The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal
Abstract
:1. Introduction
Background
- -
- Analyzes changes in the reduction in emissions and energy consumption in the EU and Poland and the introduction of RES in these areas in 2014–2020;
- -
- Proposes a combination of the method of determining weights and evaluating solutions in terms of multiple criteria;
- -
- Identifies activities with the most significant potential for reducing emissions in urban areas and proposing a possible development path, allowing for more effective support for energy policy.
2. Literature Review
- How to construct and formulate the provisions of program documents, including, for example, city planning documents, so that they can serve as leverage measures in the energy policy (Q1)?
- What actions should be taken to ensure the most significant effect of actions aimed at reducing emissions (Q2)?
- Considering the EU policy path, including the need to reduce emissions, the research questions posed result from previous research and a review of the current literature. The proposed assessment method, combining the determination of criteria weights with the CRITIC method and making decisions based on a multicriteria analysis with the VIKOR method, is an approach that allows the search for an optimal and stable compromise solution. It is worth emphasizing that the CRITIC method used to determine the weights is an objective method, taking into account the intensity of differences between the criteria, and is not burdened with the subjective assessment of the decision maker. The weights in this method are determined based on real data showing changes in energy management in the EU. On the other hand, the VIKOR method, identifying a compromise solution based on such weights, has an advantage over other methods. It ensures the maximum utility of the compromise solution with minimal opposition from opponents. It also avoids the shortcoming of other ranking methods of not selecting the most advantageous variant because no solution would outperform the others.
3. Materials and Methods
- Phase 1—analysis of source documents based on Eurostat data and EEA reports;
- Phase 2—identification of weights for individual criteria using the CRITIC method (Criteria Importance through Inter-criteria Correlation);
- Phase 3—construction of a ranking of variants and achievements based on actions and recommendations for the following perspective of achieving goals, along with weighting based on the results of reducing greenhouse gas emissions for the entire EU economy;
- Phase 4—proposal of activities in the field of energy planning in urban areas based on the results of research and analysis.
3.1. Data
3.2. Identification of the Weights of Individual Criteria
3.3. The Variants Ranking Construction
- Step 1: construction of the decision matrix Q.
- Step 2: determination of the maximum, and the minimum, values.
- Step 3: Calculation of metrics Si and Ri
- Step 4: hierarchization of the Si and Ri metrics and calculation of the proximity index Ti
3.4. Making Decisions in the Field of Energy Planning
4. Results
4.1. Data Identification for the Model
4.2. Determination of Criteria Weights Using the CRITIC Method
4.3. Making Decisions Affecting the Reduction in Emissions with the Use of VIKOR
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |||
AHP | Analytic Hierarchy Process | SMART | Specific Measurable Accepted Realistic Timely |
ARAS | Additive Ratio Assessment | SMARTER | Simple Multi-Attribute Rating Technique Exploiting Ranks |
CODAS | Combinative Distance-based Assessment | SWARA | Stepwise Weight Assessment Ratio Analysis |
COPRAS | Complex Proportional Assessment | SWOT | Strengths-Weaknesses-Opportunities-Threats |
CRITIC | Criteria Importance through Inter-criteria Correlation | TODIM | Tomada de Decisao Iterativa Multicriterio |
DEMATEL | Decision-Making Experiment and Evaluation Laboratory | TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
DM | decision-maker | UN | United Nations |
EDAS | Evaluation based on Distance from Average Solution | VIKOR | VIseKriterijumska Optimizacija I Kompromisno Resenje |
EES | Energy Efficiency Strategies | FHF-VIKOR | Fermatean hesitant fuzzy-VIKOR |
ELECTRE | Elimination et Choice Translating Reality | WASPAS | Weighted Aggregated Sum Product Assessment |
EM | Entropy Method | WSM | Weighted Sum Method |
EU ETS | Emission Trading System | WPM | Weighted Product Model |
EU | European Union | ||
FF | Fermatean Fuzzy | Parameters and constants | |
GDP | Gross Domestic Product | v | weight indicating the importance of the most criteria strategy |
GHG | Greenhouse Gas | ||
GIS | Geographic Information System | Variables | |
GP | Gray Prediction Model | X | decision matrix (CRITIC) |
IF | Intuitionistic Fuzzy | Q | decision matrix (VIKOR) |
MAPE | Mean Absolute Percentage Error | mean value | |
MARCOS | Measurement of Alternatives and Ranking according to Compromise Solution | standard deviation | |
MCDA | Multicriteria Decision Analysis | variation coefficients | |
MCDM | Multicriteria Decision-Making | the independence coefficients of the individual criteria | |
MLR | Multiple Linear Regression | Person’s correlation coefficient | |
MULTIMOORA | Multi-Objective Optimization based on Ratio Analysis | comprehensive factor | |
NIS | Negative Ideal Solution | S | metrics S |
OECD | Organization for Economic Co-operation and Development | R | metrics R |
PF | Pythagorean Fuzzy | T | the proximity index |
PIS | Positive Ideal Solution | ||
PPS | Purchasing Power Standard | Indices | |
RES | Renewable Energy Sources | i | rating indicator number |
SAW | Simple Additive Weighting | j | criterion number |
SDG | Sustainable Development Goal | m | alternative solutions number |
n | number of criteria |
References
- Trends and Projections in Europe 2022—European Environment Agency. 2023. Available online: https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2022 (accessed on 9 January 2023).
- Trends and Projections in Europe 2021—European Environment Agency. 2023. Available online: https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2021 (accessed on 8 January 2023).
- Zafeiriou, E.; Arabatzis, G.; Tampakis, S.; Soutsas, K. The Impact of Energy Prices on the Volatility of Ethanol Prices and the Role of Gasoline Emissions. Renew. Sustain. Energy Rev. 2014, 33, 87–95. [Google Scholar] [CrossRef]
- Dzikuć, M.; Wyrobek, J.; Popławski, Ł. Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. Energies 2021, 14, 3823. [Google Scholar] [CrossRef]
- Yankiv-Vitkovska, L.; Peresunko, B.; Wyczałek, I.; Papis, J. Site Selection for Solar Power Plant in Zaporizhia City (Ukraine). Geod. Cartogr. 2020, 69, 97–116. [Google Scholar] [CrossRef]
- Statistics for the European Green Deal. 2023. Available online: https://ec.europa.eu/eurostat/cache/egd-statistics/ (accessed on 4 January 2023).
- Schäfer, S. Decoupling the EU ETS from Subsidized Renewables and Other Demand Side Effects: Lessons from the Impact of the EU ETS on CO2 Emissions in the German Electricity Sector. Energy Policy 2019, 133, 110858. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Duan, L.; Dai, M.; Chen, W. Material Dependence of Cities and Implications for regional sustainability. Sustain. Reg. 2020, 1, 31–36. [Google Scholar] [CrossRef]
- Assaf, R.; Saleh, Y. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City. Civ. Environ. Eng. Rep. 2017, 26, 43–57. [Google Scholar] [CrossRef]
- Dong, Z.; Shen, H.; Zhang, W.; Wu, R.; Wang, S. How Does Resource Dependence Relate Cities’ Technology Diversification? The Role of Density and Complexity. Cities 2022, 130, 103883. [Google Scholar] [CrossRef]
- Kazak, J.K.; Błasik, M.; Świąder, M. Land Use Change in Suburban Zone: European Context of Urban Sprawl. J. Water Land Dev. 2023, 92–98. [Google Scholar] [CrossRef]
- Rubinowicz, P. Application of the Visual Protection Surface Method (VPS) for Protection of Landscape Interiors within a City. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 092048. [Google Scholar] [CrossRef]
- Chen, P. Curse or Blessing? The Relationship between Sustainable Development Plans for Resource Cities and Corporate Sustainability—Evidence from China. J. Environ. Manag. 2023, 341, 117988. [Google Scholar] [CrossRef]
- Gao, J.; Peng, P.; Lu, F.; Claramunt, C.; Xu, Y. Towards Travel Recommendation Interpretability: Disentangling Tourist Decision-Making Process via Knowledge Graph. Inf. Process. Manag. 2023, 60, 103369. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- European Statistical Office Eurostat [Internet]. European Commission. Available online: https://ec.europa.eu/eurostat (accessed on 9 January 2023).
- Energy Technology Perspectives 2016—Analysis. IEA. 2023. Available online: https://www.iea.org/reports/energy-technology-perspectives-2016 (accessed on 9 January 2023).
- Fong, W.K.; Sotos, M.; Doust, M.; Schultz, S.; Marques, A.; Deng, C.H. Global Protocol for Community-Scale Greenhouse Gas Inventories. 2021. Available online: https://www.ghgprotocol.org/city-accounting (accessed on 9 January 2023).
- Munir, Q.; Lean, H.H.; Smyth, R. CO2 Emissions, Energy Consumption and Economic Growth in the ASEAN-5 Countries: A Cross-Sectional Dependence Approach. Energy Econ. 2020, 85, 104571. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of Urbanization and Industrialization on Energy Consumption/CO 2 Emissions: Does the Level of Development Matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Guðlaugsson, B.; Fazeli, R.; Gunnarsdóttir, I.; Davidsdottir, B.; Stefánsson, G. Classification of Stakeholders of Sustainable Energy Development in Iceland: Utilizing a Power-Interest Matrix and Fuzzy Logic Theory. Energy Sustain. Dev. 2020, 57, 168–188. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.; Sordo-Ward, A.; Garrote, L. Flow Regime Aspects in Determining Environmental Flows and Maximising Energy Production at Run-of-River Hydropower Plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Badach, J.; Szczepański, J.; Bonenberg, W.; Gębicki, J.; Nyka, L. Developing the Urban Blue-Green Infrastructure as a Tool for Urban Air Quality Management. Sustainability 2022, 14, 9688. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Kolář, L.; Vochozka, M.; Kopecký, M.; Maroušková, A.; Batt, J.; Poliak, M.; Šoch, M.; Bartoš, P.; et al. Advances in Nutrient Management Make It Possible to Accelerate Biogas Production and Thus Improve the Economy of Food Waste Processing. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Mert, Y. Contribution to Sustainable Development: Re-Development of Post-Mining Brownfields. J. Clean. Prod. 2019, 240, 118212. [Google Scholar] [CrossRef]
- Skiba, M.; Rzeszowska, N. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building. Civ. Environ. Eng. Rep. 2017, 26, 31–41. [Google Scholar] [CrossRef]
- Barwińska-Małajowicz, A.; Pyrek, R.; Szczotka, K.; Szymiczek, J.; Piecuch, T. Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study. Energies 2023, 16, 4021. [Google Scholar] [CrossRef]
- Simsek, Y.; Santika, W.G.; Anisuzzaman, M.; Urmee, T.; Bahri, P.A.; Escobar, R. An Analysis of Additional Energy Requirement to Meet the Sustainable Development Goals. J. Clean. Prod. 2020, 272, 122646. [Google Scholar] [CrossRef]
- Ucal, M.; Xydis, G. Multidirectional Relationship between Energy Resources, Climate Changes and Sustainable Development: Technoeconomic Analysis. Sustain. Cities Soc. 2020, 60, 102210. [Google Scholar] [CrossRef]
- Seyrek Şık, C.I.; Woźniczka, A.; Widera, B. A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades. Energies 2022, 15, 8069. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Bazan—Krzywoszańska, A.; Sztubecka, M. Household Standards and Socio-Economic Aspects as a Factor Determining Energy Consumption in the City. Appl. Energy 2020, 264, 114680. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Bazan-Krzywoszańska, A.; Bazuń, D.; Kwiatkowski, M. Social and Infrastructural Conditioning of Lowering Energy Costs and Improving the Energy Efficiency of Buildings in the Context of the Local Energy Policy. Energies 2018, 11, 2302. [Google Scholar] [CrossRef]
- Sędzicki, D.; Cudzik, J.; Nyka, L. Computer-Aided Greenery Design-Prototype Green Structure Improving Human Health in Urban Ecosystem. Int. J. Environ. Res. Public Health 2023, 20, 1198. [Google Scholar] [CrossRef]
- Bartyzel, F.; Wegiel, T.; Kozień-Woźniak, M.; Czamara, M. Numerical Simulation of Operating Parameters of the Ground Source Heat Pump. Energies 2022, 15, 383. [Google Scholar] [CrossRef]
- Zięba, Z.; Dąbrowska, J.; Marschalko, M.; Pinto, J.; Mrówczyńska, M.; Leśniak, A.; Petrovski, A.; Kazak, J. Built Environment Challenges Due to Climate Change. IOP Conf. Ser. Earth Environ. Sci. 2020, 609, 012061. [Google Scholar] [CrossRef]
- Trivyza, N.; Rentizelas, A.; Theotokatos, G.; Boulougouris, E. Decision Support Methods for Sustainable Ship Energy Systems: A State-of-the-Art Review. Energy 2021, 239, 122288. [Google Scholar] [CrossRef]
- Kazak, J.; Dzieżyc, H.; Foryś, I.; Szewrański, S. Indicator-Based Analysis of Socially Sensitive and Territorially SustainableDevelopment in Relation to Household Energy Consumption. Eng. Rural. Dev. 2018, 17, 1653–1661. [Google Scholar]
- Butturi, M.A.; Lolli, F.; Sellitto, M.A.; Balugani, E.; Gamberini, R.; Rimini, B. Renewable Energy in Eco-Industrial Parks and Urban-Industrial Symbiosis: A Literature Review and a Conceptual Synthesis. Appl. Energy 2019, 255, 113825. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, H.; Dong, L.; Park, H.-S.; Zhang, Y.; Xu, Y. Smart Solutions Shape for Sustainable Low-Carbon Future: A Review on Smart Cities and Industrial Parks in China. Technol. Forecast. Soc. Chang. 2019, 144, 103–117. [Google Scholar] [CrossRef]
- Radmehr, R.; Henneberry, S.R.; Shayanmehr, S. Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries. Struct. Chang. Econ. Dyn. 2021, 57, 13–27. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Y.; Campana, P.; He, J. City-Level Analysis of Subsidy-Free Solar Photovoltaic Electricity Price, Profits and Grid Parity in China. Nat. Energy 2019, 4, 709–717. [Google Scholar] [CrossRef]
- Pejovic, B.; Karadžić, V.; Dragašević, Z.; Backović, T. Economic Growth, Energy Consumption and CO2 Emissions in the Countries of the European Union and the Western Balkans. Energy Rep. 2021, 7, 2775–2783. [Google Scholar] [CrossRef]
- Słupik, S.; Kos-Łabędowicz, J.; Trzęsiok, J. Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy. Energies 2021, 14, 2218. [Google Scholar] [CrossRef]
- Zileska Pancovska, V.; Petruseva, S.; Petrovski, A. Predicting Sustainability Assessment at Early Facilities Design Phase. Facilities 2017, 35, 388–404. [Google Scholar] [CrossRef]
- Krstic-Furundzic, A.; Vujosevic, M.; Petrovski, A. Energy and Environmental Performance of the Office Building Facade Scenarios. Energy 2019, 183, 437–447. [Google Scholar] [CrossRef]
- Azaza, M.; Eskilsson, A.; Wallin, F. An Open-Source Visualization Platform for Energy Flows Mapping and Enhanced Decision Making. Energy Procedia 2019, 158, 3208–3214. [Google Scholar] [CrossRef]
- Uğurlu, E. Renewable Energy Strategies for Sustainable Development in the European Union. In Renewable Energy: International Perspectives on Sustainability; Kurochkin, D., Shabliy, E.V., Shittu, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 63–87. ISBN 978-3-030-14207-0. [Google Scholar] [CrossRef]
- Brahmi, M.; Esposito, L.; Parziale, A.; Dhayal, K.S.; Agrawal, S.; Giri, A.K.; Loan, N.T. The Role of Greener Innovations in Promoting Financial Inclusion to Achieve Carbon Neutrality: An Integrative Review. Economies 2023, 11, 194. [Google Scholar] [CrossRef]
- Aldieri, L.; Brahmi, M.; Chen, X.; Vinci, C.P. Knowledge Spillovers and Technical Efficiency for Cleaner Production: An Economic Analysis from Agriculture Innovation. J. Clean. Prod. 2021, 320, 128830. [Google Scholar] [CrossRef]
- Coscieme, L.; Mortensen, L.F.; Donohue, I. Enhance Environmental Policy Coherence to Meet the Sustainable Development Goals. J. Clean. Prod. 2021, 296, 126502. [Google Scholar] [CrossRef]
- Esposito, L.; Brahmi, M. Value Creation Through Innovation: Renewable Energy Community. In Exploring Business Ecosystems and Innovation Capacity Building in Global Economics; IGI Global: Hershey, PA, USA, 2023; pp. 315–330. ISBN 978-1-66846-766-4. [Google Scholar] [CrossRef]
- Implementation of Sustainable Development Goals in Poland. Report 2023 Draft Government Report February 2023 and DNSH Assessment of Reforms and Investments Presented in the KPO. 2023. Available online: https://www.funduszeeuropejskie.gov.pl/strony/o-funduszach/fundusze-na-lata-2021-2027/kpo/dnsh/ (accessed on 10 August 2023).
- Godzisz, K. Low-Emission Economy—Evolution or Necessity. Civ. Environ. Eng. Rep. 2018, 28, 155–165. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multicriteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 6. [Google Scholar] [CrossRef]
- Kozioł-Nadolna, K.; Beyer, K. Determinants of the Decision-Making Process in Organizations. Procedia Comput. Sci. 2021, 192, 2375–2384. [Google Scholar] [CrossRef]
- Pramanik, P.K.D.; Biswas, S.; Pal, S.; Marinković, D.; Choudhury, P. A Comparative Analysis of Multicriteria Decision-Making Methods for Resource Selection in Mobile Crowd Computing. Symmetry 2021, 13, 1713. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Rajaeifar, M.A.; Rostom, M.; Malmir, B.; Yazdani, M.; Suh, S.; Heidrich, O. Integrating Life Cycle Assessment and Multi Criteria Decision Making for Sustainable Waste Management: Key Issues and Recommendations for Future Studies. Renew. Sustain. Energy Rev. 2022, 168, 112819. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Yazdi, M.; Chen, G. A CRITIC-VIKOR Based Robust Approach to Support Risk Management of Subsea Pipelines. Appl. Ocean. Res. 2022, 124, 103187. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Wątróbski, J.; Kizielewicz, B.; Sałabun, W. Towards Objectification of Multi-Criteria Assessments: A Comparative Study on MCDA Methods. In Proceedings of the 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS), Sofia, Bulgaria, 2–5 September 2021; pp. 417–425. [Google Scholar] [CrossRef]
- Sharkasi, N.; Rezakhah, S. A Modified CRITIC with a Reference Point Based on Fuzzy Logic and Hamming Distance. Knowl. -Based Syst. 2022, 255, 109768. [Google Scholar] [CrossRef]
- Xu, C.; Ke, Y.; Li, Y.; Chu, H.; Wu, Y. Data-Driven Configuration Optimization of an off-Grid Wind/PV/Hydrogen System Based on Modified NSGA-II and CRITIC-TOPSIS. Energy Convers. Manag. 2020, 215, 112892. [Google Scholar] [CrossRef]
- Wu, H.-W.; Zhen, J.; Zhang, J. Urban Rail Transit Operation Safety Evaluation Based on an Improved CRITIC Method and Cloud Model. J. Rail Transp. Plan. Manag. 2020, 16, 100206. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Cao, Z.; Yang, H.; Li, J. Mechanism Analysis of Floor Water Inrush Based on Criteria Importance Though Intercrieria Correlation. Water 2023, 15, 232. [Google Scholar] [CrossRef]
- Akram, M.; Ramzan, N.; Deveci, M. Linguistic Pythagorean Fuzzy CRITIC-EDAS Method for Multiple-Attribute Group Decision Analysis. Eng. Appl. Artif. Intell. 2023, 119, 105777. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Chen, H.; Yi, K.; Xie, W.; Xu, W. Evaluation of Toppling Rock Slopes Using a Composite Cloud Model with DEMATEL–CRITIC Method. Water Sci. Eng. 2023, 16, 280–288. [Google Scholar] [CrossRef]
- Yu, S.; Liu, H.; Bai, L.; Han, F. Study on the Suitability of Passive Energy in Public Institutions in China. Energies 2019, 12, 2446. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.; Zhou, Z.; Miao, H.; Liu, H.; Wang, Y.; Zhang, H.; You, S.; Wei, S. A Novel Multilevel Decision-Making Evaluation Approach for the Renewable Energy Heating Systems: A Case Study in China. J. Clean. Prod. 2023, 390, 135934. [Google Scholar] [CrossRef]
- Kamali Saraji, M.; Aliasgari, E.; Streimikiene, D. Assessment of the Challenges to Renewable Energy Technologies Adoption in Rural Areas: A Fermatean CRITIC-VIKOR Approach. Technol. Forecast. Soc. Chang. 2023, 189, 122399. [Google Scholar] [CrossRef]
- Mishra, A.; Chen, S.-M.; Rani, P. Multiattribute Decision Making Based on Fermatean Hesitant Fuzzy Sets and Modified VIKOR Method. Inf. Sci. 2022, 607, 1532–1549. [Google Scholar] [CrossRef]
- Hadi, A.; Khan, W.; Khan, A. A Novel Approach to MADM Problems Using Fermatean Fuzzy Hamacher Aggregation Operators. Int. J. Intell. Syst. 2021, 36, 3464–3499. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R. Fermatean Fuzzy Sets. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 663–674. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z. A Hybrid Approach Based on Monte Carlo Simulation-VIKOR Method for Water Quality Assessment. Ecol. Indic. 2023, 150, 110202. [Google Scholar] [CrossRef]
- Chen, T.-Y. An Evolved VIKOR Method for Multiple-Criteria Compromise Ranking Modeling under T-Spherical Fuzzy Uncertainty. Adv. Eng. Inform. 2022, 54, 101802. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, J.; Meng, J.; Fang, S.; Zhuang, S. Comprehensive Evaluation for Plan Selection of Urban Integrated Energy Systems: A Novel Multicriteria Decision-Making Framework. Sustain. Cities Soc. 2022, 81, 103837. [Google Scholar] [CrossRef]
- Deveci, M.; Gokasar, I.; Pamucar, D.; Zaidan, A.; Wen, X.; Gupta, B.B. Evaluation of Cooperative Intelligent Transportation System Scenarios for Resilience in Transportation Using Type-2 Neutrosophic Fuzzy VIKOR. Transp. Res. Part A Policy Pract. 2023, 172, 103666. [Google Scholar] [CrossRef]
- Vanegas-Cantarero, M.M.; Pennock, S.; Bloise-Thomaz, T.; Jeffrey, H.; Dickson, M.J. Beyond LCOE: A Multicriteria Evaluation Framework for Offshore Renewable Energy Projects. Renew. Sustain. Energy Rev. 2022, 161, 112307. [Google Scholar] [CrossRef]
- Scheller, F.; Bruckner, T. Energy System Optimization at the Municipal Level: An Analysis of Modeling Approaches and Challenges. Renew. Sustain. Energy Rev. 2019, 105, 444–461. [Google Scholar] [CrossRef]
- Griffiths, S.; Sovacool, B.K.; Del Rio, D.D.F.; Foley, A.M.; Bazilian, M.D.; Kim, J.; Uratani, J.M. Decarbonizing the Cement and Concrete Industry: A Systematic Review of Socio-Technical Systems, Technological Innovations, and Policy Options. Renew. Sustain. Energy Rev. 2023, 180, 113291. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised Framework for Multi-Criteria Method Selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Lasemi, M.A.; Arabkoohsar, A.; Hajizadeh, A.; Mohammadi-ivatloo, B. A Comprehensive Review on Optimization Challenges of Smart Energy Hubs under Uncertainty Factors. Renew. Sustain. Energy Rev. 2022, 160, 112320. [Google Scholar] [CrossRef]
- THE 17 GOALS|Sustainable Development. 2023. Available online: https://sdgs.un.org/goals (accessed on 8 January 2023).
- OECD 2021 Annual Report OECD. Available online: https://www.gov.pl/web/sluzbacywilna/nowy-raport-oecd-government-at-a-glance-2021 (accessed on 8 January 2023).
- Keirstead, J.; Jennings, M.; Sivakumar, A. A Review of Urban Energy System Models: Approaches, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method. Comput. OR 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Garre, A.; Boué, G.; Fernández, P.; Membré, J.-M.; Egea, J.A. Evaluation of Multicriteria Decision Analysis Algorithms in Food Safety: A Case Study on Emerging Zoonoses Prioritization. Risk Analysis 2019, 40, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, M.-L.; Liu, L.; Yu, B.; Dong, Z.; Xue, Q. Evaluation of the Effectiveness of VOC-Contaminated Soil Preparation Based on AHP-CRITIC-TOPSIS Model. Chemosphere 2021, 271, 129571. [Google Scholar] [CrossRef]
- Kobryń, A. Wielokryterialne Wspomaganie Decyzji w Gospodarowaniu Przestrzenią; Difin SA: Warsaw, Poland, 2014; ISBN 978-83-7930-469-1. (In Polish) [Google Scholar]
- Ulpiani, G.; Vetters, N.; Shtjefni, D.; Kakoulaki, G.; Taylor, N. Let’s Hear It from the Cities: On the Role of Renewable Energy in Reaching Climate Neutrality in Urban Europe. Renew. Sustain. Energy Rev. 2023, 183, 113444. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Leśniak, A.; Bazan-Krzywoszańska, A.; Janowiec, F.; Sztubecka, M.; Grech, R.; Kazak, J.K. A New Fuzzy Model of Multi-Criteria Decision Support Based on Bayesian Networks for the Urban Areas’ Decarbonization Planning. Energy Convers. Manag. 2022, 268, 116035. [Google Scholar] [CrossRef]
- Thellufsen, J.Z.; Lund, H.; Sorknæs, P.; Østergaard, P.A.; Chang, M.; Drysdale, D.; Nielsen, S.; Djørup, S.R.; Sperling, K. Smart Energy Cities in a 100% Renewable Energy Context. Renew. Sustain. Energy Rev. 2020, 129, 109922. [Google Scholar] [CrossRef]
- Takao, Y. Low-Carbon Leadership: Harnessing Policy Studies to Analyse Local Mayors and Renewable Energy Transitions in Three Japanese Cities. Energy Res. Soc. Sci. 2020, 69, 101708. [Google Scholar] [CrossRef]
- Rokicki, T.; Koszela, G.; Ochnio, L.; Perkowska, A.; Bórawski, P.; Bełdycka-Bórawska, A.; Gradziuk, B.; Gradziuk, P.; Siedlecka, A.; Szeberényi, A.; et al. Changes in the Production of Energy from Renewable Sources in the Countries of Central and Eastern Europe. Front. Energy Res. 2022, 10, 993547. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy Systems Modeling for Twenty-First Century Energy Challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Purkus, A.; Gawel, E.; Thrän, D. Addressing Uncertainty in Decarbonisation Policy Mixes—Lessons Learned from German and European Bioenergy Policy. Energy Res. Soc. Sci. 2017, 33, 82–94. [Google Scholar] [CrossRef]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A Review of Modelling Approaches and Tools for the Simulation of District-Scale Energy Systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Stachura, T.; Halecki, W.; Bedla, D.; Chmielowski, K. Spatial Solar Energy Potential of Photovoltaic Panels Surrounded by Protected Mountain Ranges. Civ. Environ. Eng. Rep. 2022, 32, 73–95. [Google Scholar] [CrossRef]
- Stoeglehner, G.; Abart-Heriszt, L. Integrated Spatial and Energy Planning in Styria—A Role Model for Local and Regional Energy Transition and Climate Protection Policies. Renew. Sustain. Energy Rev. 2022, 165, 112587. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Xie, Y.; Zhang, Y.; Guo, H. An Integrated Optimization and Multi-Scale Input–Output Model for Interaction Mechanism Analysis of Energy–Economic–Environmental Policy in a Typical Fossil-Energy-Dependent Region. Energy Strategy Rev. 2022, 44, 100947. [Google Scholar] [CrossRef]
- Süsser, D.; Ceglarz, A.; Gaschnig, H.; Stavrakas, V.; Flamos, A.; Giannakidis, G.; Lilliestam, J. Model-Based Policymaking or Policy-Based Modelling? How Energy Models and Energy Policy Interact. Energy Res. Soc. Sci. 2021, 75, 101984. [Google Scholar] [CrossRef]
- Zell-Ziegler, C.; Thema, J.; Best, B.; Wiese, F.; Lage, J.; Schmidt, A.; Toulouse, E.; Stagl, S. Enough? The Role of Sufficiency in European Energy and Climate Plans. Energy Policy 2021, 157, 112483. [Google Scholar] [CrossRef]
- Toulouse, E.; Sahakian, M.; Lorek, S.; Bohnenberger, K.; Bierwirth, A.; Leuser, L. Energy Sufficiency: How Can Research Better Help and Inform Policy-Making? 6 June 2019. Available online: https://archive-ouverte.unige.ch//unige:123016 (accessed on 16 August 2023).
The Name of the Economic Sector | Emission Reduction (Goal Achieved) | EU Emissions Trading Scheme (EU ETS) | CO2 Reduction in Million Tons |
---|---|---|---|
Energy systems | yes | yes | 657 |
Construction (energy for heating/cooling buildings) | yes | no | 215 |
Industry | yes | yes | 332 |
Transportation | no | no | 50 |
Agriculture | yes | no | 100 |
Change of usage | yes | no | - |
Waste | yes | no | - |
A | Data Description | Indicator | |
---|---|---|---|
Environment | A1 | Air pollutants by source sector (source: EEA) Particulates < 2.5 µm | The dataset includes data on air pollutants: sulfur oxides (SOx), ammonia (NH3), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs), particulate matters (PM10, PM2.5), Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As), Chromium (Cr) Copper (Cu), Nickel (Ni), Selenium (Se), and Zinc (Zn), as reported to the European Environment Agency (EEA). |
A2 | Air pollutants by source sector (source: EEA) Particulates <10 µm | ||
Energy | A3 | Wind | Eurostat’s methodology is based on the physical energy content method and is measured as gross electricity production for those where electricity is the primary energy form, according to obligations in Regulation (EC) No 1099/2008. |
A4 | Solar thermal | ||
A5 | Solar photovoltaic | ||
A6 | Ambient heat (heat pumps) | ||
A7 | Biogases | ||
A8 | Energy productivity (nrg_ind_ep) | The indicator is part of the EU Sustainable Development Goals (SDG) indicator set, “Energy intensity measured in terms of primary energy and GDP”. | |
A9 | Energy imports dependency | The indicator is part of the EU Sustainable Development Goals (SDG) indicator set on affordable and clean energy. | |
A10 | Energy efficiency (nrg_ind_eff) | The dataset covers indicators for monitoring progress toward energy efficiency targets implemented by Directive 2012/27/EU. | |
Sustain. Develop. | A11 | Final energy consumption in households per capita (sdg_07_20) | The indicator is part of the EU Sustainable Development Goals (SDG) indicator set and is embedded in the European Commission’s Priorities under the ‘European Green Deal’. |
Crosscut. topics | A12 | Final energy consumption in transport by type of fuel | The indicator considers total energy consumption in transport in PJ from 1990 onwards; modes included sea transport, air transport, domestic and international, inland navigation, rail transport, and road transport. |
No. | Second-Level Criteria | 2014 | 2020 | ||
---|---|---|---|---|---|
EU | PL | EU | PL | ||
1. | B1 GHG emissions in effort sharing decision [Million tonnes of CO2 equivalent] | 2153.75 | 181.54 | 2079.17 | 205.18 |
2. | B2 Renewables and biofuels [Thousand tonnes of oil equivalent] | 4837.397 | 229.722 | 9311.277 | 276.825 |
3. | B3 Primary energy consumption [Thousand tonnes of oil equivalent] | 1,330,456.777 | 89,494.282 | 1,235,570.620 | 96,859.153 |
4. | B4 Final energy consumption [Thousand tonnes of oil equivalent] | 938,787.852 | 61,547.437 | 905,908.931 | 71,144.609 |
No. | Second-Level Criteria | Third-Level Criteria | 2014 | 2020 | ||
---|---|---|---|---|---|---|
EU | PL | EU | PL | |||
1. | B1 GHG emissions in effort sharing decision | A1 Air pollutants and particulates < 2.5 µm [tonne] | 1,397,901 | 309,257 | 1,184,667 | 254,533 |
A2 Air pollutants and particulates < 10 µm [tonne] | 2,048,644 | 401,658 | 1,807,443 | 340,426 | ||
2. | B2 Renewables and biofuels | A3 Energy balance and wind [Thousand tonnes of oil equivalent] | 19,119.231 | 659.985 | 34,177.220 | 1358.560 |
A4 Solar thermal [Thousand tonnes of oil equivalent] | 4124.383 | 34.752 | 4480.347 | 80.144 | ||
A5 Solar photovoltaic [Thousand tonnes of oil equivalent] | 7628.381 | 0.593 | 12,048.561 | 168.350 | ||
A6 Ambient heat (heat pumps) [Thousand tonnes of oil equivalent] | 5569.017 | 109.316 | 13,212.792 | 298.111 | ||
A7 Biogases [Thousand tonnes of oil equivalent] | 12,680.749 | 207.438 | 14,686.834 | 322.398 | ||
3. | B3 Primary energy consumption | A8 Energy productivity and euro per kilogram of oil equivalent [KGOE] | 7.676 | 4.232 | 8.569 | 4.717 |
A9 Energy imports dependency[Percentage] | 54.421 | 29.415 | 57.458 | 42.760 | ||
4. | B4 Final energy consumption | A10 Energy efficiency and final energy consumption [Energy indicators 2020–2030] | 938.79 | 61.55 | 905.91 | 71.14 |
A11 Final energy consumption in households per capita [kilogram of oil equivalent KGOE] | 529 (b) | 501 | 555 (ep) | 557 (ep) | ||
A12 Final energy consumption in transport [Thousand tonnes of oil equivalent] | 268,810.037 | 15,804.963 | 251,440.954 | 21,778.636 |
Second-Level Criteria | Weights w | Third-Level Criteria | Weights w |
---|---|---|---|
B1 GHG emissions in effort sharing decision[Million tonnes of CO2 equivalent] | 0.232 | A1 Air pollutants and particulates < 2.5 µm [tonne] | 0.060 |
A2 Air pollutants and particulates < 10 µm [tonne] | 0.057 | ||
B2 Renewables and biofuels [Thousand tonnes of oil equivalent] | 0.286 | A3 Energy balance and Wind [Thousand tonnes of oil equivalent] | 0.039 |
A4 Solar thermal [Thousand tonnes of oil equivalent] | 0.040 | ||
A5 Solar photovoltaic [Thousand tonnes of oil equivalent] | 0.038 | ||
A6 Ambient heat (heat pumps) [Thousand tonnes of oil equivalent] | 0.035 | ||
A7 Biogases [Thousand tonnes of oil equivalent] | 0.040 | ||
B3 Primary energy consumption [Thousand tonnes of oil equivalent] | 0.241 | A8 Energy productivity and euro per kilogram of oil equivalent [KGOE] | 0.132 |
A9 Energy imports dependency [Percentage] | 0.162 | ||
B4 Final energy consumption [Thousand tonnes of oil equivalent] | 0.241 | A10 Energy efficiency and final energy consumption [Energy indicators 2020–2030] | 0.045 |
A11 Final energy consumption in households per capita [kilogram of oil equivalent KGOE] | 0.309 | ||
A12 Final energy consumption in transport [Thousand tonnes of oil equivalent] | 0.045 |
Second-Level Criteria | Weights w | Third-Level Criteria | B1 | B2 | B3 | B4 | Weights w |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B1 | 0.232 | A1 | 0.488 | 0.060 | |||
A2 | 0.512 | 0.057 | |||||
B2 | 0.286 | A3 | 0.202 | 0.039 | |||
A4 | 0.208 | 0.040 | |||||
A5 | 0.197 | 0.038 | |||||
A6 | 0.182 | 0.035 | |||||
A7 | 0.210 | 0.040 | |||||
B3 | 0.241 | A8 | 0.552 | 0.132 | |||
A9 | 0.449 | 0.162 | |||||
B4 | 0.241 | A10 | 0.112 | 0.045 | |||
A11 | 0.775 | 0.309 | |||||
A12 | 0.112 | 0.045 |
Selected the Economic Sectors | EU Recommended Support Activities |
---|---|
Energy systems | Increasing the energy efficiency |
Increasing the share of energy from renewable sources | |
Reduction in greenhouse gas emissions resulting from energy consumption | |
Construction (energy demand for heating and cooling buildings) | Low-emission energy sources |
Decarbonisation of the energy system | |
Increasing the amount of electricity from renewable sources | |
Changing consumer preferences | |
Reduction in consumption energy consumption in households | |
Long-term energy storage | |
Industry | Circular economy |
Increasing the amount of electricity from renewable sources | |
Long-term energy storage | |
Support for infrastructure for transport, storage, and use of hydrogen and CO2 | |
Decarbonisation of carbon-intensive sectors (steel and concrete production) | |
Digital services and supporting smart energy systems. Design and production and in the sharing economy | |
Transportation | Supporting a sustainable mobility system |
Strengthening public transport | |
Increasing the number of zero-emission cars | |
Increase in the activity of rail transport | |
Increase in operating costs of ICE-powered cars (CO2 emissions tax imposed) | |
Falling prices of low-emission vehicles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, M.; Mrówczyńska, M.; Sztubecka, M.; Maciejko, A.; Rzeszowska, N. The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal. Energies 2023, 16, 6123. https://doi.org/10.3390/en16176123
Skiba M, Mrówczyńska M, Sztubecka M, Maciejko A, Rzeszowska N. The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal. Energies. 2023; 16(17):6123. https://doi.org/10.3390/en16176123
Chicago/Turabian StyleSkiba, Marta, Maria Mrówczyńska, Małgorzata Sztubecka, Alicja Maciejko, and Natalia Rzeszowska. 2023. "The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal" Energies 16, no. 17: 6123. https://doi.org/10.3390/en16176123
APA StyleSkiba, M., Mrówczyńska, M., Sztubecka, M., Maciejko, A., & Rzeszowska, N. (2023). The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal. Energies, 16(17), 6123. https://doi.org/10.3390/en16176123