocks for trapping natural hydrogen underground [7].
- If there are shallow iron-rich formations subjected continuously to the hot groundwater, the generated natural hydrogen can be collected and extracted by drilling a single wellbore from the ground surface to the iron-rich formation level.
- When there is not enough groundwater to serpentinize the shallow iron-rich formations, an enhanced hydrogen recovery system can be utilized. To do this, water is injected from the injection well into the iron-rich formation to generate economically profitable concentrations of natural hydrogen. Then, the generated hydrogen is extracted from the production well. In this technique, carbon dioxide can also be pumped into the ground for sequestration purposes.
2.2.4. Natural Hydrogen Detection
- (1)
- Ophiolites: As explained previously, ophiolites, e.g., peridotite, contain olivine mineral, which is Fe-rich. It reacts with hot groundwater, and natural hydrogen is released from it (serpentinization mechanism). Some significant detections of natural hydrogen in ophiolites have been shown in Table 2. A good example is the natural hydrogen seep in Chimarea in Turkey [40]. Moreover, in Los Fuegos Etornos in the Philippines, there has been an uninterrupted underground fire. In this place, the H2 concentration was measured in the range of 41.4–44.5% [41]. The origin of that natural hydrogen was attributed to ophiolites.
- (2)
- (3)
- Oil and gas reservoirs: During the drilling of hydrocarbon wellbores, different gases are released from underground. In many cases, those gases contain natural hydrogen. Table 4 summarizes some of those detections. As can be observed, the hydrogen concentrations in oil and gas reservoirs are mainly under 50%. The reason for this is that hydrogen reacts rapidly with the in situ hydrocarbons, which are very reactive substances.
H2 Concentration (%) | Location | Country | Reference |
---|---|---|---|
11.5 | Navajo | The US | [65,66,67] |
17.9 | Jeffers | The US | [67] |
19.5 | Cascade | The US | [65,68] |
20.4 | Hortenstein | The US | [67] |
20.8 | Koksher | Estonia | [69,70,71] |
26.3 | Horse point | The US | [67,68] |
27.3 | Stavropol | Russia | [9,71] |
- (4)
- Salt rocks: Salt rocks are well-known cap rocks of oil and gas reservoirs [72]. Such evaporative formations may trap the natural hydrogen [73]. In this way, an invaluable reserve of natural hydrogen is stored beneath the salty deposits [74]. As mentioned earlier, the trapped natural hydrogen can be simply extracted through a single borehole. Table 5 summarizes some of the natural hydrogen detection in salt rocks.
2.2.5. Exploration of Natural Hydrogen
- The natural H2 insolubility
- A fraction of H2 molecules remained in the circulating mud
- Necessity of highly sensitive analyzers
- Drill-bit metamorphism (DBM)
2.2.6. Underground Hydrogen Storage (UHS)
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, H. The Story of Oil in Western Pennsylvania: What, How, and Why? Available online: https://carnegiemnh.org/the-story-of-oil-in-western-pennsylvania/ (accessed on 17 May 2021).
- Alley, R.B.; Blumsack, S.; Bice, D. Global Energy Sources. Available online: https://www.e-education.psu.edu/earth104/node/1345 (accessed on 15 February 2022).
- Prinzhofer, A.; Sidy Tahara Cissé, C.; Diallo, A.B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Smith, N.J.P. It’s time for explorationists to take hydrogen more seriously. First Break 2002, 20, 246–253. [Google Scholar]
- Truche, L.; Bazarkina, E.F. Natural hydrogen the fuel of the 21st century. In Proceedings of the E3S Web Conference, Grenoble, France, 17 June 2019. [Google Scholar] [CrossRef]
- Johnsgard, S.K. The Fracture Pattern of North-Central Kansas and Its Relation to Hydrogen Soil Gas Anomalies over the Midcontinent Rift System. Available online: https://www.kgs.ku.edu/Publications/OFR/1988/OFR88_25/ (accessed on 8 July 1988).
- Hand, E. Hidden Hydrogen: Does Earth Hold Vast Stores of a Renewable, Carbon-Free Fuel? Available online: https://www.science.org/content/article/hidden-hydrogen-earth-may-hold-vast-stores-renewable-carbon-free-fuel (accessed on 16 February 2023).
- What Potential for Natural Hydrogen? Available online: https://www.energy-observer.org/resources/natural-hydrogen (accessed on 15 June 2019).
- Angino, E.E.; Coveney, R.M.J.; Goebel, E.D.; Zeller, E.J.; Dreschhoff, G.A.M. Hydrogen and nitrogen—Origin, distribution, and abundance, a follow up. Oil Gas J. 1984, 82, 142–146. [Google Scholar]
- Vacquand, C.; Deville, E.; Beaumont, V.; Guyot, F.; Sissmann, O.; Pillot, D. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochim. Cosmochim. Acta 2018, 223, 437–461. [Google Scholar] [CrossRef]
- Vovk, I.F. Radiolysis of underground waters as the mechanism of geochemical transformation of the energy of radioactive decay in sedimentary rocks. Lithol. Miner. Resour. 1982, 16, 328–334. [Google Scholar]
- Lin, L.H.; Hall, J.; Lippmann-Pipke, J.; Ward, J.A.; Sherwood, B.L.; DeFlaun, M. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 2005, 6, 1–13. [Google Scholar] [CrossRef]
- Lin, L.H.; Slater, G.F.; Sherwood, B.L.; Lacrampe-Couloume, G.; Onstott, T.C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 2005, 69, 893–903. [Google Scholar] [CrossRef]
- Suzuki, N.; Saito, H.; Hoshino, T. Hydrogen gas of organic origin in shales and metapelites. Int. J. Coal Geol. 2017, 173, 227–236. [Google Scholar] [CrossRef]
- Mayhew, L.E.; Ellison, E.T.; McCollom, T.M.; Trainor, T.P.; Templeton, A.S. Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 2013, 6, 478–484. [Google Scholar] [CrossRef]
- Stevens, T.O.; McKinley, J.P. Abiotic controls on H2 production from basalt—Water reactions and implications for aquifer biogeochemistry. Environ. Sci. Technol. 2000, 34, 826–831. [Google Scholar] [CrossRef]
- Lin, H.T.; Cowen, J.P.; Olson, E.J.; Lilley, M.D.; Jungbluth, S.P.; Wilson, S.T. Dissolved hydrogen and methane in the oceanic basaltic biosphere. Earth Planet. Sci. Lett. 2014, 405, 62–73. [Google Scholar] [CrossRef]
- Holloway, J.R.; O’Day, P.A. Production of CO2 and H2 by diking-eruptive events at mid-Ocean ridges: Implications for abiotic organic synthesis and global geochemical cycling. Int. Geol. Rev. 2000, 42, 673–683. [Google Scholar] [CrossRef]
- Shcherbakov, A.V.; Kozlova, N.D. Occurrence of hydrogen in subsurface fluids and the relationship of anomalous concentrations to deep faults in the USSR. Geotectonics 1986, 20, 120–128. [Google Scholar]
- McCarthy, J.H.J.; Cunningham, K.I.; Roberts, A.A.; Dietrich, J.A. Soil Gas Studies around Hydrogen-Rich Natural Gas Wells in Northern Kansas; USGS Publications Warehouse: Grand Rapids, MN, USA, 1986. [Google Scholar] [CrossRef]
- Nivin, V.A. Diffusively disseminated hydrogen-hydrocarbon gases in rocks of nepheline syenite complexes. Geochem. Int. 2009, 47, 672–691. [Google Scholar] [CrossRef]
- Ikorsky, S.V.; Gigashvili, G.M.; Lanyov, V.S.; Narkotiev, V.D.; Petersilye, I.A. The Investigation of Gases during the Kola Superdeep Borehole Drilling (to 11.6 km Depth); Schweizerbart Science Publishers: Hannover, Germany, 1999; pp. 145–152. [Google Scholar]
- Yang, X.; Keppler, H.; Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett. 2016, 2, 160–168. [Google Scholar] [CrossRef]
- Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.; Wang, J.; Richardson, S.H. Large gem diamonds from metallic liquid in Earths deep mantle. Science 2016, 354, 1403–1405. [Google Scholar] [CrossRef]
- Rohrbach, A.; Ballhaus, C.; Golla-Schindler, U.; Ulmer, P.; Kamenetsky, V.S.; Kuzmin, D.V. Metal saturation in the upper mantle. Nature 2007, 449, 456–458. [Google Scholar] [CrossRef]
- Coveney, R.M.J.; Goebel, E.D.; Zeller, E.J.; Dreschhoff, G.A.M.; Angino, E.E. Serpentization and origin of hydrogen gas in Kansas. Am. Assoc. Pet. Geol. Bull. 1987, 10, 42–51. [Google Scholar]
- Ikuta, D.; Ohtani, E.; Sano-Furukawa, A.; Shibazaki, Y.; Terasaki, H.; Yuan, L.; Hattori, T. Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Sci. Rep. 2019, 9, 7108. [Google Scholar] [CrossRef]
- Suzuki, K.; Shibuya, T.; Yoshizaki, M.; Hirose, T. Experimental hydrogen production in hydrothermal and fault systems: Significance for habitability of subseafloor H2 chemoautotroph microbial ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems; Springer: Tokyo, Japan, 2015; pp. 87–94. [Google Scholar] [CrossRef]
- Hirose, T.; Kawagucci, S.; Suzuki, K. Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere. Geophys. Res. Lett. 2011, 38, L17303. [Google Scholar] [CrossRef]
- Ware, R.H.; Roecken, C.; Wyss, M. The detection and interpretation of hydrogen in fault gases. Pure Appl. Geophys. 1984, 122, 392–402. [Google Scholar] [CrossRef]
- Wakita, H.; Nakamura, Y.; Kita, I.; Fujii, N.; Notsu, K. Hydrogen release: New indicator of fault activity. Science 1980, 210, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Freund, F.T. H2 and N2 gas from magmatic rocks—A solid state viewpoint. Oil Gas J. 1984, 20, 140–141. [Google Scholar]
- Freund, F.T.; Dickinson, J.T.; Cash, M. Hydrogen in rocks: An energy source for deep microbial communities. Astrobiology 2002, 2, 83–92. [Google Scholar] [CrossRef]
- Su, Q.; Zeller, E.; Angino, E.E. Inducing action of hydrogen migrating along faults on earthquakes. Acta Seismol. Sin. 1992, 5, 841–847. [Google Scholar] [CrossRef]
- Sugisaki, R.; Ido, M.; Takeda, H.; Isobe, Y.; Hayashi, Y.; Nakamura, N.; Satake, H.; Mizutani, Y. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geol. 1983, 91, 239–258. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, Y.; Yang, D.; Guo, L.; Zhang, L. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project (WFSD), holes 2 and 3 in SW China. Geosci. J. 2018, 18, 453–464. [Google Scholar] [CrossRef]
- Klein, J. Gas That Makes a Mountain Breathe Fire Is Turning up around the World. Available online: https://www.nytimes.com/2019/05/01/science/flames-chimaera-turkey-methane.html (accessed on 1 May 2019).
- de Boer, J.Z.; Chanton, J.; Zeitlhöfler, M. Homer’s Chimaera fires (SW of Antalya/Turkey); burning abiogenic methane gases; are they generated by a serpentinization process related to alkalic magmatism? Z. Dtsch. Ges. Geowiss. 2007, 158, 997–1003. [Google Scholar] [CrossRef]
- Hosgörmez, H. Origin of the natural gas seep of Cirali (Chimera), Turkey: Site of the first Olympic fire. J. Asian Earth Sci. 2007, 30, 131–141. [Google Scholar] [CrossRef]
- Hosgörmez, H.; Etiope, G.; Yalçin, M.N. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids 2008, 4, 263–273. [Google Scholar] [CrossRef]
- Vacquand, C. Genèse et Mobilité de L’hydrogène Dans les Roches Sédimentaires: Source D’énergie Naturelle ou Vecteur Énergétique Stockable? Ph.D. Thesis, IFP Energies nouvelles and Institut de Physique du Globe de Paris, Paris, France, 2011. [Google Scholar]
- Morrill, P.L.; Kuenen, J.G.; Johnson, O.J.; Suzuki, S.; Rietze, A.; Sessions, A.L.; Fogel, M.L.; Nealson, K.H. Geochemistry and geobiology of a present-day serpentinization site in California: The cedars. Geochim. Cosmochim. Acta 2013, 109, 222–240. [Google Scholar] [CrossRef]
- Deville, E.; Prinzhofer, A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia. Chem. Geol. 2016, 440, 139–147. [Google Scholar] [CrossRef]
- Abrajano, T.A.; Sturchio, N.C.; Kennedy, B.M.; Lyon, G.L.; Muehlenbachs, K.; Bohlke, J.K. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl. Geochem. 1990, 5, 625–630. [Google Scholar] [CrossRef]
- Thayer, T.P. Serpentinization considered as a constant-volume metasomatic process. Am. Minerol. 1996, 51, 685–710. [Google Scholar]
- Abrajano, T.A.; Sturchio, N.; Bohlke, J.K.; Lyon, G.L.; Poreda, R.; Stevens, C. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem. Geol. 1998, 71, 211–222. [Google Scholar] [CrossRef]
- Etiope, G.; Samardžić, N.; Grassa, F.; Hrvatović, H.; Miošić, N.; Skopljak, F. Methane and hydrogen in hyperalkaline groundwaters of the serpentinized Dinaride ophiolite belt, Bosnia and Herzegovina. Appl. Geochem. 2017, 84, 286–296. [Google Scholar] [CrossRef]
- Sherwood, B.L.; Onstott, T.C.; Lacrampe-Couloume, G.; Ballentine, C.J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 2014, 516, 379–382. [Google Scholar] [CrossRef]
- Yuce, G.; Italiano, F.; D’Alessandro, W.; Yalcin, T.; Yasin, D.; Gulbay, A.; Ozyurt, N.; Rojay, B.; Karabacak, V.; Bellomo, S.; et al. Origin and interactions of fluids circulating over the Amik Basin (Hatay, Turkey) and relationships with the hydrologic, geologic and tectonic settings. Chem. Geol. 2014, 388, 23–39. [Google Scholar] [CrossRef]
- Sano, Y.; Urabe, A.; Wakita, H.; Wushiki, H. Origin of hydrogen-nitrogen gas seeps, Oman. Appl. Geochem. 1993, 8, 1–8. [Google Scholar] [CrossRef]
- Neal, C.; Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 1983, 66, 315–320. [Google Scholar] [CrossRef]
- Boulart, C.; Chavagnac, V.; Monnin, C.; Delacour, A.; Ceuleneer, G.; Hoareau, G. Differences in gas venting from ultramafic-hosted warm springs: The example of oman and voltri ophiolites. Ofioliti 2013, 38, 143–156. [Google Scholar] [CrossRef]
- Goebel, E.D.; Coveney, R.M.J.; Angino, E.E.; Zeller, E.J.; Dreschhoff, K. Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kansas. Oil Gas J. 1984, 82, 215–222. [Google Scholar]
- Ward, L.K. Inflammable gasses occluded in the Pre-Paleozoic rocks of South Australia. Trans. Proc. R. Soc. S. Aust. 1933, 57, 42–47. [Google Scholar]
- Sherwood, B.L.; Frape, S.K.; Weise, S.M.; Fritz, P.; Macko, S.A.; Welhan, J.A. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 1993, 57, 5087–5097. [Google Scholar] [CrossRef]
- Voglesonger, K.; Lin, L.-H.; Telling, J.; Abrajano, T.; Pratt, L.; Deville, E.; Prinzhofer, A.; Hand, K.P.; Pappalardo, R.T.; Küsel, K.; et al. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks–energy for deep subsurface life on earth and mars. Astrobiology 2007, 7, 971–986. [Google Scholar] [CrossRef]
- Newell, K.D.; Doveton, J.H.; Merriam, D.F.; Sherwood Lollar, B.; Waggoner, W.M.; Magnuson, L.M. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas. Nat. Resour. Res. 2007, 16, 277–292. [Google Scholar] [CrossRef]
- Goebel, E.D.; Coveney, R.M.J.; Angino, E.E.; Zeller, E.J. Naturally occurring hydrogen gas from a borehole on the western flank of the Nemaha anticline in Kansas. Am. Assoc. Pet. Geol. Bull. 1983, 67, 1324. [Google Scholar]
- Guélard, J.; Beaumont, V.; Rouchon, V.; Guyot, F.; Pillot, D.; Jézéquel, D.; Ader, M.; Newell, K.D.; Deville, E. Natural H2 in Kansas: Deep or shallow origin? Geochem. Geophys. Geosyst. 2017, 18, 1841–1865. [Google Scholar] [CrossRef]
- Angino, E.E.; Zeller, E.J.; Dreschhoff, G.A.M.; Goebel, E.D.; Coveney, R.M.J. Spatial distribution of hydrogen in soil gas in central Kansas, USA. In Geochemistry of Gaseous Elements and Compounds; Theophrastus Publications, S.A.: Athens, Greece, 1990; p. 485. [Google Scholar]
- Woolnough, W.G. Natural gas in Australia and New Guinea. Am. Assoc. Pet. Geol. Bull. 1934, 18, 226–242. [Google Scholar] [CrossRef]
- Levshounova, S.P. Hydrogen in petroleum geochemistry. Terra Nova 1991, 3, 579–585. [Google Scholar] [CrossRef]
- Rodgers, M.R.; Tyrone-Mt, A.T.H. Union cross-strike lineament of Pennsylvania; a major Paleozoic basement fracture and uplift boundary. Am. Assoc. Pet. Geol. Bull. 1984, 68, 92–105. [Google Scholar] [CrossRef]
- Jones, V.T.; Pirkle, R.J. Helium and Hydrogen Soil Gas Anomalies Associated with Deep or Active Faults. In Proceedings of the 1981 American Chemical Society Annual Meeting, Atlanta, GA, USA, 25 May 1981. [Google Scholar]
- Headlee, A.J.W. Hydrogen sulfide, free hydrogen are vital exploration clues. World Oil 1962, 5, 78–83. [Google Scholar]
- Boone, W.J.J. Helium-Bearing Natural Gases of the United States: Analyses and Analytical Methods. U. S. Bur. Mines Rep. 1953, 486, 44–56. [Google Scholar]
- Bates, L. Navajo Nation’s Economic Growth Rests with Clean Energy Development. Available online: https://navajotimes.com/biz/navajo-nations-economic-growth-rests-with-clean-energy-development/ (accessed on 13 July 2023).
- Moore, B.J.; Sigler, S. Analyses of Natural Gases, 1917–85. Available online: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB87232211.xhtml (accessed on 14 April 2008).
- Gregory, S.P.; Barnett, M.J.; Field, L.P.; Milodowski, A.E. Subsurface Microbial Hydrogen Cycling: Natural Occurrence and Implications for Industry. Microorganisms 2019, 7, 53. [Google Scholar] [CrossRef]
- Smith, N.J.P.; Shepherd, T.J.; Styles, M.T.; Williams, G.M. Hydrogen Exploration: A Review of Global Hydrogen Accumulations and Implications for Prospective Areas in NW Europe. In Proceedings of the 6th Petroleum Geology Conference, London, UK, 3 March 1962. [Google Scholar] [CrossRef]
- Bogdanowicz, C. Natural gas occurences in Russia (USSR). Am. Assoc. Pet. Geol. Bull. 1934, 18, 746–759. [Google Scholar]
- Słota-Valim, M.; Gołąbek, A.; Szott, W.; Sowiżdżał, K. Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland. Energies 2021, 14, 3065. [Google Scholar] [CrossRef]
- Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- Małachowska, A.; Łukasik, N.; Mioduska, J.; Gębicki, J. Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies 2022, 15, 5038. [Google Scholar] [CrossRef]
- Savchenko, V.P. The formation of free hydrogen in the Earth’s crust as determined by the reducing action of the products of radioactive transformations of isotopes. Geochem. Int. 1958, 1, 16–25. [Google Scholar]
- Rogers, G.S. Helium-Bearing Natural Gas; US Government Printing Office: Washington, DC, USA, 1962; p. 121. [Google Scholar]
- Nyga-Łukaszewska, H.; Aruga, K.; Stala-Szlugaj, K. Energy Security of Poland and Coal Supply: Price Analysis. Sustainability 2020, 12, 2541. [Google Scholar] [CrossRef]
- Wójcik, K.; Zacharski, J.; Łojek, M.; Wróblewska, S.; Kiersnowski, H.; Waśkiewicz, K.; Wójcicki, A.; Laskowicz, R.; Sobień, K.; Peryt, T.; et al. New Opportunities for Oil and Gas Exploration in Poland—A Review. Energies 2022, 15, 1739. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, D.; Meng, Q.; Liu, J.; Wu, X.; Zhou, B.; Fu, Q.; Jin, Z. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction. Sci. China Earth Sci. 2019, 62, 507–528. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Xu, H.; Ding, Q.; Zhu, D.; Meng, Q. Genesis and energy significance of natural hydrogen. Unconv. Resour. 2023, 3, 176–182. [Google Scholar] [CrossRef]
- Strąpoć, D.; Gonzalez, D.; Gerbaud, L. Controlled drill bit metamorphism (DBM) using indoor rig floor experiments. In Proceedings of the International Meeting on Organic Geochemistry, Montpelier, France, 12–17 September 2021. [Google Scholar]
- Strąpoć, D.; Ammar, M.; Abolins, N.; Gligorijevic, A. Key role of regearing mud gas logging for natural H2 exploration. In Proceedings of the SPWLA 63rd Annual Logging Symposium, Stavanger, Norway, 10–15 June 2022. [Google Scholar] [CrossRef]
- Guerriero, N.; Lessi, J. Method of Calibration Intended to Be Used in a Process of Deter Mining the Content of a Plurality of Compounds Contained in a Drilling Fluid; US Publication: Washington, DC, USA, 2014. [Google Scholar]
- Lessi, J. Method for Determining the Content of a Plurality of Compounds Contained in a Drilling Fluid. U.S. Patent US No. 20110303463A1, 15 December 2011. [Google Scholar]
- Raman, C.V. Available online: https://en.wikipedia.org/wiki/C._V._Raman (accessed on 21 July 2010).
- Wang, P.; Chen, W.; Wan, F.; Wang, J.; Hu, J. A review of cavity-enhanced Raman spectroscopy as a gas sensing method. Appl. Spectrosc. Rev. 2020, 55, 393–417. [Google Scholar] [CrossRef]
- Papadimitriou, N.I.; Tsimpanogiannis, J.N.; Economou, I.G.; Stubos, A.K. Identification of conditions for increased methane storage capacity in sII and sH clathrate hydrates from Monte Carlo simulations. J. Chem. Thermodyn. 2018, 117, 128–137. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Sholokhova, A.Y.; Buryak, A.K. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases. Int. J. Mol. Sci. 2021, 22, 9194. [Google Scholar] [CrossRef]
- Mostafaei, K.; Maleki, S.; Zamani Ahmad Mahmoudi, M.; Knez, D. Risk Management Prediction of Mining and Industrial Projects by Support Vector Machine. Resour. Policy 2022, 78, 102819. [Google Scholar] [CrossRef]
- Keller, R.J.; Rowe, M.D. Hydrogen and Helium Detection for Drilling a Lower-Cost Well. In Proceedings of the SPE Liquids-Rich Basins Conference—North America, Midland, TX, USA, 13–14 September 2017. [Google Scholar]
- Broadhead, R.F. Helium in New Mexico: Geologic Distribution and Exploration Possibilities; New Mexico Bureau of Geology and Mineral Resources: Socorro, NM, USA, 2006; Volume 16, p. 10117. [Google Scholar]
- Lord, A.; Kobos, P.; Borns, D. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 2014, 39, 15570–15582. [Google Scholar] [CrossRef]
- Bauer, S.; Beyer, C.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Dahmke, A. Impacts of the use of geological subsurface for energy storage: An investigation concept. Environ. Earth Sci. 2013, 70, 3935–3943. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D. A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling. Energies 2022, 15, 3162. [Google Scholar] [CrossRef]
- Knez, D.; Khalilidermani, M. A Review of Different Aspects of Off-Earth Drilling. Energies 2021, 14, 7351. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D. A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering. Energies 2023, 16, 4289. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. A Review of the Geomechanics Aspects in Space Exploration. Energies 2021, 14, 7522. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D.; Zamani, M.A.M. Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer. Energies 2021, 14, 5415. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H. Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar. Energies 2022, 15, 4878. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen stroage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Beckman, K.; Determeyer, P.; Mowrey, E. Natural Gas Storage: Historical Development and Expected Evolution. Final Report, December 1994–February 1995; Gas Research Institute: Houston, TX, USA, 1995. [Google Scholar]
- Lankof, L.; Tarkowski, R. Assessment of the potential for underground hydrogen stroage in bedded salt formation. Int. J. Hydrogen Energy 2020, 45, 19479–19492. [Google Scholar] [CrossRef]
- Sainz-Garcia, A.; Abarca, E.; Rubi, V.; Grandia, F. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. Int. J. Hydrogen Energy 2017, 42, 16657–16666. [Google Scholar] [CrossRef]
- Zamani, M.A.M.; Knez, D. A new mechanical-hydrodynamic safety factor index for sand production prediction. Energies 2021, 14, 3130. [Google Scholar] [CrossRef]
- Zeynali, M.E. Mechanical and physico-chemical aspects of wellbore stability during drilling operations. J. Pet. Sci. Eng. 2012, 82, 120–124. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland. Energies 2021, 14, 5514. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H. Discrepancy between Measured Dynamic Poroelastic Parameters and Predicted Values from Wyllie’s Equation for Water-Saturated Istebna Sandstone. Acta Geophys. 2021, 69, 673–680. [Google Scholar] [CrossRef]
- Nowakowski, A. The Influence of Rate of Change in Confining and Pore Pressure on Values of the Modulus of Compressibility of the Rock Skeleton and Biot’s Coefficient. Energies 2021, 14, 3056. [Google Scholar] [CrossRef]
- Knez, D.; Khalilidermani, M.; Zamani, M.A.M. Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects. Energies 2023, 16, 1769. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, S.; Wang, J.; Chou, J.; Fang, Y.; Pan, G.; Gu, W. Feasibility analysis of utilizing underground hydrogen storage facilities in integrated energy system: Case studies in China. Appl. Energy 2020, 269, 115140. [Google Scholar] [CrossRef]
- Iordache, I.; Schitea, D.; Gheorghe, A.; Iordache, M. Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. Int. J. Hydrogen Energy 2014, 39, 11071–11108. [Google Scholar] [CrossRef]
- Rajaoalison, H.; Knez, D.; Zamani, M.A.M. A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran. Energies 2022, 15, 8656. [Google Scholar] [CrossRef]
- Athar, H.; Al-Hadrami, H.; Emadi, H.; Altawati, F.; Thiyagarajan, S.R.; Watson, M. Experimental investigation of wellbore integrity of depleted oil and gas reservoirs for underground hydrogen storage. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2022. [Google Scholar] [CrossRef]
- Zamani, M.A.M.; Knez, D. Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects. Energies 2023, 16, 4999. [Google Scholar] [CrossRef]
H2 Color | Primary Substance | Manufacturing Technique |
---|---|---|
Green | Water | Water electrolysis using the electricity produced from renewable energy sources such as wind, solar, and geothermal. |
Blue | Methane | Steam reforming (methane or natural gas reacts with water vapor) along with capturing and sequestering CO2. |
Yellow | Water | Water electrolysis using the electricity produced from the combination of renewable energy sources, e.g., solar and non-renewable energy sources. |
Turquoise | Methane | Methane pyrolysis (methane is decomposed to gaseous H2 and solid carbon). Afterward, the solid carbon is sequestered underground. |
Pink | Water | Water electrolysis using the electricity produced from nuclear sources. |
Grey | Methane | Steam reforming without carbon capturing. |
Black | Coal | Gasification process (adding water vapor or oxygen to the highly heated coal). |
H2 Concentration (%) | Location | Country | Reference |
---|---|---|---|
7.5–11.3 | Chimaera | Turkey | [40,41] |
15.7 | Austin Greek | The US | [42] |
35.1 | Mangatarem | Philippines | [41] |
26.8–36.1 | Kaoris, Carenage | New Caledonia | [43] |
34–39.2 | Barnes Spring | The US | [42] |
41.4–44.5 | Los Fuegos Eternos | Philippines | [41,44] |
41.4–45.6 | Mt. Lanat | Philippines | [45,46] |
48.3 | Vaiceva voda | Bosnia and Herzegovina | [47] |
50.9 | Camp Spring | The US | [42] |
58.5 | Nagsasa | Philippines | [41,48] |
37.1–60.5 | Kurtbagi | Turkey | [49] |
39–69 | Howgain | Oman | [41,50,51] |
81–97 | Bahla | Oman | [41,50,51,52] |
22–99 | Nizwa | Oman | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez, D.; Zamani, O.A.M. Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues. Energies 2023, 16, 6580. https://doi.org/10.3390/en16186580
Knez D, Zamani OAM. Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues. Energies. 2023; 16(18):6580. https://doi.org/10.3390/en16186580
Chicago/Turabian StyleKnez, Dariusz, and Omid Ahmad Mahmoudi Zamani. 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues" Energies 16, no. 18: 6580. https://doi.org/10.3390/en16186580
APA StyleKnez, D., & Zamani, O. A. M. (2023). Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues. Energies, 16(18), 6580. https://doi.org/10.3390/en16186580