Bibliometric Review and Technical Summary of PWR Small Modular Reactors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis
R | Area | Results | Percentage |
---|---|---|---|
1 | Energy | 568 | 83.1% |
2 | Engineering | 282 | 41.3% |
3 | Physics and Astronomy | 174 | 25.5% |
4 | Environmental Science | 141 | 20.6% |
5 | Material Science | 72 | 10.5% |
6 | Mathematics | 41 | 6.0% |
7 | Computer Science | 29 | 4.2% |
8 | Chemical Engineering | 14 | 2.0% |
R | Country | Results | % of 683 |
---|---|---|---|
1 | United States | 201 | 29.4% |
2 | China | 153 | 22.4% |
3 | Republic of Korea | 122 | 17.8% |
4 | Iran—United Kingdom | 47 | 6.8% |
5 | Canada | 34 | 4.9% |
6 | Italy | 22 | 3.2% |
7 | France | 16 | 2.3% |
8 | Germany | 15 | 2.2% |
9 | Brazil—Japan | 11 | 1.6% |
10 | Indonesia—Nigeria—Sweden | 8 | 1.2% |
3.2. Technical and Development Analysis
Denomination Design | Capacity (MWe) | Developer (Country) | Application * | State of Development |
---|---|---|---|---|
ACP-100 | 125 | CNNC (China) | NPP | Under construction |
CAREM25 | 27 | CNEA & INVAP (Argentina) | NPP | Under construction |
CAP200 | 220 | SNERDI/SPIC (China) | NPP | Earlier stages |
CNP-300 | 300 | SNERDI (Pakistan) & CNNC (China) | NPP | Operating |
IMR | 350 | Mitsubishi (Japan) | NPP | Inactive |
IRIS | 335 | International team | NPP | Inactive |
mPower | 195 | Babcock & Wilcox (United States) | NPP | Suspended |
NuScale | 77 | Nuscale Power (United States) | NPP | Near-term deployment |
SMART | 100 | KAERI (Republic of Korea) | NPP | Near-term deployment |
SMR-160 | 160 | Holtec (United States) & SNC-Lavalin (Canada) | NPP | Near-term deployment |
SNP350 | 350 | SNERDI (China) | NPP | Earlier stages |
UK SMR | 470 | Rolls Royce SMR (United Kingdom) | NPP | Earlier stages |
W-SMR | 225 | Westinghouse (United States) | NPP | Earlier stages |
ACPR100 | 140 | CGN (China) | FNPP | Earlier stages |
ACPR50S | 60 | CGN (China) | FNPP | Near-term deployment |
BANDI60S | 60 | KEPCO (Republic of Korea) | FNPP | Near-term deployment |
KLT-40S | 35 | OKBM (Russia) | FNPP | Operating |
RITM 200 (Russia) | 50 | OKBM (Russia) | FNPP | Operating |
VBER-300 | 300 | OKBM (Russia) | FNPP | Near-term deployment |
3.2.1. American PWR-SMR Design
3.2.2. Asian PWR-SMR Design
3.2.3. Other PWR-SMR Designs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omar, H.; Graetz, G.; Ho, M. Decarbonizing with nuclear power, current builds, and future trends. In The 4Ds of Energy Transition: Decarbonization, Decentralization, Decreasing Use and Digitalization; Asif, M., Ed.; Wiley: Hoboken, NJ, USA, 2022; pp. 103–151. [Google Scholar]
- Santos-Iglesia, C.; Fernández-Arias, P.; Antón-Sancho, Á.; Vergara, D. Energy Consumption of the Urban Transport Fleet in UNESCO World Heritage Sites: A Case Study of Ávila (Spain). Sustainability 2022, 14, 5641. [Google Scholar] [CrossRef]
- Mahmood, H.; Asadov, A.; Tanveer, M.; Furqan, M.; Yu, Z. Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability 2022, 14, 4562. [Google Scholar] [CrossRef]
- Mohamued, E.A.; Ahmed, M.; Pypłacz, P.; Liczmańska-Kopcewicz, K.; Khan, M.A. Global Oil Price and Innovation for Sustainability: The Impact of R&D Spending, Oil Price and Oil Price Volatility on GHG Emissions. Energies 2021, 14, 1757. [Google Scholar] [CrossRef]
- Litvinenko, V. The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources 2020, 9, 59. [Google Scholar] [CrossRef]
- Stulberg, A.N. Out of Gas? Russia, Ukraine, Europe, and the Changing Geopolitics of Natural Gas. Prob. Post Communism 2015, 62, 112–130. [Google Scholar] [CrossRef]
- Yeoman, I. Ukraine, price and inflation. J. Revenue Pricing Manag. 2022, 21, 253–254. [Google Scholar] [CrossRef]
- Gabbar, A.H.; Abdussami, M.R.; Adham, M.I. Techno-Economic Evaluation of Interconnected Nuclear-Renewable Micro Hybrid Energy Systems with Combined Heat and Power. Energies 2020, 13, 1642. [Google Scholar] [CrossRef] [Green Version]
- Uri, N.D. A reconsideration of effect of energy scarcity on economic growth. Energy 1995, 20, 1–12. [Google Scholar] [CrossRef]
- Ahmadi, E.; McLellan, B.; Mohammadi-Ivatloo, B.; Tezuka, T. The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review. Sustainability 2020, 12, 5233. [Google Scholar] [CrossRef]
- Arvidsson, R.; Svanström, M.; Harvey, S.; Sandén, B.A. Life-cycle impact assessment methods for physical energy scarcity: Considerations and suggestions. Int. J. Life Cycle Assess. 2021, 26, 2339–2354. [Google Scholar] [CrossRef]
- Kessides, I.N. The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy 2012, 48, 185–208. [Google Scholar] [CrossRef]
- Di Maio, F.; Bani, L.; Zio, E. The Contribution of Small Modular Reactors to the Resilience of Power Supply. J. Nucl. Eng. 2022, 3, 152–162. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Power Reactor Information System (PRIS). Available online: https://www.iaea.org/PRIS/home.aspx (accessed on 18 April 2022).
- Alessi, L.; Battiston, S. Two sides of the same coin: Green Taxonomy alignment versus transition risk in financial portfolios. Int. Rev. Financ. Anal. 2022, 84, 102319. [Google Scholar] [CrossRef]
- Tryhuba, A.; Hutsol, T.; Kuboń, M.; Tryhuba, I.; Komarnitskyi, S.; Tabor, S.; Kwaśniewski, D.; Mudryk, K.; Faichuk, O.; Hohol, T.; et al. Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies 2022, 15, 2015. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Vergara, D.; Orosa, J.A. A Global Review of PWR Nuclear Power Plants. Appl. Sci. 2020, 10, 4434. [Google Scholar] [CrossRef]
- Cooper, M. Small modular reactors and the future of nuclear power in the United States. Energy Res. Soc. Sci. 2014, 3, 161–177. [Google Scholar] [CrossRef]
- Mignacca, B.; Locatelli, G.; Sainati, T. Deeds not words: Barriers and remedies for Small Modular nuclear Reactors. Energy 2020, 206, 118137. [Google Scholar] [CrossRef]
- Poudel, B.; Joshi, K.; Gokaraju, R. A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies. IEEE Trans. Energy Convers. 2020, 35, 977–985. [Google Scholar] [CrossRef]
- Ayo-Imoru, R.M.; Ali, A.A.; Bokoro, P.N. Analysis of a Hybrid Nuclear Renewable Energy Resource in a Distributed Energy System for a Rural Area in Nigeria. Energies 2022, 15, 7496. [Google Scholar] [CrossRef]
- Poudel, B.; Lin, L.; Phillips, T.; Eggers, S.; Agarwal, V.; McJunkin, T. Operational Resilience of Nuclear-Renewable Integrated-Energy Microgrids. Energies 2022, 15, 789. [Google Scholar] [CrossRef]
- Hong, S.; Brook, B.W. Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife. Energies 2018, 11, 2587. [Google Scholar] [CrossRef]
- Testoni, R.; Bersano, A.; Segantin, S. Review of nuclear microreactors: Status, potentialities and challenges. Prog. Nucl. Energy 2021, 138, 103822. [Google Scholar] [CrossRef]
- Stewart, W.R.; Shirvan, K. Capital cost estimation for advanced nuclear power plants. Renew. Sust. Energ. Rev. 2022, 155, 111880. [Google Scholar] [CrossRef]
- Vujić, J.; Bergmann, R.M.; Škoda, R.; Miletić, M. Small modular reactors: Simpler, safer, cheaper? Energy 2012, 45, 288–295. [Google Scholar] [CrossRef]
- Lloyd, C.A.; Roulstone, T.; Lyons, R.E. Transport, constructability, and economic advantages of SMR modularization. Prog. Nucl. Energy 2021, 134, 103672. [Google Scholar] [CrossRef]
- Bragg-Sitton, S.M. Hybrid energy systems using small modular nuclear reactors (SMRs). In Handbook of Small Modular Nuclear Reactors, 2nd ed.; Ingersoll, D.T., Carelli, M.D., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2021; pp. 323–356. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-G.; Lee, J.I.; Lee, P.-S. Recent Advances in Ocean Nuclear Power Plants. Energies 2015, 8, 11470–11492. [Google Scholar] [CrossRef] [Green Version]
- Gabbar, H.A.; Adham, M.I.; Abdussami, M.R. Optimal Planning of Integrated Nuclear-Renewable Energy System for Marine Ships Using Artificial Intelligence Algorithm. Energies 2021, 14, 3188. [Google Scholar] [CrossRef]
- Värri, K.; Syri, S. The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region. Energies 2019, 12, 2195. [Google Scholar] [CrossRef] [Green Version]
- Teräsvirta, A.; Syri, S.; Hiltunen, P. Small Nuclear Reactor—Nordic District Heating Case Study. Energies 2020, 13, 3782. [Google Scholar] [CrossRef]
- Peakman, A.; Merk, B. The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands. Energies 2019, 12, 3664. [Google Scholar] [CrossRef] [Green Version]
- Al-Othman, A.; Darwish, N.N.; Qasim, M.; Tawalbeh, M.; Darwish, N.A.; Hilal, N. Nuclear desalination: A state-of-the-art review. Desalination 2019, 457, 39–61. [Google Scholar] [CrossRef]
- Sanchez-Espinoza, V.H.; Gabriel, S.; Suikkanen, H.; Telkkä, J.; Valtavirta, V.; Bencik, M.; Kliem, S.; Queral, C.; Farda, A.; Abéguilé, F.; et al. The H2020 McSAFER Project: Main Goals, Technical Work Program, and Status. Energies 2021, 14, 6348. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y. Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project. Nucl. Eng. Des. 2007, 237, 2265–2274. [Google Scholar] [CrossRef]
- Toribio, J.; Vergara, D.; Lorenzo, M. Role of in-service stress and strain fields on the hydrogen embrittlement of the pressure vessel constituent materials in a pressurized water reactor. Eng. Fail. Anal. 2017, 82, 458–465. [Google Scholar] [CrossRef]
- Pannier, C.; Skoda, R. Comparison of Small Modular Reactor and Large Nuclear Reactor Fuel Cost. Energy Power Eng. 2014, 6, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.; Obbard, E.; Burr, P.A.; Yeoh, G. A review on the development of nuclear power reactors. Energy Procedia 2019, 160, 459–466. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, J. Technology readiness assessment of Small Modular Reactor (SMR) designs. Prog. Nucl. Energy 2014, 70, 20–28. [Google Scholar] [CrossRef]
- Chang, C.-k.; Oyando, H.C. Review of the Requirements for Load Following of Small Modular Reactors. Energies 2022, 15, 6327. [Google Scholar] [CrossRef]
- Hidayatullah, H.; Susyadi, S.; Subki, M.H. Design and technology development for small modular reactors—Safety expectations, prospects and impediments of their deployment. Prog. Nucl. Energy 2015, 79, 127–135. [Google Scholar] [CrossRef]
- Black, G.; Shropshire, D.; Araújo, K. Small modular reactor (SMR) adoption: Opportunities and challenges for emerging markets. In Handbook of Small Modular Nuclear Reactors, 2nd ed.; Ingersoll, D.T., Carelli, M.D., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2021; pp. 557–593. [Google Scholar] [CrossRef]
- Vegel, B.; Quinn, J.C. Economic evaluation of small modular nuclear reactors and the complications of regulatory fee structures. Energy Policy 2017, 104, 395–403. [Google Scholar] [CrossRef]
- Black, G.; Shropshire, D.; Araújo, K.; Van Heek, A. Prospects for Nuclear Microreactors: A Review of the Technology, Economics, and Regulatory Considerations. Nucl. Technol. 2023, 209, S1–S20. [Google Scholar] [CrossRef]
- Lovering, J.R.; Baker, S.H.; Allen, T.R. Social License in the Deployment of Advanced Nuclear Technology. Energies 2021, 14, 4304. [Google Scholar] [CrossRef]
- Zeliang, C.; Mi, Y.; Tokuhiro, A.; Lu, L.; Rezvoi, A. Integral PWR-Type Small Modular Reactor Developmental Status, Design Characteristics and Passive Features: A Review. Energies 2020, 13, 2898. [Google Scholar] [CrossRef]
- Wrigley, P.A.; Wood, P.; O’Neill, S.; Hall, R.; Robertson, D. Off-site modular construction and design in nuclear power: A systematic literature review. Prog. Nucl. Energy 2021, 134, 103664. [Google Scholar] [CrossRef]
- Hussein, M.A. Emerging small modular nuclear power reactors: A critical review. Phys. Open 2020, 5, 100038. [Google Scholar] [CrossRef]
- Mulet-Forteza, C.; Martorell-Cunill, O.; Merigó, J.M.; Genovart-Balaguer, J.; Mauleon-Mendez, E. Twenty five years of the Journal of Travel & Tourism Marketing: A bibliometric ranking. J. Travel. Tour. Mark. 2018, 35, 1201–1221. [Google Scholar] [CrossRef]
- Aluculesei, A.-C.; Nistoreanu, P.; Avram, D.; Nistoreanu, B.G. Past and Future Trends in Medical Spas: A Co-Word Analysis. Sustainability 2021, 13, 9646. [Google Scholar] [CrossRef]
- Mas-Tur, A.; Guijarro, M.; Carrilero, A. The Influence of the Circular Economy: Exploring the Knowledge Base. Sustainability 2019, 11, 4367. [Google Scholar] [CrossRef] [Green Version]
- Sefidvash, F. Status of the small modular fluidized bed light water nuclear reactor concept. Nucl. Eng. Des. 1996, 167, 203–214. [Google Scholar] [CrossRef]
- Cavalcante, W.Q.d.F.; Coelho, A.; Bairrada, C.M. Sustainability and Tourism Marketing: A Bibliometric Analysis of Publications between 1997 and 2020 Using VOSviewer Software. Sustainability 2021, 13, 4987. [Google Scholar] [CrossRef]
- World Nuclear Association. Small Nuclear Power Reactors. Available online: https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx#:~:text=Small%20modular%20reactors%20(SMRs)%20are,production%20and%20short%20construction%20times (accessed on 15 May 2023).
- Carless, T.S.; Griffin, W.M.; Fischnbeck, P.S. The environmental competitiveness of small modular reactors: A life cycle study. Energy 2016, 114, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, D.; Jiang, J. Review of integration of small modular reactors in renewable energy microgrids. Renew. Sust. Energy Rev. 2021, 152, 111638. [Google Scholar] [CrossRef]
- Shahmirzaei, A.; Ansarifar, G.R.; Koraniany, A. Assessment of gadolinium concentration effects on the NuScale reactor parameters and optimizing the fuel composition via machine learning method. Int. J. Energy Res. 2022, 46, 8838–8871. [Google Scholar] [CrossRef]
- Reyes, J.N. NuScale Plant Safety in Response to Extreme Events. Nucl. Technol. 2012, 178, 153–163. [Google Scholar] [CrossRef]
- Chung, Y.J.; Jun, I.S.; Kim, S.H.; Yang, S.H.; Kim, H.R.; Lee, W.J. Development and assessment of system analysis code, TASS/SMR for integral reactor, SMART. Nuclear Engin. Des. 2012, 244, 52–60. [Google Scholar] [CrossRef]
- Nian, V. Technology perspectives from 1950 to 2100 and policy implications for the global nuclear power industry. Prog. Nuc. Energy 2018, 105, 83–98. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, F.D.; Wang, S.W.; Wang, Y.C.; Xu, C.; Liu, Q.F. Accident source term and radiological consequences of a small modular reactor. Nucl. Sci. Tech. 2023, 34, 40. [Google Scholar] [CrossRef]
- Norouzi, N.; Fani, M.; Talebi, S. Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle. Nucl. Eng. Technol. 2021, 53, 677–687. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansarifar, G.R.; Esteki, M.H. Design of the CAREM nuclear reactor core with dual cooled annular fuel and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters. Ann. Nucl. Energy 2022, 169, 108939. [Google Scholar] [CrossRef]
- Buchholz, S.; Ricotti, M.; Martin, O.; Thuy, N.; Lombardo, C.; Kornytskyi, A.; Playez, N.; Israel, S.; Kaliatka, A. Improved Safety Features of LW-SMR; Euratom: Rome, Italy, 2020. [Google Scholar]
- IAEA. Advances in Small Modular Reactor Technology Developments. Available online: https://aris.iaea.org/Publications/SMR-Book_2018.pdf (accessed on 3 April 2023).
- Thomas, S.; Ramana, M.V. A hopeless pursuit? National efforts to promote small modular nuclear reactors and revive nuclear power. WireS Energy Environ. 2022, 11, e429. [Google Scholar] [CrossRef]
- Markou, G.; Genco, F. Seismic assessment of small modular reactors: NuScale case study for the 8.8 Mw earthquake in Chile. Nucl. Eng. Des. 2019, 342, 176–204. [Google Scholar] [CrossRef]
- Bourdais, J.; Chung, D. ‘Eco-Nuclear’ Energy Transformation? Authoritarian Environmentalism and Regulatory Policy in China. J. Asian Afr. Stud. 2022. [Google Scholar] [CrossRef]
- Comley, G.C.W. The significance of corrosion products in water reactor coolant circuits. Prog. Nucl. Energy 1985, 16, 41–72. [Google Scholar] [CrossRef]
- Dehghani, M.; Atran, S.; Iliev, R.; Sachdeva, S.; Medin, D.; Ginges, J. Sacred values and conflict over Iran’s nuclear program. Judgm. Decis. Mak. 2010, 5, 540–546. [Google Scholar] [CrossRef]
- Sheikhmohammady, M.; Hipel, K.W.; Asilahijani, H.; Kilgour, D.M. Strategic analysis of the conflict over Iran’s nuclear program. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 1911–1916. [Google Scholar] [CrossRef]
Production Volume by Source | Source | Percentage |
---|---|---|
1. Published result | 56 | 63.7% |
2. Published results | 5 | 5.7% |
3. Published results | 6 | 6.8% |
4. Published results | 2 | 2.2% |
5. Published results or more | 19 | 21.6% |
Total | 88 | 100% |
Denomination Design | Accumulators | Active Systems | Make-Up Tanks | Elevated Tanks | Long Term Core Cooling Passive |
---|---|---|---|---|---|
ACP-100 | X | - | X | X | X |
CAREM25 | X | X | - | X | X |
CAP200 | - | - | X | - | X |
CNP-300 | - | - | - | - | - |
IMR | X | - | - | - | - |
mPower | X | - | - | X | X |
NuScale | - | - | - | - | X |
SMART | - | - | - | X | X |
SMR-160 | - | X | - | X | X |
SNP350 | - | X | - | X | - |
UK SMR | - | X | - | - | X |
W-SMR | - | X | X | X | X |
R | Country | Results 2010 | Results 2022 | Number of Times | Annual Increase (Results/Year) |
---|---|---|---|---|---|
1 | United States | 3 | 16 | 5.3 | +1 |
2 | China | 2 | 24 | 12 | +1.8 |
3 | Republic of Korea | 1 | 12 | 12 | +4.8 |
4 | United Kingdom | 1 | 4 | 4 | +0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Arias, P.; Vergara, D.; Antón-Sancho, Á. Bibliometric Review and Technical Summary of PWR Small Modular Reactors. Energies 2023, 16, 5168. https://doi.org/10.3390/en16135168
Fernández-Arias P, Vergara D, Antón-Sancho Á. Bibliometric Review and Technical Summary of PWR Small Modular Reactors. Energies. 2023; 16(13):5168. https://doi.org/10.3390/en16135168
Chicago/Turabian StyleFernández-Arias, Pablo, Diego Vergara, and Álvaro Antón-Sancho. 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors" Energies 16, no. 13: 5168. https://doi.org/10.3390/en16135168
APA StyleFernández-Arias, P., Vergara, D., & Antón-Sancho, Á. (2023). Bibliometric Review and Technical Summary of PWR Small Modular Reactors. Energies, 16(13), 5168. https://doi.org/10.3390/en16135168