The Statistical Fingerprint of Fluid-Injection Operations on Microseismic Activity at the Val d’Agri Oil Field (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Fluid-Injection Operations, and Seismicity Data
- Seismic dataset obtained from data acquired by the ENI local seismic network from 2006 to 2015 (green circles in Figure 1c; dataset1.csv file in the Supplementary Materials);
- Seismic dataset obtained from data acquired by the INSIEME seismic network from 2016 to 2018 (red circles in Figure 1c; dataset2.csv file in the Supplementary Materials).
2.2. Probability of a Change in Seismicity Rate Greater Than a Given Ratio r
2.3. The Lomb Periodogram
2.4. The Schuster’s Spectrum
2.5. The Seismogenic Index
2.6. Expected Maximum Magnitude of Injection-Induced Earthquakes
3. Results
3.1. Completeness Magnitude and b-Value Estimate for the 2006–2015 and the 2016–2018 Fluid-Induced Seismicity at CM2
3.2. Statistical Results for the 2006–2015 Seismicity
3.3. Statistical Results for the 2016–2018 Seismicity
4. Discussion and Conclusions
- The NE-dipping fault at the CM2 site has likely released most of the accumulated tectonic stress;
- Fluid-injection operations have been going on for over 10 years, thus the triggering front of seismicity (i.e., the relaxation zone of the pore pressure) has already diffused throughout the poroelastic medium;
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Healy, J.H.; Rubey, W.W.; Griggs, D.T.; Raleigh, C.B. The Denver Earthquakes. Science 1968, 161, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoback, M.D.; Harjes, H. Injection-induced Earthquakes and Crustal Stress at 9 Km Depth at the KTB Deep Drilling Site, Germany. J. Geophys. Res. Solid. Earth 1997, 102, 18477–18491. [Google Scholar] [CrossRef]
- Lee, K.-K.; Ellsworth, W.E.; Giardini, D.; Townend, J.; Ge, S.; Shimamoto, T.; Yeo, I.-W.; Kang, T.-S.; Rhie, J.; Sheen, D.-H.; et al. Managing Injection-Induced Seismic Risks. Science 2019, 364, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.A.; Krüger, O.S.; Dinske, C. Probability of Inducing Given-Magnitude Earthquakes by Perturbing Finite Volumes of Rocks. J. Geophys. Res. 2013, 118, 3557–3575. [Google Scholar] [CrossRef]
- Langenbruch, C.; Weingarten, M.; Zoback, M.D. Physics-Based Forecasting of Man-Made Earthquake Hazards in Oklahoma and Kansas. Nat. Commun. 2018, 9, 3946. [Google Scholar] [CrossRef] [Green Version]
- Häring, M.O.; Schanz, U.; Ladner, F.; Dyer, B.C. Characterisation of the Basel 1 Enhanced Geothermal System. Geothermics 2008, 37, 469–495. [Google Scholar] [CrossRef]
- Cesca, S.; Grigoli, F.; Heimann, S.; Gonzalez, A.; Buforn, E.; Maghsoudi, S.; Blanch, E.; Dahm, T. The 2013 September-October Seismic Sequence Offshore Spain: A Case of Seismicity Triggered by Gas Injection? Geophys. J. Int. 2014, 198, 941–953. [Google Scholar] [CrossRef] [Green Version]
- Stabile, T.A.; Giocoli, A.; Perrone, A.; Piscitelli, S.; Lapenna, V. Fluid-injection Induced Seismicity Reveals a NE-dipping Fault in the South-eastern Sector of the High Agri Valley (Southern Italy). Geophys. Res. Lett. 2014, 41, 5847–5854. [Google Scholar] [CrossRef]
- van der Elst, N.J.; Savage, H.M.; Keranen, K.M.; Abers, G.A. Enhanced Remote Earthquake Triggering at Fluid-Injection Sites in the Midwestern United States. Science 2013, 341, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Candela, T.; Osinga, S.; Ampuero, J.; Wassing, B.; Pluymaekers, M.; Fokker, P.A.; Van Wees, J.; De Waal, H.A.; Muntendam-Bos, A.G. Depletion-Induced Seismicity at the Groningen Gas Field: Coulomb Rate-and-State Models Including Differential Compaction Effect. J. Geophys. Res. Solid. Earth 2019, 124, 7081–7104. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.D.; Frohlich, C. Did (or Will) Fluid Injection Cause Earthquakes?-Criteria for a Rational Assessment. Seismol. Res. Lett. 1993, 64, 207–224. [Google Scholar] [CrossRef]
- Dahm, T.; Cesca, S.; Hainzl, S.; Braun, T.; Kruger, F. Discrimination between Induced, Triggered, and Natural Earthquakes Close to Hydrocarbon Reservoirs: A Probabilistic Approach Based on the Modeling of Depletion-induced Stress Changes and Seismological Source Parameters. J. Geophys. Res. 2015, 120, 2491–2509. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Avouac, J. Stress-Based and Convolutional Forecasting of Injection-Induced Seismicity: Application to the Otaniemi Geothermal Reservoir Stimulation. J. Geophys. Res. Solid. Earth 2023, 128, e2022JB024960. [Google Scholar] [CrossRef]
- Grigoli, F.; Cesca, S.; Priolo, E.; Rinaldi, A.P.; Clinton, J.F.; Stabile, T.A.; Dost, B.; Fernandez, M.G.; Wiemer, S.; Dahm, T. Current Challenges in Monitoring, Discrimination, and Management of Induced Seismicity Related to Underground Industrial Activities: A European Perspective. Rev. Geophys. 2017, 55, 310–340. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Hainzl, S.; Eisner, L.; Shapiro, S.A.; Le Calvez, J. Microseismic Signatures of Hydraulic Fracture Growth in Sediment Formations: Observations and Modeling. J. Geophys. Res. 2008, 113, B02307. [Google Scholar] [CrossRef] [Green Version]
- Dinske, C.; Shapiro, S.A.; Rutledge, J.T. Interpretation of Microseismicity Resulting from Gel and Water Fracturing of Tight Gas Reservoirs. Pure Appl. Geophys. 2010, 167, 169–182. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.; Hauksson, E.; Heaton, T.H. Generalized Seismic Phase Detection with Deep Learning. Bull. Seismol. Soc. Am. 2018, 108, 2894–2901. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Beroza, G.C. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method. Geophys. J. Int. 2018, 216, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake Transformer—An Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Zhu, W.; Hou, A.B.; Yang, R.; Datta, A.; Mousavi, S.M.; Ellsworth, W.L.; Beroza, G.C. QuakeFlow: A Scalable Machine-Learning-Based Earthquake Monitoring Workflow with Cloud Computing. Geophys. J. Int. 2022, 232, 684–693. [Google Scholar] [CrossRef]
- Panebianco, S.; Serlenga, V.; Satriano, C.; Cavalcante, F.; Stabile, T.A. Semi-Automated Template Matching and Machine-Learning Based Analysis of the August 2020 Castelsaraceno Microearthquake Sequence (Southern Italy). Geomat. Nat. Hazards Risk 2023, 14, 2207715. [Google Scholar] [CrossRef]
- Stabile, T.A.; Vlcek, J.; Wcisło, M.; Serlenga, V. Analysis of the 2016–2018 Fluid-Injection Induced Seismicity in the High Agri Valley (Southern Italy) from Improved Detections Using Template Matching. Sci. Rep. 2021, 11, 20630. [Google Scholar] [CrossRef]
- Improta, L.; Valoroso, L.; Piccinini, D.; Chiarabba, C. A Detailed Analysis of Wastewater-induced Seismicity in the Val d’Agri Oil Field (Italy). Geophys. Res. Lett. 2015, 42, 2682–2690. [Google Scholar] [CrossRef]
- Improta, L.; Bagh, S.; Gori, P.D.; Valoroso, L.; Pastori, M.; Piccinini, D.; Chiarabba, C.; Anselmi, M.; Buttinelli, M. Reservoir Structure and Wastewater-Induced Seismicity at the Val d’Agri Oilfield (Italy) Shown by Three-Dimensional Vp and Vp/Vs Local Earthquake Tomography. J. Geophys. Res. 2017, 41, 3. [Google Scholar] [CrossRef]
- Stabile, T.A. SIR-MIUR Project INSIEME—Broadband Seismic Network in Val d’Agri, Southern Italy [Data Set]. International Federation of Digital Seismograph Networks. 2016. Available online: https://doi.org/10.7914/SN/3F_2016 (accessed on 1 March 2023).
- Stabile, T.A.; Serlenga, V.; Satriano, C.; Romanelli, M.; Gueguen, E.; Gallipoli, M.R.; Ripepi, E.; Saurel, J.-M.; Panebianco, S.; Bellanova, J.; et al. The INSIEME Seismic Network: A Research Infrastructure for Studying Induced Seismicity in the High Agri Valley (Southern Italy). Earth Syst. Sci. Data 2020, 12, 519–538. [Google Scholar] [CrossRef] [Green Version]
- Serlenga, V.; Stabile, T.A. How Do Local Earthquake Tomography and Inverted Dataset Affect Earthquake Locations? The Case Study of High Agri Valley (Southern Italy). Geomat. Nat. Hazards Risk 2019, 10, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Bobbio, A.; Vassallo, M.; Festa, G. A Local Magnitude Scale for Southern Italy. Bull. Seism. Soc. Am. 2009, 99, 2461–2470. [Google Scholar] [CrossRef] [Green Version]
- Zollo, A.; Orefice, A.; Convertito, V. Source Parameter Scaling and Radiation Efficiency of Microearthquakes along the Irpinia Fault Zone in Southern Apennines, Italy. J. Geophys. Res. 2014, 119, 3256–3275. [Google Scholar] [CrossRef]
- Hanks, T.; Kanamori, H. A Moment Magnitude Scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Wyss, M.; Marsan, D. Seismicity Rate Changes. 2011. Available online: http://www.corssa.org (accessed on 10 May 2023). [CrossRef]
- Marsan, D.; Nalbant, S.S. Methods for Measuring Seismicity Rate Changes: A Review and a Study of How the Mw 7.3 Landers Earthquake Affected the Aftershock Sequence of the Mw 6.1 Joshua Tree Earthquake. Pure Appl. Geophys. 2005, 162, 1151–1185. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in Astronomical Time Series Analysis. II—Statistical Aspects of Spectral Analysis of Unevenly Spaced Data. Astrophys. J. 1982, 263, 835. [Google Scholar] [CrossRef]
- Ader, T.J.; Avouac, J.-P. Detecting Periodicities and Declustering in Earthquake Catalogs Using the Schuster Spectrum, Application to Himalayan Seismicity. Earth Planet. Sci. Lett. 2013, 377–378, 97–105. [Google Scholar] [CrossRef]
- Shapiro, S.A. Seismogenic Index of Underground Fluid Injections and Productions. J. Geophys. Res. Solid. Earth 2018, 123, 7983–7997. [Google Scholar] [CrossRef]
- Shapiro, S.A.; Dinske, C.; Kummerow, J. Probability of a Given-Magnitude Earthquake Induced by a Fluid Injection. Geophys. Res. Lett. 2007, 34, L22314. [Google Scholar] [CrossRef]
- Shapiro, S.A. Fluid-Induced Seismicity; Cambridge University Press: Padstow, UK, 2015; ISBN 978-0-521-88457-0. [Google Scholar]
- Eaton, D.W.; Igonin, N. What Controls the Maximum Magnitude of Injection-Induced Earthquakes? Lead. Edge 2018, 37, 135–140. [Google Scholar] [CrossRef]
- Shapiro, S.A.; Krüger, O.S.; Dinske, C.; Langenbruch, C. Magnitudes of Induced Earthquakes and Geometric Scales of Fluid-Stimulated Rock Volumes. Geophysics 2011, 76, WC55–WC63. [Google Scholar] [CrossRef]
- McGarr, A.F. Maximum Magnitude Earthquakes Induced by Fluid Injection. J. Geophys. Res. 2014, 119, 1008–1019. [Google Scholar] [CrossRef]
- van der Elst, N.J.; Page, M.T.; Weiser, D.A.; Goebel, T.H.W.; Hosseini, S.M. Induced Earthquake Magnitudes Are as Large as (Statistically) Expected. J. Geophys. Res. Solid. Earth 2016, 121, 4575–4590. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Aki, K. Maximum Likelihood Estimate of b in the Formula LogN=a-BM and Its Confidence Limits. Bull. Earthq. Res. Inst. 1965, 43, 237–239. [Google Scholar]
- Dinske, C.; Shapiro, S.A. Seismotectonic State of Reservoirs Inferred from Magnitude Distributions of Fluid-Induced Seismicity. J. Seismol. 2013, 17, 13–25. [Google Scholar] [CrossRef]
- Buttinelli, M.; Improta, L.; Bagh, S.; Chiarabba, C. Inversion of Inherited Thrusts by Wastewater Injection Induced Seismicity at the Val d’Agri Oilfield (Italy). Sci. Rep. 2016, 6, 37165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wcisło, M.; Stabile, T.A.; Telesca, L.; Eisner, L. Variations of Attenuation and VP/VS Ratio in the Vicinity of Wastewater Injection: A Case Study of Costa Molina 2 Well (High Agri Valley, Italy). Geophysics 2018, 83, B25–B31. [Google Scholar] [CrossRef]
Period | Using Ml | Using Mw | ||
---|---|---|---|---|
Mc | b-Value | Mc | b-Value | |
2006–2015 | 1.0 ± 0.1 | 1.38 ± 0.13 | 1.3 ± 0.1 | 1.70 ± 0.11 |
2016–2018 | −0.5 ± 0.1 | 1.33 ± 0.11 | 0.1 ± 0.1 | 1.34 ± 0.08 |
Date | Time | Lat °N | Lon °E | Z (km) | Ml | Mw |
---|---|---|---|---|---|---|
6 February 2002 | 04:14:53.48 | 40.3457 | 15.9292 | 5.84 | 1.10 | 1.47 |
1 March 2003 | 02:13:43.17 | 40.2855 | 15.9518 | 9.81 | 1.40 | 1.70 |
27 June 2003 | 12:37:16.30 | 40.3073 | 16.0318 | 5.18 | 1.30 | 1.62 |
29 June 2003 | 05:17:41.69 | 40.3045 | 16.0327 | 5.42 | 0.40 * | 0.96 * |
30 September 2003 | 07:44:36.06 | 40.3412 | 15.9307 | 10.97 | 1.20 | 1.55 |
30 September 2003 | 09:20:11.16 | 40.3445 | 15.9277 | 11.14 | 1.60 | 1.84 |
13 February 2004 | 21:10:34.47 | 40.3265 | 16.0033 | 11.97 | 1.70 | 1.92 |
16 February 2004 | 01:47:01.38 | 40.3275 | 15.9982 | 11.30 | 0.80 * | 1.25 * |
2 July 2004 | 04:44:30.78 | 40.3237 | 16.0195 | 4.10 | 1.20 | 1.55 |
18 March 2006 | 00:45:44.91 | 40.2947 | 16.0050 | 8.53 | 0.80 * | 1.25 * |
2 June 2006 | 05:42:43.04 | 40.2630 | 15.9885 | 7.66 | 1.00 | 1.40 |
Period 2006–2015 | Vcum | Vmax | Pave | Pmax |
---|---|---|---|---|
Neqk | 0.55 | 0.56 | 0.49 | 0.51 |
MOcum | 0.67 | 0.67 | 0.62 | 0.56 |
Period 2016–2018 | Vcum | Vmax | Pave | Pmax |
---|---|---|---|---|
Neqk | 0.22 | 0.35 | 0.24 | 0.45 |
MOcum | 0.17 | 0.41 | 0.21 | 0.49 |
Seismicity | Vinj > 1900 m3/day | Vinj > 2000 m3/day | Vinj > 2100 m3/day |
---|---|---|---|
56 | - | 73 | 41 |
84 | - | 94 | 54 |
96 | - | 109 | 82 |
113 | 135 | 131 | - |
169 | 169 | 164 | - |
225 | 225 | 219 | - |
337 | - | 328 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabile, T.A.; Telesca, L. The Statistical Fingerprint of Fluid-Injection Operations on Microseismic Activity at the Val d’Agri Oil Field (Southern Italy). Energies 2023, 16, 5877. https://doi.org/10.3390/en16165877
Stabile TA, Telesca L. The Statistical Fingerprint of Fluid-Injection Operations on Microseismic Activity at the Val d’Agri Oil Field (Southern Italy). Energies. 2023; 16(16):5877. https://doi.org/10.3390/en16165877
Chicago/Turabian StyleStabile, Tony Alfredo, and Luciano Telesca. 2023. "The Statistical Fingerprint of Fluid-Injection Operations on Microseismic Activity at the Val d’Agri Oil Field (Southern Italy)" Energies 16, no. 16: 5877. https://doi.org/10.3390/en16165877
APA StyleStabile, T. A., & Telesca, L. (2023). The Statistical Fingerprint of Fluid-Injection Operations on Microseismic Activity at the Val d’Agri Oil Field (Southern Italy). Energies, 16(16), 5877. https://doi.org/10.3390/en16165877