Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I
Abstract
:1. Introduction
1.1. Reservoir Simulation in the Oil and Gas Industry
1.2. Machine Learning in Reservoir Simulation
2. Machine Learning Strategies for Individual Simulation Runs
2.1. Machine Learning Methods for Surrogate Models
2.2. Machine Learning Methods for Handling the Stability and Phase Split Problems
2.3. Machine Learning Methods for Predicting Black Oil PVT Properties
3. Machine Learning Strategies for History Matching
3.1. Machine Learning Methods for Indirect History Matching
3.2. Machine Learning Methods for Direct History Matching
3.2.1. History Matching Based on ANN Models
3.2.2. History Matching Based on Bayesian ML Models
3.2.3. History Matching Based on ML Models Other Than ANNs
3.2.4. History Matching Based on Deep Learning Methods
3.2.5. History Matching ML Methods Using Dimensionality Reduction Techniques
3.2.6. History Matching Based on Reinforcement Learning Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine Learning |
EOR | Enhanced Oil Recovery |
EoS | Equation of State |
HM | History Matching |
PFO | Production Forecast and Optimization |
OF | Objective Function |
HPC | High-Performance Computing |
SRM | Surrogate Reservoir Model |
RFM | Reduced Physics Model |
ROM | Reduced Order Model |
AI | Artificial Intelligence |
SL | Supervised Learning |
UL | Unsupervised Learning |
RL | Reinforcement Learning |
ANN | Artificial Neural Network |
BHP | Bottom Hole Pressure |
Bo | oil formation volume factor |
Bg | gas formation volume factor |
GOR | Gas-to-Oil Ratio |
RBFNN | Radial Basis Function Neural Network |
SVM | Support Vector Machine |
TPD | Tangent Plane Distance |
DL | Deep Learning |
SS | Successive Substitution |
DT | Decision Tree |
Z-factor | gas compressibility factor |
S–K | Standing–Katz |
SCG | Scaled Conjugate Gradient |
LM | Levenberg–Marquardt |
RBP | Resilient Back Propagation |
FIS | Fuzzy Interface System |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
LSSVM | Least Square Support Vector Machines |
CSA | Coupled Simulated Annealing |
MW | Molecular Weight |
PSO | Particle Swarm Optimization |
GA | Genetic Algorithm |
KRR | Kernel Ridge Regression |
CVD | Constant Volume Depletion |
MLP | Multi-Layer Perceptron |
GBM | Gradient Boost Method |
SA | Sensitivity Analysis |
BB | Box Behnken |
LH | Latin Hypercube |
GRNN | Generalized Regression Neural Network |
FSSC | Fuzzy Systems with Subtractive Clustering |
MCMC | Markov Chain Monte Carlo |
MARS | Multi-variate Adaptive Regression Splines |
SGB | Stochastic Gradient Boosting |
RF | Random Forest |
SOM | Self-Organizing Map |
SVR | Support Vector Regression |
DGN | Distributed Gauss–Newton |
PCA | Principal Component Analysis |
RNN | Recurrent Neural Network |
MEDA | Multimodal Estimation Distribution Algorithm |
CNN | Convolutional Neural Network |
GAN | Generative Adversarial Network |
ES | Ensemble Smoother |
PRaD | Piecewise Reconstruction from a Dictionary |
VAE | Variational AutoEncoder |
CAE | Convolutional AutoEncoder |
CDAE | Convolutional Denoising AutoEncoder |
EnKF | Ensemble Kalman Filter |
MDP | Markov Decision Process |
DQN | Deep Q-Network |
DDPG | Deep Deterministic Policy Gradient |
PPO | Proximal Policy Optimization |
References
- Alenezi, F.; Mohaghegh, S. A Data-Driven Smart Proxy Model for a Comprehensive Reservoir Simulation. In Proceedings of the 4th Saudi International Conference on Information Technology (Big Data Analysis) (KACSTIT), Riyadh, Saudi Arabia, 6–9 November 2016; pp. 1–6. [Google Scholar]
- Ghassemzadeh, S.A. Novel Approach to Reservoir Simulation Using Supervised Learning. Ph.D. Dissertation, University of Adelaide, Adelaide, Australia, November 2020. [Google Scholar]
- Abdelwahhab, M.A.; Radwan, A.A.; Mahmoud, H.; Mansour, A. Geophysical 3D-static reservoir and basin modeling of a Jurassic estuarine system (JG-Oilfield, Abu Gharadig basin, Egypt). J. Asian Earth Sci. 2022, 225, 105067. [Google Scholar]
- Abdelwahhab, M.A.; Abdelhafez, N.A.; Embabi, A.M. 3D-static reservoir and basin modeling of a lacustrine fan-deltaic system in the Gulf of Suez, Egypt. Pet. Res. 2022, 8, 18–35. [Google Scholar]
- Radwan, A.A.; Abdelwahhab, M.A.; Nabawy, B.S.; Mahfouz, K.H.; Ahmed, M.S. Facies analysis-constrained geophysical 3D-static reservoir modeling of Cenomanian units in the Aghar Oilfield (Western Desert, Egypt): Insights into paleoenvironment and petroleum geology of fluviomarine systems. Mar. Pet. Geol. 2022, 136, 105436. [Google Scholar]
- Danesh, A. PVT and Phase Behavior of Petroleum Reservoir Fluids; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 9780444821966. [Google Scholar]
- Gaganis, V.; Marinakis, D.; Samnioti, A. A soft computing method for rapid phase behavior calculations in fluid flow simulations. J. Pet. Sci. Eng. 2021, 205, 108796. [Google Scholar]
- Voskov, D.V.; Tchelepi, H. Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Pet. Sci. Eng. 2012, 82–83, 101–111. [Google Scholar] [CrossRef]
- Wang, P.; Stenby, E.H. Compositional simulation of reservoir performance by a reduced thermodynamic model. Comput. Chem. Eng. 1994, 18, 75–81. [Google Scholar]
- Gaganis, V.; Varotsis, N. Machine Learning Methods to Speed up Compositional Reservoir Simulation. In Proceedings of the EAGE Annual Conference & Exhibition incorporating SPE Europe, Copenhagen, Denmark, 4–7 June 2012. [Google Scholar]
- Jaber, A.K.; Al-Jawad, S.N.; Alhuraishawy, A.K. A review of proxy modeling applications in numerical reservoir simulation. Arab. J. Geosci. 2019, 12, 701. [Google Scholar]
- Aminian, K. Modeling and simulation for CBM production. In Coal Bed Methane: Theory and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128159972. [Google Scholar]
- Shan, J. High Performance Cloud Computing on Multicore Computers. Ph.D. Dissertation, New Jersey Institute of Technology, Newark, NJ, USA, 31 May 2018. [Google Scholar]
- Amini, S.; Mohaghegh, S. Application of Machine Learning and Artificial Intelligence in Proxy Modeling for Fluid Flow in Porous Media. Fluids 2019, 4, 126. [Google Scholar] [CrossRef]
- Bahrami, P.; Moghaddam, F.S.; James, L.A. A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering. Energies 2022, 15, 5247. [Google Scholar]
- Sircar, A.; Yadav, K.; Rayavarapu, K.; Bist, N.; Oza, H. Application of machine learning and artificial intelligence in oil and gas industry. Pet. Res. 2021, 6, 379–391. [Google Scholar]
- Bao, A.; Gildin, E.; Zalavadia, H. Development Of Proxy Models for Reservoir Simulation by Sparsity Promoting Methods and Machine Learning Techniques. In Proceedings of the 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September 2018. [Google Scholar]
- Denney, D. Pros and cons of applying a proxy model as a substitute for full reservoir simulations. J. Pet. Technol. 2010, 62, 41–42. [Google Scholar] [CrossRef]
- Ibrahim, D. An overview of soft computing. In Proceedings of the 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS, Vienna, Austria, 29–30 August 2016. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 100241973376. [Google Scholar]
- Nocedal, J.; Wright, S. Numerical Optimization, 2nd ed.; Mikosch, T.V., Robinson, S.M., Resnick, S.I., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Samnioti, A.; Anastasiadou, V.; Gaganis, V. Application of Machine Learning to Accelerate Gas Condensate Reservoir Simulation. Clean Technol. 2022, 4, 153–173. [Google Scholar] [CrossRef]
- James., G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; ISBN 9781461471394. [Google Scholar]
- Freeman, J.A.; Skapura, D.M. Neural Networks: Algorithms, Applications, and Programming Techniques; Addison-Wesley: Boston, MA, USA, 1991; ISBN 0201513765. [Google Scholar]
- Fausett, L. Fundamentals of Neural Network: Architectures, Algorithms, and Applications; Prentice-Hall International Editions: Hoboken, NJ, USA, 1994. [Google Scholar]
- Veelenturf, L.P.J. Analysis and Applications of Artificial Neural Networks, 1st ed.; Prentice-Hall International Editions: Hoboken, NJ, USA, 1995. [Google Scholar]
- Kumar, A. A Machine Learning Application for Field Planning. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019. [Google Scholar]
- Zhang, D.; Chen, Y.; Meng, J. Synthetic well logs generation via Recurrent Neural Networks. Pet. Explor. Dev. 2018, 45, 629–639. [Google Scholar]
- Castiñeira, D.; Toronyi, R.; Saleri, N. Machine Learning and Natural Language Processing for Automated Analysis of Drilling and Completion Data. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018. [Google Scholar]
- Bhandari, J.; Abbassi, R.; Garaniya, V.; Khan, F. Risk analysis of deepwater drilling operations using Bayesian network. J. Loss Prev. Process Ind. 2015, 38, 11–23. [Google Scholar]
- Varotsis, N.; Gaganis, V.; Nighswander, J.; Guieze, P. A Novel Non-Iterative Method for the Prediction of the PVT Behavior of Reservoir Fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1999. [Google Scholar]
- Avansi, G.D. Use of Proxy Models in the Selection of Production Strategy and Economic Evaluation of Petroleum Fields. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009. [Google Scholar]
- Aljameel, S.S.; Alomari, D.M.; Alismail, S.; Khawaher, F.; Alkhudhair, A.A.; Aljubran, F.; Alzannan, R.M. An Anomaly Detection Model for Oil and Gas Pipelines Using Machine Learning. Computation 2022, 10, 138. [Google Scholar]
- Jacobs, T. The Oil and Gas Chat Bots Are Coming. J. Pet. Technol. 2019, 71, 34–36. [Google Scholar] [CrossRef]
- Sidorenko, A.A.; Dmitriev, P.N.; Alekseev, V.Y.; Sidorenko, S.A. Improvement of techno-logical schemes of mining of coal seams prone to spontaneous combustion and rockbumps. J. Min. Inst. 2023, 1–13. Available online: https://pmi.spmi.ru/index.php/pmi/article/view/15644 (accessed on 15 July 2023).
- Kazanin, O.I.; Sidorenko, A.A.; Sidorenko, S.A.; Ivanov, V.V.; Mischo, H. High productive longwall mining of multiple gassy seams: Best practice and recommendations. Acta Montan. Slovaca 2022, 27, 152–162. [Google Scholar]
- Sidorenko, A.A.; Sidorenko, S.A.; Ivanov, V.V. Numerical modeling of multiple-seam coal mining at the Taldinskaya-Zapadnaya-2 mine. ARPN J. Eng. Appl. Sci. 2021, 5, 568–574. [Google Scholar]
- Sidorenko, A.A.; Ivanov, V.V.; Sidorenko, S.A. Computer modeling of rock massif stress condition for mining planning on overworked seam. J. Phys. Conf. Ser. 2020, 1661, 012082. [Google Scholar]
- Anastasiadou, V.; Samnioti, A.; Kanakaki, R.; Gaganis, V. Acid gas re-injection system design using machine learning. Clean Technol. 2022, 4, 1001–1019. [Google Scholar]
- Navrátil, J.; King, A.; Rios, J.; Kollias, G.; Torrado, R.; Codas, A. Accelerating Physics-Based Simulations Using End-to-End Neural Network Proxies: An Application in Oil Reservoir Modeling. Front. Big Data 2019, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Mohaghegh, S.; Popa, A.; Ameri, S. Intelligent systems can design optimum fracturing jobs. In Proceedings of the SPE Eastern Regional Conference and Exhibition, Charleston, West Virginia, 21–22 October 1999. [Google Scholar]
- Mohaghegh, S.D.; Hafez, H.; Gaskari, R.; Haajizadeh, M.; Kenawy, M. Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 5–8 November 2006. [Google Scholar]
- Mohaghegh, S.D. Quantifying uncertainties associated with reservoir simulation studies using surrogate reservoir models. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006. [Google Scholar]
- Mohaghegh, S.D.; Modavi, A.; Hafez, H.H.; Haajizadeh, M.; Kenawy, M.; Guruswamy, S. Development of Surrogate Reservoir Models (SRM) for Fast-Track Analysis of Complex Reservoirs. In Proceedings of the Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 11–13 April 2006. [Google Scholar]
- Kalantari-Dahaghi, A.; Esmaili, S.; Mohaghegh, S.D. Fast Track Analysis of Shale Numerical Models. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 30 October–1 November 2012. [Google Scholar]
- Mohaghegh, S.D. Reservoir simulation and modeling based on artificial intelligence and data mining (AI&DM). J. Nat. Gas Sci. Eng. 2011, 3, 697–705. [Google Scholar]
- Alenezi, F.; Mohaghegh, S. Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model. In Proceedings of the SPE Western Regional Meeting, Bakersfield, CA, USA, 23–27 April 2017. [Google Scholar]
- Shahkarami, A.; Mohaghegh, S.D.; Gholami, V.; Haghighat, A.; Moreno, D. Modeling pressure and saturation distribution in a CO2 storage project using a Surrogate Reservoir Model (SRM). Greenh. Gases Sci. Technol. 2014, 4, 289–315. [Google Scholar]
- Shahkarami, A.; Mohaghegh, S. Applications of smart proxies for subsurface modeling. Pet. Explor. Dev. 2020, 47, 400–412. [Google Scholar] [CrossRef]
- Dahaghi, A.K.; Mohaghegh, S. Numerical simulation and multiple realizations for sensitivity study of shale gas reservoirs. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 21–23 March 2011. [Google Scholar]
- Memon, P.Q.; Yong, S.P.; Pao, W.; Sean, P.J. Surrogate reservoir modeling-prediction of bottom-hole flowing pressure using radial basis neural network. In Proceedings of the Science and Information Conference (SAI), London, UK, 27–29 August 2014. [Google Scholar]
- Amini, S.; Mohaghegh, S.D.; Gaskari, R.; Bromhal, G. Uncertainty analysis of a CO2 sequestration project using surrogate reservoir modeling technique. In Proceedings of the SPE Western Regional Meeting, Bakersfield, CA, USA, 21–23 March 2012. [Google Scholar]
- Gaganis, V.; Varotsis, N. Non-iterative phase stability calculations for process simulation using discriminating functions. Fluid Phase Equilibria 2012, 314, 69–77. [Google Scholar]
- Gaganis, V.; Varotsis, N. An integrated approach for rapid phase behavior calculations in compositional modeling. J. Petrol. Sci. Eng. 2014, 118, 74–87. [Google Scholar] [CrossRef]
- Gaganis, V. Rapid phase stability calculations in fluid flow simulation using simple discriminating functions. Comput. Chem. Eng. 2018, 108, 112–127. [Google Scholar] [CrossRef]
- Kashinath, A.; Szulczewski, L.M.; Dogru, H.A. A fast algorithm for calculating isothermal phase behavior using machine learning. Fluid Phase Equilibria 2018, 465, 73–82. [Google Scholar]
- Schmitz, J.E.; Zemp, R.J.; Mendes, M.J. Artificial neural networks for the solution of the phase stability problem. Fluid Phase Equilibria 2016, 245, 83–87. [Google Scholar] [CrossRef]
- Gaganis, V.; Varotsis, N. Rapid multiphase stability calculations in process simulation. In Proceedings of the 27th European Symposium on Applied Thermodynamics, Eindhoven, The Netherlands, 6–9 July 2014. [Google Scholar]
- Wang, K.; Luo, J.; Yizheng, W.; Wu, K.; Li, J.; Chen, Z. Artificial neural network assisted two-phase flash calculations in isothermal and thermal compositional simulations. Fluid Phase Equilibria 2019, 486, 59–79. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Sun, S.; Gao, X. Accelerating flash calculation through deep learning methods. J. Comput. Phys. 2019, 394, 153–165. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Sun, S. Acceleration of the NVT Flash Calculation for Multicomponent Mixtures Using Deep Neural Network Models. Ind. Eng. Chem. Res. 2019, 58, 12312–12322. [Google Scholar] [CrossRef]
- Wang, S.; Sobecki, N.; Ding, D.; Zhu, L.; Wu, Y.S. Accelerating and stabilizing the vapor-liquid equilibrium (VLE) calculation in compositional simulation of unconventional reservoirs using deep learning-based flash calculation. Fuel 2019, 253, 209–219. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Sun, S.; Bai, H. Accelerating flash calculations in unconventional reservoirs considering capillary pressure using an optimized deep learning algorithm. J. Pet. Sci. Eng. 2020, 195, 107886. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Li, Y.; Sun, S.; Gao, X. A self-adaptive deep learning algorithm for accelerating multi-component flash calculation. Comput. Methods Appl. Mech. Eng. 2020, 369, 113207. [Google Scholar] [CrossRef]
- Sheth, S.; Heidari, M.R.; Neylon, K.; Bennett, J.; McKee, F. Acceleration of thermodynamic computations in fluid flow applications. Comput. Geosci. 2022, 26, 1–11. [Google Scholar] [CrossRef]
- Ahmed, T. Equations of State and PVT Analysis; Gulf Publishing Company: Houston, TX, USA, 2007; ISBN 978-1-933762-03-6. [Google Scholar]
- Moghadassi, A.R.; Parvizian, F.; Hosseini, S.M.; Fazlali, A.R. A new approach for estimation of PVT properties of pure gases based on artificial neural network model. Braz. J. Chem. Eng. 2009, 26, 199–206. [Google Scholar] [CrossRef]
- Beggs, D.H.; Brill, J.P. A Study of Two-Phase Flow in Inclined Pipes. J. Pet. Technol. 1973, 25, 607–617. [Google Scholar] [CrossRef]
- Dranchuk, P.M.; Abou-Kassem, H. Calculation of Z Factors For Natural Gases Using Equations of State. J. Can. Pet. Technol. 1975, 14, PETSOC-75-03-03. [Google Scholar] [CrossRef]
- Kamyab, M.; Sampaio, J.H.B.; Qanbari, F.; Eustes, A.W. Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases. J. Pet. Sci. Eng. 2010, 73, 248–257. [Google Scholar] [CrossRef]
- Sanjari, E.; Lay, E.N. Estimation of natural gas compressibility factors using artificial neural network approach. J. Nat. Gas Sci. Eng. 2012, 9, 220–226. [Google Scholar] [CrossRef]
- Irene, A.I.; Sunday, I.S.; Orodu, O.D. Forecasting Gas Compressibility Factor Using Artificial Neural Network Tool for Niger-Delta Gas Reservoir. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2–4 August 2016. [Google Scholar]
- Al-Anazi, B.D.; Pazuki, G.R.; Nikookar, M.; Al-Anazi, A.F. The Prediction of the Compressibility Factor of Sour and Natural Gas by an Artificial Neural Network System. Pet. Sci. Technol. 2011, 29, 325–336. [Google Scholar] [CrossRef]
- Mohamadi-Baghmolaei, M.; Azin, R.; Osfouri, S.; Mohamadi-Baghmolaei, R.; Zarei, Z. Prediction of gas compressibility factor using intelligent models. Nat. Gas Ind. B 2015, 2, 283–294. [Google Scholar] [CrossRef]
- Fayazi, A.; Arabloo, M.; Mohammadi, A.H. Efficient estimation of natural gas compressibility factor using a rigorous method. J. Nat. Gas Sci. Eng. 2014, 16, 8–17. [Google Scholar] [CrossRef]
- Kamari, A.; Hemmati-Sarapardeh, A.; Mirabbasi, S.M.; Nikookar, M.; Mohammadi, A.H. Prediction of sour gas compressibility factor using an intelligent approach. Fuel Process. Technol. 2013, 116, 209–216. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Chamkalani, A.; Maesoumi, A.; Sameni, A. An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm. J. Nat. Gas Sci. Eng. 2013, 14, 132–143. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Gaganis, V.; Homouz, D.; Maalouf, M.; Khoury, N.; Polycrhonopoulou, K. An Efficient Method to Predict Compressibility Factor of Natural Gas Streams. Energies 2019, 12, 2577. [Google Scholar] [CrossRef]
- Maalouf, M.; Homouz, D. Kernel ridge regression using truncated newton method. Knowl. Based Syst. 2014, 71, 339–344. [Google Scholar] [CrossRef]
- Samnioti, A.; Kanakaki, E.M.; Koffa, E.; Dimitrellou, I.; Tomos, C.; Kiomourtzi, P.; Gaganis, V.; Stamataki, S. Wellbore and Reservoir Thermodynamic Appraisal in Acid Gas Injection for EOR Operations. Energies 2023, 16, 2392. [Google Scholar]
- Seifi, M.; Abedi, J. An Efficient and Robust Saturation Pressure Calculation Algorithm for Petroleum Reservoir Fluids Using a Neural Network. Pet. Sci. Technol. 2012, 30, 2329–2340. [Google Scholar]
- Gharbi, R.B.C.; Elsharkawy, A.M. Neural Network Model for Estimating the PVT Properties of Middle East Crude Oils. SPE Res. Eval. Eng. 1999, 2, 255–265. [Google Scholar] [CrossRef]
- Al-Marhoun, M.A.; Osman, E.A. Using Artificial Neural Networks to Develop New PVT Correlations for Saudi Crude Oils. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 13–16 October 2002. [Google Scholar]
- Moghadam, J.N.; Salahshoor, K.; Kharrat, R. Introducing a new method for predicting PVT properties of Iranian crude oils by applying artificial neural networks. Pet. Sci. Technol. 2011, 29, 1066–1079. [Google Scholar] [CrossRef]
- Al-Marhoun, M. PVT correlations for Middle East crude oils. J. Pet. Technol. 1988, 40, 650–666. [Google Scholar] [CrossRef]
- Al-Marhoun, M. New correlations for formation volume factors of oil and gas mixtures. J. Can. Pet. Technol. 1992, 31, PETSOC-92-03-02. [Google Scholar] [CrossRef]
- Ahmed, T.H. Reservoir Engineering Handbook, 4th ed.; Gulf Professional Publishing: Oxford, UK, 2010; ISBN 9781856178037. [Google Scholar]
- Farasat, A.; Shokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A.H. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Process. Technol. 2013, 115, 201–214. [Google Scholar]
- El-Sebakhy, E.A.; Sheltami, T.; Al-Bokhitan, S.Y.; Shaaban, Y.; Raharja, P.D.; Khaeruzzaman, Y. Support vector machines framework for predicting the PVT properties of crude-oil systems. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 11–14 March 2007. [Google Scholar]
- Akbari, M.K.; Farahani, F.J.; Abdy, Y. Dewpoint Pressure Estimation of Gas Condensate Reservoirs, Using Artificial Neural Network (ANN). In Proceedings of the EUROPEC/EAGE Conference and Exhibition, London, UK, 11–14 June 2007. [Google Scholar]
- Nowroozi, S.; Ranjbar, M.; Hashemipour, H.; Schaffie, M. Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs. Fuel Process. Technol. 2009, 90, 452–457. [Google Scholar] [CrossRef]
- Kaydani, H.; Hagizadeh, A.; Mohebbi, A. A Dew Point Pressure Model for Gas Condensate Reservoirs Based on an Artificial Neural Network. Pet. Sci. Technol. 2013, 31, 1228–1237. [Google Scholar] [CrossRef]
- González, A.; Barrufet, M.A.; Startzman, R. Improved neural-network model predicts dewpoint pressure of retrograde gases. J. Pet. Sci. Eng. 2003, 37, 183–194. [Google Scholar] [CrossRef]
- Majidi, S.M.; Shokrollahi, A.; Arabloo, M.; Mahdikhani-Soleymanloo, R.; Masihi, M. Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chem. Eng. Res. Des. 2014, 92, 891–902. [Google Scholar]
- Rabiei, A.; Sayyad, H.; Riazi, M.; Hashemi, A. Determination of dew point pressure in gas condensate reservoirs based on a hybrid neural genetic algorithm. Fluid Phase Equilibria 2015, 387, 38–49. [Google Scholar]
- Ahmadi, M.A.; Ebadi, M.; Yazdanpanah, A. Robust intelligent tool for estimating dew point pressure in retrograded condensate gas reservoirs: Application of particle swarm optimization. J. Pet. Sci. Eng. 2014, 123, 7–19. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Ebadi, M. Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel 2014, 117, 1074–1084. [Google Scholar]
- Arabloo, M.; Shokrollahi, A.; Gharagheizi, F.; Mohammadi, A.H. Toward a predictive model for estimating dew point pressure in gas condensate systems. Fuel Process. Technol. 2013, 116, 317–324. [Google Scholar]
- Ikpeka, P.; Ugwu, J.; Russell, P.; Pillai, G. Performance evaluation of machine learning algorithms in predicting dew point pressure of gas condensate reservoirs. SN Appl. Sci. 2020, 2, 2124. [Google Scholar]
- Zhong, Z.; Liu, S.; Kazemi, M.; Carr, T.R. Dew point pressure prediction based on mixed-kernels-function support vector machine in gas-condensate reservoir. Fuel 2018, 232, 600–609. [Google Scholar]
- Alolayan, O.S.; Alomar, A.O.; Williams, J.R. Parallel Automatic History Matching Algorithm Using Reinforcement Learning. Energies 2023, 16, 860. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995; ISBN 109780198538646. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer: Cham, Switzerland, 2018; ISBN 9783319944630. [Google Scholar]
- Costa, L.A.N.; Maschio, C.; Schiozer, D.J. Study of te influence of training data set in artificial neural network applied to the history matching process. In Proceedings of the Rio Oil & Gas Expo and Conference, Rio de Janeiro, Brazil, 13–16 September 2010. [Google Scholar]
- Zangl, G.; Giovannoli, M.; Stundner, M. Application of Artificial intelligence in gas storage management. In Proceedings of the SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria, 12–15 June 2006. [Google Scholar]
- Rodriguez, A.A.; Klie, H.; Wheeler, M.F.; Banchs, R.E. Assessing multiple resolution scales in history matching with metamodels. In Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, USA, 26–28 February 2007. [Google Scholar]
- Esmaili, S.; Mohaghegh, S.D. Full field reservoir modeling of shale assets using advanced data-driven analytics. Geosci. Front. 2016, 7, 11–20. [Google Scholar] [CrossRef]
- Silva, P.C.; Maschio, C.; Schiozer, D.J. Applications of the soft computing in the automated history matching. In Proceedings of the Petroleum Society’s 7th Canadian International Petroleum Conference (57th Annual Technical Meeting), Calgary, AB, Canada, 13–15 June 2006. [Google Scholar]
- Silva, P.C.; Maschio, C.; Schiozer, D.J. Application of neural network and global optimization in history matching. J. Can. Pet. Technol. 2008, 47, PETSOC-08-11-22-TN. [Google Scholar] [CrossRef]
- Silva, P.C.; Maschio, C.; Schiozer, D.J. Use of Neuro-Simulation techniques as proxies to reservoir simulator: Application in production history matching. J. Pet. Sci. Eng. 2007, 57, 273–280. [Google Scholar] [CrossRef]
- Gottfried, B.S.; Weisman, J. Introduction to Optimization Theory, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1973; ISBN 100134914724. [Google Scholar]
- Shahkarami, A.; Mohaghegh, S.D.; Gholami, V.; Haghighat, S.A. Artificial Intelligence (AI) Assisted History Matching. In Proceedings of the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, 17–18 April 2014. [Google Scholar]
- Sampaio, T.P.; Ferreira Filho, V.J.M.; de Sa Neto, A. An Application of Feed Forward Neural Network as Nonlinear Proxies for the Use during the History Matching Phase. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Cartagena de Indias, Colombia, 30–31 May 2009. [Google Scholar]
- Cullick, A.S. Improved and more-rapid history matching with a nonlinear proxy and global optimization. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006. [Google Scholar]
- Lechner, J.P.; Zangl, G. Treating Uncertainties in Reservoir Performance Prediction with Neural Networks. In Proceedings of the SPE Europec/EAGE Annual Conference, Madrid, Spain, 13–16 June 2005. [Google Scholar]
- Reis, L.C. Risk analysis with history matching using experimental design or artificial neural networks. In Proceedings of the SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria, 12–15 June 2006. [Google Scholar]
- Mohmad, N.I.; Mandal, D.; Amat, H.; Sabzabadi, A.; Masoudi, R. History Matching of Production Performance for Highly Faulted, Multi Layered, Clastic Oil Reservoirs using Artificial Intelligence and Data Analytics: A Novel Approach. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Virtual, 17–19 November 2020. [Google Scholar]
- Ramgulam, A.; Ertekin, T.; Flemings, P.B. Utilization of Artificial Neural Networks in the Optimization of History Matching. In Proceedings of the Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15–18 April 2007. [Google Scholar]
- Christie, M.; Demyanov, V.; Erbas, D. Uncertainty quantification for porous media flows. J. Comput. Phys. 2006, 217, 143–158. [Google Scholar] [CrossRef]
- Maschio, C.; Schiozer, D.J. Bayesian history matching using artificial neural network and Markov Chain Monte Carlo. J. Pet. Sci. Eng. 2014, 123, 62–71. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Chai, Z.; Yan, B.; Killough, J.E.; Wang, Y. An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach. J. Pet. Sci. Eng. 2018, 160, 170–181. [Google Scholar] [CrossRef]
- Eltahan, E.; Ganjdanesh, R.; Yu, W.; Sepehrnoori, K.; Drozd, H.; Ambrose, R. Assisted history matching using Bayesian inference: Application to multi-well simulation of a huff-n-puff pilot test in the Permian Basin. In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 20–22 July 2020. [Google Scholar]
- Shams, M.; El-Banbi, A.; Sayyouh, H. A Comparative Study of Proxy Modeling Techniques in Assisted History Matching. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017. [Google Scholar]
- Brantson, E.T.; Ju, B.; Omisore, B.O.; Wu, D.; Selase, A.E.; Liu, N. Development of machine learning predictive models for history matching tight gas carbonate reservoir production profiles. J. Geophys. Eng 2018, 15, 2235–2251. [Google Scholar] [CrossRef]
- Gao, C.C.; Gao, H.H. Evaluating early-time Eagle Ford well performance using Multivariate Adaptive Regression Splines (MARS). In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Friedman, J.H. Stochastic gradient boosting Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Bauer, M. General Regression Neural Network—A Neural Network for Technical Use. Master’s Thesis, University of Wisconsin, Madison, WI, USA, 1995. [Google Scholar]
- Al-Thuwaini, J.S.; Zangl, G.; Phelps, R. Innovative Approach to Assist History Matching Using Artificial Intelligence. In Proceedings of the Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 11–13 April 2006. [Google Scholar]
- Simplilearn, AL and Machine Learning. What Are Self-Organizing Maps. Beginner’s Guide to Kohonen Map. Available online: https://www.simplilearn.com/self-organizing-kohonen-maps-article (accessed on 10 March 2023).
- Dharavath, A. Bisection Method. Available online: https://protonstalk.com/polynomials/bisection-method/ (accessed on 10 March 2023).
- Wikipedia. Self-Organizing Map. Available online: https://en.wikipedia.org/wiki/Self-organizing_map (accessed on 24 July 2023).
- Guo, Z.; Chen, C.; Gao, G.; Vink, J. Applying Support Vector Regression to Reduce the Effect of Numerical Noise and Enhance the Performance of History Matching. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar]
- Liu, R.; Misra, S. Machine Learning Assisted Recovery of Subsurface Energy: A Review. Authorea 2021. Available online: https://www.authorea.com/doi/full/10.1002/essoar.10504644.2 (accessed on 25 April 2023).
- Muhuri, P.S.; Chatterjee, P.; Yuan, X.; Roy, K.; Esterline, A. Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks. Information 2020, 11, 243. [Google Scholar] [CrossRef]
- Saxena, S. What Is LSTM? Introduction to Long Short-Term Memory. Available online: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/ (accessed on 28 July 2023).
- Kostadinov, S. Understanding GRU Networks. Available online: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be (accessed on 28 July 2023).
- Chernikov, A.D.; Eremin, N.A.; Stolyarov, V.E.; Sboev, A.G.; Semenova-Chaschina, O.K.; Fitsner, L.K. Application of artificial intelligence methods for identifying and predicting complications in the construction of oil and gas wells: Problems and solutions. Georesources 2020, 22, 87–96. [Google Scholar] [CrossRef]
- Qodirov, S.; Shestakov, A. Development of Artificial Neural Network for Predicting Drill Pipe Sticking in Real-Time Well Drilling Process. In Proceedings of the Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 17–19 November 2020. [Google Scholar]
- Ma, X.; Zhang, K.; Zhao, H.; Zhang, L.; Wang, J.; Zhang, H.; Liu, P.; Yan, X.; Yang, Y. A vector-to-sequence based multilayer recurrent network surrogate model for history matching of large-scale reservoir. J. Pet. Sci. Eng. 2022, 214, 110548. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, K.; Zhang, J.; Wang, Y.; Zhang, L.; Liu, P.; Yang, Y.; Wang, J. A novel hybrid recurrent convolutional network for surrogate modeling of history matching and uncertainty quantification. J. Pet. Sci. Eng. 2022, 210, 110109. [Google Scholar] [CrossRef]
- MathWorks, Convolutional Neural Network. What Is a Convolutional Neural Network? Available online: https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html (accessed on 22 March 2023).
- Geeksforgeeks. Introduction to Convolution Neural Network. Available online: https://www.geeksforgeeks.org/introduction-convolution-neural-network/ (accessed on 25 July 2023).
- Peng, M.; Wang, C.; Chen, T.; Liu, G. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification. Information 2016, 7, 61. [Google Scholar] [CrossRef]
- Brownlee, J. A Gentle Introduction to Generative Adversarial Networks (GANs). Available online: https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/ (accessed on 22 March 2023).
- Ma, X.; Zhang, K.; Wang, J.; Yao, C.; Yang, Y.; Sun, H.; Yao, J. An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching. SPE J. 2022, 27, 1160–1175. [Google Scholar] [CrossRef]
- Evensen, G.; Raanes, P.N.; Stordal, A.S.; Hove, J. Efficient Implementation of an Iterative Ensemble Smoother for Data Assimilation and Reservoir History Matching. Front. Appl. Math. Stat. 2019, 5, 47. [Google Scholar] [CrossRef]
- What’s GAN (Generative Adversarial Networks), How It Works? Available online: https://www.labellerr.com/blog/what-is-gan-how-does-it-work/ (accessed on 25 July 2023).
- Honorio, J.; Chen, C.; Gao, G.; Du, K.; Jaakkola, T. Integration of PCA with a Novel Machine Learning Method for Reparameterization and Assisted History Matching Geologically Complex Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar]
- Alguliyev, R.; Aliguliyev, R.; Imamverdiyev, Y.; Sukhostat, L. History matching of petroleum reservoirs using deep neural networks. Intell. Syst. Appl. 2022, 16, 200128. [Google Scholar] [CrossRef]
- Kana, M. Variational Autoencoders (VAEs) for Dummies—Step by Step Tutorial. Available online: https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9v (accessed on 2 April 2023).
- Khosla, R. Auto-Encoders for Computer Vision: An Endless world of Possibilities. Available online: https://www.analyticsvidhya.com/blog/2021/01/auto-encoders-for-computer-vision-an-endless-world-of-possibilities/ (accessed on 25 July 2023).
- Do, J.S.; Kareem, A.B.; Hur, J.W. LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors 2023, 23, 1009. [Google Scholar] [CrossRef]
- Canchumuni, S.A.; Emerick, A.A.; Pacheco, M.A. Integration of Ensemble Data Assimilation and Deep Learning for History Matching Facies Models. In Proceedings of the OTC Brazil, Rio de Janeiro, Brazil, 24–26 October 2017. [Google Scholar]
- Jo, S.; Jeong, H.; Min, B.; Park, C.; Kim, Y.; Kwon, S.; Sun, A. Efficient deep-learning-based history matching for fluvial channel reservoirs. J. Pet. Sci. Eng. 2022, 208, 109247. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Durlofsky, L.J. A Deep-Learning-Based Geological Parameterization for History Matching Complex Models. Math. Geosci. 2019, 51, 725–766. [Google Scholar] [CrossRef]
- Jo, H.; Pan, W.; Santos, J.E.; Jung, H.; Pyrcz, M.J. Machine learning assisted history matching for a deepwater lobe system. J. Pet. Sci. Eng. 2021, 207, 109086. [Google Scholar] [CrossRef]
- Sutton, R.; Barto, A. Reinforcement Learning: An Introduction, 2nd ed.; Bradford Books: Denver, CO, USA, 2018; ISBN 0262039249. [Google Scholar]
- Sivamayil, K.; Rajasekar, E.; Aljafari, B.; Nikolovski, S.; Vairavasundaram, S.; Vairavasundaram, I. A Systematic Study on Reinforcement Learning Based Applications. Energies 2023, 16, 1512. [Google Scholar]
- Li, H.; Misra, S. Reinforcement learning based automated history matching for improved hydrocarbon production forecast. Appl. Energy 2021, 284, 116311. [Google Scholar]
ML Application | ML Training Scheme | Main Objective | ML Method | Reviewed Studies (Reference List Number) |
---|---|---|---|---|
Surrogate Reservoir Models | Supervised | Hydraulic fracture | ANNs coupled with GA | [41] |
Reservoir uncertainty analysis | [42,43,44,45,46] | |||
Prediction of dynamic reservoir properties | ANNs | [1] | ||
Water flooding reservoir simulation | [47] | |||
CO2 storage—prediction of dynamic reservoir properties | [14,48,49,52] | |||
Shale gas reservoir simulation | [50] | |||
BHP predictions | RBFNN | [51] | ||
Stability and phase split problems using k-values | Supervised | Phase stability | SVMs and ANNs | [39,53,55,57,58] |
Phase stability/split | [10,54,56,59,65] | |||
Phase split | [22] | |||
Phase split | Deep learning ANNs | [60,64] | ||
Phase stability/split | [61,62,63] | |||
Black oil PVT properties | Supervised | Z-factor prediction | ANNs | [67,70,71,72,73,74] |
SVMs and LSSVM with optimization methods | [75,76,78,83] | |||
Kernel Ridge Regression | [80] | |||
Saturation pressure | ANNs | [77,85,92,95,96] | ||
SVMs | [90,91] | |||
ANFIS | [93] | |||
ANNs coupled with optimization methods | [97,98] | |||
SVMs and LSSVM with optimization methods | [99,100,102] | |||
SVMs and DTs | [101] |
ML Application | ML Training Scheme | ML and Optimization Methods (If Any) | Reviewed Studies (Reference List Number) |
---|---|---|---|
Indirect history matching | Supervised | ANNs with stochastic optimization | [106,107] |
ANNs with dimensionality reduction methods | [108] | ||
Ensembles of ANNs | [109] | ||
RBFNNs, Generalized Regression ANNs, FSSC and ANFIS stochastic optimization | [110,111,112] | ||
Direct history matching | Supervised | ANNs | [114,115,116,117,118,119,120,126] |
Bayesian ML models | [121,122,124,125] | ||
MARS, DTs, single-pass GRNNs | [127] | ||
Unsupervised | Self-Organizing Map (SOM) | [131] | |
Supervised | SVR with dimensionality reduction and optimization | [135] | |
RNN | [142,143] | ||
CNN | [148,158] | ||
Unsupervised | GAN | [149,159] | |
Piecewise Reconstruction from a Dictionary (PRaD) with pluri-PCA | [151] | ||
Convolutional AutoEncoders | [152,157] | ||
Reinforcement learning | Reinforcement learning models | [103,162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samnioti, A.; Gaganis, V. Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I. Energies 2023, 16, 6079. https://doi.org/10.3390/en16166079
Samnioti A, Gaganis V. Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I. Energies. 2023; 16(16):6079. https://doi.org/10.3390/en16166079
Chicago/Turabian StyleSamnioti, Anna, and Vassilis Gaganis. 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I" Energies 16, no. 16: 6079. https://doi.org/10.3390/en16166079
APA StyleSamnioti, A., & Gaganis, V. (2023). Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I. Energies, 16(16), 6079. https://doi.org/10.3390/en16166079