Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University
Abstract
:1. Introduction
Reference | Microgrid | Resources | Solver/Methodology | Contribution |
---|---|---|---|---|
[27] | On-grid | WT, PV, hydrogen storage, diesel generator, battery storage, tidal current farm | HOMER/noncooperative game-based planning | Effectiveness of the MG interconnection and the annual net cost |
[28] | WT/diesel generator/PV/battery storage | Arithmetic optimization algorithm, Harris hawks optimizer, hybrid algorithm, Friedman ranking test, microgrid, off-grid, optimal capacity planning, sizing optimization, Wilcoxon signed-rank test | Sensitivity analysis | |
[29] | WT, PV, micro-turbines, diesel/biogas generators, fuel cells, battery storage | HOMER | Economic feasibility, different load profiles, performances of the batteries | |
[30] | Different configurations (WT, PV, battery storage, biomass, microhydro) | HOMER | Sensitivity analysis | |
[31] | PV, microturbine | MATLAB | Economical costs | |
[32] | PV, WT | HOMER | Technical and economic performance | |
[33] | PV, battery storage, biomass, diesel generator | Mixed integer linear programming | Generation expansion planning, economic analysis for ascertaining viability | |
[14] | Off-grid (islanded) | WT/diesel generator/PV/battery storage | HOMER/MATLAB Simulink | Utilize different load dispatch strategies (combined dispatch, load following, generator order, HOMER Predictive Dispatch strategy, and cycle charging) |
[34] | WT, PV, hydroelectric turbine, fuel cells, hydrogen electrolysis | HOMER | Combined both distributed and centralized generation and solar thermal system | |
[29] | WT, PV, micro-turbines, diesel/biogas generators, fuel cells, battery storage | HOMER | Economic feasibility, different load profiles, performances of the batteries | |
[7] | PV, battery | Complex optimization techniques | Resilience, climatic conditions | |
[35] | PV, WT, diesel generator | Multi-objective design, multi-objective evolutionary algorithm (MOEA), and a genetic algorithm (GA) | Costs and unmet load | |
[36] | PV, WT, battery storage, microhydro system, biomass gasifier | Discrete harmony search (DHS) algorithm | Unmet load |
2. Material and Methods
2.1. Microgrid Design
2.1.1. CHP
2.1.2. Solar PV, Energy Storage Battery, and Inverter
2.1.3. Wind Turbine (WT)
2.1.4. Cost Parameters
- Net Present Cost (NPC)
- B.
- Levelized Cost Of Energy (LCOE)
3. Results and Discussion
3.1. Microgrid Setting Up
3.2. System Configurations Simulation Results
- System 1: Grid and CHP
- System 2: Grid, CHP, PV
- System 3: Grid, CHP, PV, ESS
- System 4 Grid, CHP, and WT
- System 5: Grid, CHP, WT, PV, and ESS
- System 6: CHP, Wind, PV, and ESS (Islanded Grid)
3.3. Determination of Oakland University System
3.4. Unmet Electrical Load
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uyar, T.S.; Javani, N. Renewable Energy Based Solutions; Lecture Notes in Energy; Springer International Publishing AG: Cham, Switzerland, 2022; Volume 87, ISBN 978-3-031-05124-1. [Google Scholar]
- Kantola, M.; Saari, A. Renewable vs. traditional energy management solutions—A Finnish hospital facility case. Renew. Energy 2013, 57, 539–545. [Google Scholar] [CrossRef]
- Habbi, H.M.; Alhamadani, A. Power System Stabilizer PSS4B Model for Iraqi National Grid using PSS/E Software. J. Eng. 2018, 24, 29–45. [Google Scholar] [CrossRef]
- Ishraque, F.; Shezan, S.A.; Rashid, M.M.; Bhadra, A.B.; Hossain, A.; Chakrabortty, R.K.; Ryan, M.J.; Fahim, S.R.; Sarker, S.K.; Das, S.K. Techno-Economic and Power System Optimization of a Renewable Rich Islanded Microgrid Considering Different Dispatch Strategies. IEEE Access 2021, 9, 77325–77340. [Google Scholar] [CrossRef]
- Sallam, M.E.; Attia, M.A.; Abdelaziz, A.Y.; Sameh, M.A.; Yakout, A.H. Optimal Sizing of Different Energy Sources in an Isolated Hybrid Microgrid Using Turbulent Flow Water-Based Optimization Algorithm. IEEE Access 2022, 10, 61922–61936. [Google Scholar] [CrossRef]
- Pandey, S.; Han, J.; Gurung, N.; Chen, H.; Paaso, E.A.; Li, Z.; Khodaei, A. Multi-Criteria Decision-Making and Robust Optimization Methodology for Generator Sizing of a Microgrid. IEEE Access 2021, 9, 142264–142275. [Google Scholar] [CrossRef]
- Anglani, N.; Oriti, G.; Fish, R.; Van Bossuyt, D.L. Design and Optimization Strategy to Size Resilient Stand-Alone Hybrid Microgrids in Various Climatic Conditions. IEEE Open J. Ind. Appl. 2022, 3, 237–246. [Google Scholar] [CrossRef]
- Moradi, M.H.; Hajinazari, M.; Jamasb, S.; Paripour, M. An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming. Energy 2013, 49, 86–101. [Google Scholar] [CrossRef]
- Zaki Diab, A.A.; Sultan, H.M.; Mohamed, I.S.; Kuznetsov Oleg, N.; Do, T.D. Application of different optimization algorithms for optimal sizing of pv/wind/diesel/battery storage stand-alone hybrid microgrid. IEEE Access 2019, 7, 119223–119245. [Google Scholar] [CrossRef]
- Conde, G.; Perez, G.; Gutierrez-Alcaraz, G.; Leonowicz, Z. Frequency Improvement in Microgrids Through Battery Management System Control Supported by a Remedial Action Scheme. IEEE Access 2022, 10, 8081–8091. [Google Scholar] [CrossRef]
- Kharrich, M.; Kamel, S.; Abdeen, M.; Mohammed, O.H.; Akherraz, M.; Khurshaid, T.; Rhee, S.-B. Developed Approach Based on Equilibrium Optimizer for Optimal Design of Hybrid PV/Wind/Diesel/Battery Microgrid in Dakhla, Morocco. IEEE Access 2021, 9, 13655–13670. [Google Scholar] [CrossRef]
- Nakiganda, A.M.; Dehghan, S.; Markovic, U.; Hug, G.; Aristidou, P. A Stochastic-Robust Approach for Resilient Microgrid Investment Planning Under Static and Transient Islanding Security Constraints. IEEE Trans. Smart Grid 2022, 13, 1774–1788. [Google Scholar] [CrossRef]
- Sahri, Y.; Tamalouzt, S.; Belaid, S.L.; Bajaj, M.; Ghoneim, S.S.M.; Zawbaa, H.M.; Kamel, S. Performance improvement of Hybrid System based DFIG-Wind/PV/Batteries connected to DC and AC grid by applying Intelligent Control. Energy Rep. 2023, 9, 2027–2043. [Google Scholar] [CrossRef]
- Bihari, S.P.; Sadhu, P.K.; Sarita, K.; Khan, B.; Arya, L.D.; Saket, R.K.; Kothari, D.P. A Comprehensive Review of Microgrid Control Mechanism and Impact Assessment for Hybrid Renewable Energy Integration. IEEE Access 2021, 9, 88942–88958. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Roy, N.K.; Hossain, E.; Pota, H.R. Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh. IEEE Access 2019, 7, 150120–150140. [Google Scholar] [CrossRef]
- Gao, J.T.; Shih, C.H.; Lee, C.W.; Lo, K.Y. An Active and Reactive Power Controller for Battery Energy Storage System in Microgrids. IEEE Access 2022, 10, 10490–10499. [Google Scholar] [CrossRef]
- Xie, C.; Wang, D.; Lai, C.S.; Wu, R.; Wu, X.; Lai, L.L. Optimal sizing of battery energy storage system in smart microgrid considering virtual energy storage system and high photovoltaic penetration. J. Clean. Prod. 2021, 281, 125308. [Google Scholar] [CrossRef]
- Datta, A.; Atoche, A.C.; Koley, I.; Sarker, R.; Castillo, J.V.; Datta, K.; Saha, D. Coordinated AC frequency vs DC voltage control in a photovoltaic-wind-battery-based hybrid AC/DC microgrid. Int. Trans. Electr. Energy Syst. 2021, 31, e13041. [Google Scholar] [CrossRef]
- Rehman, S.; Habib, H.U.R.; Wang, S.; Buker, M.S.; Alhems, L.M.; Al Garni, H.Z. Optimal Design and Model Predictive Control of Standalone HRES: A Real Case Study for Residential Demand Side Management. IEEE Access 2020, 8, 29767–29814. [Google Scholar] [CrossRef]
- Santos, L.H.S.; Silva, J.A.A.; López, J.C.; Arias, N.B.; Rider, M.J.; Da Silva, L.C.P. Integrated Optimal Sizing and Dispatch Strategy for Microgrids Using HOMER Pro. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; pp. 1–5. [Google Scholar]
- Çetinbaş, I.; Tamyürek, B.; Demirtaş, M. Design, Analysis and Optimization of a Hybrid Microgrid System Using HOMER Software: Eskişehir Osmangazi University Example. Int. J. Renew. Energy Dev. 2019, 8, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Belmahdi, B.; El Bouardi, A. Simulation and Optimization of Microgrid Distributed Generation: A Case Study of University Abdelmalek Essaâdi in Morocco. Procedia Manuf. 2020, 46, 746–753. [Google Scholar] [CrossRef]
- Murty, V.V.V.S.N.; Kumar, A. Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources. J. Mod. Power Syst. Clean Energy 2020, 8, 929–940. [Google Scholar] [CrossRef]
- Ali, A.; Shakoor, R.; Raheem, A.; Muqeet, H.A.U.; Awais, Q.; Khan, A.A.; Jamil, M. Latest Energy Storage Trends in Multi-Energy Standalone Electric Vehicle Charging Stations: A Comprehensive Study. Energies 2022, 15, 4727. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Q.-S.; Deconinck, G.; Guan, X.; Qiu, Z.; Hu, Z. Distributed Coordination of EV Charging With Renewable Energy in a Microgrid of Buildings. IEEE Trans. Smart Grid 2018, 9, 6253–6264. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Dong, M.; Chen, K.; Gong, T. Methods of participating power spot market bidding and settlement for renewable energy systems. Energy Rep. 2022, 8, 7764–7772. [Google Scholar] [CrossRef]
- Li, H.; Ren, Z.; Trivedi, A.; Verma, P.P.; Srinivasan, D.; Li, W. A Noncooperative Game-Based Approach for Microgrid Planning Considering Existing Interconnected and Clustered Microgrids on an Island. IEEE Trans. Sustain. Energy 2022, 13, 2064–2078. [Google Scholar] [CrossRef]
- Cetinbas, I.; Tamyurek, B.; Demirtas, M. The Hybrid Harris Hawks Optimizer-Arithmetic Optimization Algorithm: A New Hybrid Algorithm for Sizing Optimization and Design of Microgrids. IEEE Access 2022, 10, 19254–19283. [Google Scholar] [CrossRef]
- Dhundhara, S.; Verma, Y.P.; Williams, A. Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Convers. Manag. 2018, 177, 122–142. [Google Scholar] [CrossRef]
- Sawle, Y.; Jain, S.; Babu, S.; Nair, A.R.; Khan, B. Prefeasibility Economic and Sensitivity Assessment of Hybrid Renewable Energy System. IEEE Access 2021, 9, 28260–28271. [Google Scholar] [CrossRef]
- Alshakhs, R.; Arefifar, S.A. Oakland University as A Microgrid—Feasibility Studies of Planning and Operation. In Proceedings of the 2020 IEEE International Conference on Electro Information Technology (EIT), Naperville, IL, USA, 28–30 May 2020; pp. 394–401. [Google Scholar]
- AlKassem, A.; Draou, A.; Alamri, A.; Alharbi, H. Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus. Sustainability 2022, 14, 4175. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, A.; Talwar, R. Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities. Energy 2020, 208, 118248. [Google Scholar] [CrossRef]
- Elsaraf, H.; Jamil, M.; Pandey, B. Techno-Economic Design of a Combined Heat and Power Microgrid for a Remote Community in Newfoundland Canada. IEEE Access 2021, 9, 91548–91563. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R. Multi-objective design and control of hybrid systems minimizing costs and unmet load. Electr. Power Syst. Res. 2009, 79, 170–180. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, R.P. Size optimization and demand response of a stand-alone integrated renewable energy system. Energy 2017, 124, 59–73. [Google Scholar] [CrossRef]
- Cao, J.; Crozier, C.; McCulloch, M.; Fan, Z. Optimal Design and Operation of a Low Carbon Community Based Multi-Energy Systems Considering EV Integration. IEEE Trans. Sustain. Energy 2019, 10, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Alsagri, A.S.; Alrobaian, A.A. Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview. Energies 2022, 15, 5977. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Wen, J.; Chen, X. Dynamic Modeling and Operations of a Heat-power Station System Based on Renewable Energy. CSEE J. Power Energy Syst. 2022, 8, 1110–1121. [Google Scholar] [CrossRef]
- Pearson, J.; Wagner, T.; Delorit, J.; Schuldt, S. Meeting Temporary Facility Energy Demand With Climate-Optimized Off-Grid Energy Systems. IEEE Open Access J. Power Energy 2020, 7, 203–211. [Google Scholar] [CrossRef]
- Abdul Hussain, A.M.; Habbi, H.M.D. Maximum Power Point Tracking Photovoltaic Fed Pumping System Based on PI Con-troller. In Proceedings of the 2018 Third Scientific Conference of Electrical Engineering (SCEE), Baghdad, Iraq, 19–20 December 2018; pp. 78–83. [Google Scholar]
- Zečević, Ž.; Rolevski, M. Neural Network Approach to MPPT Control and Irradiance Estimation. Appl. Sci. 2020, 10, 5051. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Singh, B. Wind-Driven DFIG–Battery–PV-Based System With Advance DSOSF-FLL Control. IEEE Trans. Ind. Appl. 2022, 58, 4370–4380. [Google Scholar] [CrossRef]
- Chakraborty, S.; Modi, G.; Singh, B. A Cost Optimized-Reliable-Resilient-Realtime-Rule-Based Energy Management Scheme for a SPV-BES-Based Microgrid for Smart Building Applications. IEEE Trans. Smart Grid 2023, 14, 2572–2581. [Google Scholar] [CrossRef]
Component | Manufacturer | Specifications |
---|---|---|
Wind Turbine | Composite | Rated power: 1.5 MW, router diameter: 90 m, speed class: III, hup height: 30 m, lifetime = 20 years |
Photovoltaic | SunPower | Panel rated power: 335 W, average efficiency: 21% Model: X21-335-BLK |
CHP (J624 H01) | Jenbacher | CHP rated power: 4369 KW, f: 60 Hz, V: 4160 V, fuel: natural gas |
Battery | Idealized Homer model | Nominal voltage: 600 Nominal capacity (KWh):1 × 103 Nominal capacity (Ah): 1.67 × 103 Roundtrip efficiency: 90% Maximum charge current (A): 1.6 × 103 Maximum discharge current (A): 5 × 103 |
System | GRID (kW) | PV (kW) | WT (kW) | CHP (kW) | ESS (No. of Battery) The Rated Capacity for One Battery is 1 MW | Converter (kW) | NPC USD | LOCE (USD/kWh) |
---|---|---|---|---|---|---|---|---|
System 1 Grid/CHP | 5000 | - | - | 4369 | - | - | 45.6 M | 0.0795 |
System 2 Grid/CHP/PV | 3500 | 32,288 | - | 4369 | - | 2567 | 94.1 M | 0.163 |
System 3 Grid/CHP/PV/BESS | 3500 | 3146 | - | 4369 | 1 | 14,938 | 52.2 M | 0.0911 |
System 4 Grid/CHP/WT | 3500 | - | 40,500 | 4369 | - | - | 9.6 M | 0.000393 |
System 5 Grid/CHP/PV/WT/BESS | 2500 | 12,155 | 30,000 | 4369 | 15 | 1494 | 30 M | 0.0274 |
System 6 CHP/PV/WT/BESS | - | 10,930 | 12,000 | 4369 | 32 | 4907 | 88 M | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhawsawi, E.Y.; Habbi, H.M.D.; Hawsawi, M.; Zohdy, M.A. Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies 2023, 16, 5830. https://doi.org/10.3390/en16155830
Alhawsawi EY, Habbi HMD, Hawsawi M, Zohdy MA. Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies. 2023; 16(15):5830. https://doi.org/10.3390/en16155830
Chicago/Turabian StyleAlhawsawi, Edrees Yahya, Hanan Mikhael D. Habbi, Mansour Hawsawi, and Mohamed A. Zohdy. 2023. "Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University" Energies 16, no. 15: 5830. https://doi.org/10.3390/en16155830
APA StyleAlhawsawi, E. Y., Habbi, H. M. D., Hawsawi, M., & Zohdy, M. A. (2023). Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies, 16(15), 5830. https://doi.org/10.3390/en16155830