Energy Retrofitting Technologies of Buildings: A Review-Based Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Classification of Energy Retrofitting Technologies
3.1. Types of Retrofits Based on Energy Conservation Method
3.1.1. Supply Side Management
3.1.2. Demand Side Management
3.1.3. Human Factors Management
3.2. Types of Retrofits Based on Amount of Energy Saved
3.2.1. Existing Building Commissioning (EBC)
3.2.2. Standard Retrofit
3.2.3. Deep Retrofit
4. Energy Retrofitting Technologies
4.1. Building Envelope-Related Technologies
4.2. Building System-Related Technologies
4.3. Renewable Energy-Related Technologies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Elsaid, K.; Maghrabie, H.M.; Abdelkareem, M.A. A review on zero energy buildings—Pros and cons. Energy Built Environ. 2023, 4, 25–38. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Tan, Y.; Zhang, G. Building green retrofit in China: Policies, barriers and recommendations. Energy Policy 2020, 139, 111356. [Google Scholar] [CrossRef]
- Alsanad, S. Awareness, Drivers, Actions, and Barriers of Sustainable Construction in Kuwait. Procedea Eng. 2015, 118, 969–983. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Shen, G.Q.; Guo, S.; Xue, F.; Zheng, W. Energy use embodied in China’s construction industry: A multi-regional input-output analysis. Renew. Sustain. Energy Rev. 2016, 53, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Iwaro, J.; Mwasha, A. A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 2010, 38, 7744–7755. [Google Scholar] [CrossRef]
- Weerasinghe, S.; Ramachandra, T. Costs and Benefits of Green Retrofits: A Case of Industrial Manufacturing Buildings in Sri Lanka. In Proceedings of the 10th International Conference on Engineering, Project, and Production Management, Berlin, Germany, 2–4 September 2019; Lecture Notes in Mechanical Engineering. Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Waris, M.; Liew, M.S.; Khamidi, M.F.; Idrus, A. Criteria for the selection of sustainable onsite construction equipment. Int. J. Sustain. Built Environ. 2014, 3, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, T.; Weerasinghe, A.S. Greening existing garment buildings: A case of Sri Lanka. In Emerging Research in Sustainable Energy and Buildings for a Low-Carbon Future; Springer: Berlin/Heidelberg, Germany, 2021; pp. 75–99. [Google Scholar]
- Wilkinson, S. Analysing sustainable retrofit potential in premium office buildings. Struct. Surv. 2012, 30, 398–410. [Google Scholar] [CrossRef]
- Ashuri, B.; Pedini, D. An Overview of the Benefits and Risk Factors of Going Green in Existing Buildings. Int. J. Facil. Manag. 2020, 1, 1–15. [Google Scholar]
- Golubchikov, O. Deda, Governance, technology, and equity: An integrated policy framework for energy efficient housing. Energy Policy 2012, 41, 733–741. [Google Scholar] [CrossRef]
- Jagarajan, R.; Asmonib, M.M.; Lee, J.Y.; Jaafar, M.N. An overview of green retrofitting implementation in non-residential existing buildings. J. Teknol. 2015, 73, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Hermann, R.R.; Mosgaard, M.; Kerndrup, S. The function of intermediaries in collaborative innovation processes: Retrofitting a Danish small island ferry with green technology. Int. J. Innov. Sustain. Dev. 2016, 10, 361–383. [Google Scholar] [CrossRef]
- Jafari, A.; Valentin, V.; Howe, K.; Russell, M. Environmental Impact of Housing Retrofit Activities: Case Study. In Proceedings of the World Sustainable Building (WBS), Barcelona, Spain, 28 October 2014. [Google Scholar]
- Tuominen, P.; Klobut, K.; Tolman, A.; Adjei, A.; de Best-Waldhober, M. Energy savings potential in buildings and overcoming market barriers in member states of the European Union. Energy Build. 2021, 51, 48–55. [Google Scholar] [CrossRef]
- Shen, P.; Braham, W.; Yi, Y. The feasibility and importance of considering climate change impacts in building retrofit analysis. Appl. Energy 2019, 233–234, 254–270. [Google Scholar] [CrossRef]
- Menassa, C.C. Evaluating sustainable retrofits in existing buildings under uncertainty. Energy Build. 2011, 43, 3576–3583. [Google Scholar] [CrossRef]
- Gupta, R.; Gregg, M. Do deep low carbon domestic retrofits actually work? Energy Build. 2016, 129, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Asadi, E.; Silva, M.G.; de Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 2014, 81, 444–456. [Google Scholar] [CrossRef]
- Chidiac, S.E.; Catania, E.J.C.; Morofsky, E.; Foo, S. A screening methodology for implementing cost effective energy retrofit measurein Canadian office buildings. Energy Build. 2011, 43, 614–620. [Google Scholar] [CrossRef]
- Ascione, F.; Rossi, F.; Vanoli, G. Energy retrofit of historical buildings:theoretical and experimental investigations for the modelling of reliable performance scenarios. Energy Build. 2011, 43, 1925–1936. [Google Scholar] [CrossRef]
- Fluhrer, C.; Maurer, E.; Deshmukh, A. Achieving radically energy efficient retrofits: The Empire State Building example. ASHRAE Trans. 2010, 116, 236–243. [Google Scholar]
- Dascalaki, E.; Santamouris, M. On the potential of retrofitting scenarios for offices. Build. Environ. 2002, 37, 557–567. [Google Scholar] [CrossRef]
- Al-Ragom, F. Retrofitting residential buildings in hot and arid climates. Energy Conversat. Manag. 2013, 44, 2309–2319. [Google Scholar] [CrossRef]
- Lapinski, A.R.; Horman, M.J.; Riley, D.R. Lean Processes for Sustainable Project Delivery. J. Constr. Eng. Manag. 2006, 132, 1083–1091. [Google Scholar] [CrossRef]
- Menassa, C.C.; Baer, B. A Framework to Assess the Role of Stakeholders in Sustainable Building Retrofit Decisions. Sustain. Cities Soc. 2014, 10, 207–221. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, Y.; Lim, J. Identifying drivers and barriers to green remodeling projects from the perspective of project participants. Int. J. Sustain. Build. Technol. Urban Dev. 2020, 11, 192–208. [Google Scholar]
- Benzer, B.E.; Park, M.; Lee, H.S.; Yoon, I.; Cho, J. Determining retrofit technologies for building energy performance. J. Asian Archit. Build. Eng. 2020, 19, 367–383. [Google Scholar] [CrossRef] [Green Version]
- Dolsak, J. Determinants of energy efficient retrofits in residential sector: A comprehensive analysis. Energy Build. 2023, 282, 112801. [Google Scholar] [CrossRef]
- Al-Ghaili, M.; Kasim, H.; Al-Hada, N.M.; Othman, M.; Saleh, M.A. A Review: Buildings Energy Savings—Lighting Systems Performance. IEEE Access 2020, 8, 76108–76119. [Google Scholar] [CrossRef]
- Bruette, V.; Fitzig, C. The literature review. In Research Methods for Business and Management; Goodfellow Publishers: Oxford, UK, 2014; pp. 37–40. [Google Scholar]
- Rozas, L.W.; Klein, W.C. The value and purpose of the traditional qualitative literature review. J. Evid. -Based Soc. Work. 2010, 7, 387–399. [Google Scholar] [CrossRef]
- Arshed, N.; Danson, M. The literature review. In Research Methods for Business & Management, 2nd ed.; Goodfellow Publishers Ltd.: Oxford, UK, 2015. [Google Scholar]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Sage Publications: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Nowak, M.; Snow, S.; Horrocks, N.; Glencross, M. Micro-climatic variations and their impact on domestic energy consumption—Systematic literature review. Energy Build. 2022, 277, 112476. [Google Scholar] [CrossRef]
- Brown, P.; Swan, W.; Chahal, S. Retrofitting social housing: Reflections by tenants on adopting and living with retrofit technology. Energy Effic. 2014, 7, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.L.; Putuhena, F.J. Green building technology initiatives to achieve construction quality and environmental sustainability in the construction industry in Malaysia. Manag. Environ. Qual. Int. J. 2015, 26, 233–249. [Google Scholar] [CrossRef]
- Ahmad, T.; Thaheem, M.J.; Anwar, A. Developing a green-building design approach by selective use of systems and techniques. Archit. Eng. Des. Manag. 2016, 12, 29–50. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, X. Energy-efficiency building retrofit planning for green building compliance. Build. Environ. 2018, 136, 312–321. [Google Scholar] [CrossRef]
- Ashrafian, T.; Stefano, Z.Y.; Moazzen, C.N. Methodology to Define Cost-Optimal Level of Architectural Measures for Energy Efficient Retrofits of Existing Detached Buildings in Turkey. Energy Build. 2016, 120, 378–7788. [Google Scholar] [CrossRef]
- Chunduri, S. Development of Planning and Design Phases of an Integrative. Ph.D Thesis, Pennsylvania State University, State College, PA, USA, 2014. [Google Scholar]
- PNNL. Advanced Energy Retrofit Guides: Office Buildings; Pacific Northwest National Laboratory: Richland, WA, USA, 2011.
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Mukhtar, M.; Ameyaw, B.; Yimen, N.; Zhang, Q.; Bamisile, O.; Adun, H.; Dagbasi, M. Building Retrofit and Energy Conservation/Efficiency Review: A Techno-Environ-Economic Assessment of Heat Pump System Retrofit in Housing Stock. Sustainability 2021, 13, 983. [Google Scholar] [CrossRef]
- Mitalidou, C. Energy Efficiency in Historic Buildings. Master’s Thesis, International Hellenic University, Thermi, Greece, 2015. [Google Scholar]
- Pisello, A.L.; Petrozzi, A.; Castaldo, V.L.; Cotana, F. On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study. Appl. Energy 2016, 162, 1313–1322. [Google Scholar] [CrossRef]
- Miara, A.; Tarr, C.; Spellman, R.; Vörösmarty, C.J.; Macknick, J.E. The power of efficiency: Optimizing environmental and social benefits through demand-side-management. Energy 2014, 76, 502–512. [Google Scholar] [CrossRef]
- Fels, M.; Keating, K. Measurement of energy savings from demand-side management programs in us electric utilities. Energy Environ. 1993, 18, 57–88. [Google Scholar]
- Sherriff, A.; Lomas, M.; Swan, W. Managing Human Factors in Retrofit Projects. 2020. Available online: http://usir.salford.ac.uk/id/eprint/58706/ (accessed on 17 May 2023).
- Barbosa, J.D.; Azar, E. Modeling and implementing human-based energy retrofits in a green building in desert climate. Energy Build. 2018, 173, 71–80. [Google Scholar] [CrossRef]
- Sénéclauze, T.P.F.; Kennedy, M.; Elliott, B. A scan of programs and policies implemented by Canadian provinces, territories and utilities. In Existing Building Commissioning; Pembina Institute: Calgary, AB, Canada, 2019. [Google Scholar]
- NREL. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; National Renewable Energy Laboratory: Golden, CO, USA, 2019.
- Wang, L.; Greenberg, S.; Fiegel, J.; Rubalcava, A.; Earni, S.; Pang, X.; Yin, R.; Woodworth, S.; Maldonado, J.H. Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiency. Appl. Energy 2013, 102, 1382–1390. [Google Scholar] [CrossRef]
- Penna, P.; Prada, A.; Cappelletti, F.; Gasparella, A. Multi-objectives optimization of Energy Efficiency Measures in existing buildings. Energy Build. 2015, 95, 57–69. [Google Scholar] [CrossRef]
- Zhai, J.; LeClaire, N.; Bendewald, M. Deep energy retrofit of commercial buildings: A key pathway toward low-carbon cities. Carbon Manag. 2011, 2, 425–430. [Google Scholar] [CrossRef]
- Bertoldi, D. Deep Energy Retrofits Using the Integrative Design Process: Are They Worth the Cost. In Master’s Projects and Capstonesc; University of San Francisco: San Francisco, CA, USA, 2014. [Google Scholar]
- Jermyn, D.; Richman, R. A Process for Developing Deep Energy Retrofit Strategies for Single-Family Housing Typologies: Three Toronto Case Studies. Energy Build. 2016, 116, 522–534. [Google Scholar] [CrossRef]
- Trubiano, F.; Brennan, M.; Albee, K. Advanced energy retrofit—Designing integrated design roadmaps. In Proceedings of the International High Performance Buildings Conference, Purdue, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Tan, Y.; Liu, G.; Zhang, Y.; Shuai, C.; Shen, G.Q. Green Retrofit of Aged Residential Buildings in Hong Kong: A Preliminary Study. Build. Environ. 2018, 143, 89–98. [Google Scholar] [CrossRef]
- Sarhan, A.; Gomaa, B.; Zaher, M. Thermal envelope retrofit: An assessment framework. WIT Trans. Ecol. Environ. 2013, 179, 803–813. [Google Scholar]
- Cai, X.; Li, H.; Feng, G.; Yu, S.; Zhao, Y. HVAC system green retrofit survey and analysis of public institutions building in cold region. Procedia Eng. 2016, 146, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Al-Kodmany, K. Green Retrofitting Skyscrapers: A Review. Buildings 2014, 4, 683–710. [Google Scholar] [CrossRef] [Green Version]
- Sing, M.C.P.; Chan, V.W.C.; Lai, J.H.K.; Matthews, J. Energy-efficient retrofitting of multi-storey residential buildings. Facilities 2021, 39, 722–736. [Google Scholar] [CrossRef]
- Hong, W.T.; Ibrahim, K.; Loo, S.C. Urging green retrofits of building facades in the tropics: A review and research agenda. Int. J. Technol. 2019, 10, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- El-Darwish, I.; Gomaa, M. Retrofitting Strategy for Building Envelopes to Achieve Energy Efficiency. Alex. Eng. J. 2017, 56, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Platten, A.; Shen, L. Green Property Development Practice in China: Costs and Barriers. Build. Environ. 2011, 46, 2153–2160. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Shirmohammadi, R.; Aslani, A. Achieving to a low carbon-energy commercial building in the hot-dry climate area. Energy Sources 2020, 1–19. [Google Scholar] [CrossRef]
- Luo, X.J.; Oyedele, L.O. Assessment and optimisation of life cycle environment, economy and energy for building retrofitting. Energy Sustain. Dev. 2021, 65, 77–100. [Google Scholar] [CrossRef]
- Banti, N.; Ciacci, C.; Naso, V.D.; Bazzocchi, F. Green Walls as Retrofitting Measure: Influence on Energy Performance of Existing Industrial Buildings in Central Italy. Buildings 2023, 13, 369. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P.; Igra, P.J.; Torpy, F.R. Evaluation of air flow through an active green wall biofilter. Urban For. Urban Green. 2019, 41, 75–84. [Google Scholar] [CrossRef]
- Han, G.; Wen, Y.; Leng, J.; Sun, L. Improving Comfort and Health: Green Retrofit Designs for Sunken Courtyards during the Summer Period in a Subtropical Climate. Buildings 2021, 11, 413. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, F.; Wang, C.; Huang, M.M.; Wu, M.; Li, H.; Li, Z. Vertical Greenery System (VGS) Renovation for Sustainable Arcade-Housing: Building Energy Efficiency Analysis Based on Digital Twin. Sustainability 2023, 15, 2310. [Google Scholar] [CrossRef]
- He, Q.; Hossain, M.U.; Ng, S.T.; Augenbroe, G.L. Retrofitting High-Rise Residential Building in Cold and Severe Cold Zones of China—A Deterministic. Sustainability 2020, 12, 5831. [Google Scholar] [CrossRef]
- Dall’O, G.; Bruni, E.; Panza, A. Improvement of the Sustainability of Existing School Buildings According to the Leadership in Energy and Environmental Design (LEED)® Protocol: A Case Study in Italy. Energies 2013, 6, 6487–6507. [Google Scholar] [CrossRef] [Green Version]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Sun, X.; Guo, Z.; Lu, Y.; Tao, Y. Strengths and Weaknesses of Existing Building Green Retrofits: Case Study of a LEED EBOM Gold Project. Energies 2018, 11, 1936. [Google Scholar] [CrossRef] [Green Version]
- Fasna, M.F.F.; Gunatilake, S. Energy retrofits to enhance energy performance of existing buildings: A review. In Proceedings of the 8th World Construction Symposium, Colombo, Sri Lanka, 8–10 November 2019. [Google Scholar]
- Wang, Q.; Laurenti, R.; Holmberg, S. A novel hybrid methodology to evaluate sustainable retrofitting in existing Swedish residential buildings. Sustain. Cities Soc. 2015, 16, 24–38. [Google Scholar] [CrossRef]
- Hube, H.B. Energy-efficient window systems. In Effects on Energy Use and Daylight in Buildings; Lund University: Lund, Sweden, 2001. [Google Scholar]
- Hart, R.; Selkowitz, S.; Curcija, C. Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings. Build. Simul. 2019, 12, 79–86. [Google Scholar] [CrossRef]
- Sartori, T.; Calmon, J.L. Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighbourhood dwellings. J. Build. Eng. 2019, 21, 158–172. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment––A Hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Blom, I.; Itard, L.; Meijer, A. Environmental impact of dwellings in use: Maintenance of façade components. Build. Environ. 2010, 45, 2526–2538. [Google Scholar] [CrossRef]
- He, Q.; Ng, T.; Hossain, M.U.; Augenbroe, G.L. A Data-driven Approach for Sustainable Building Retrofit—A Case Study of Different Climate Zones in China. Sustainability 2020, 12, 4726. [Google Scholar] [CrossRef]
- Pomponi, F.; Farr, E.R.P.; Piroozfar, P.; Gates, J.R. Façade refurbishment of existing office buildings: Do conventional energy-saving interventions always work? J. Build. Eng. 2015, 3, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Sobti, J.; Singh, S.K. Earth-air heat exchanger as a green retrofit for Chandīgarh—A critical review. Geotherm. Energy 2015, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Fine, J.P.; Touchie, M.F. A grouped control strategy for the retrofit of post-war multi-unit residential building hydronic space heating systems. Energy Build. 2020, 208, 109604. [Google Scholar] [CrossRef]
- Li, H.X.; Chen, B.; Feng, G.H. Investigation and Analysis on Present Situation of Existing Building Green Retrofitting in Public Institution. Procedia Eng. 2017, 205, 3340–3345. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, Y.; Shen, L.; Zhang, G.; Wang, J. Case-based reasoning approach for supporting building green retrofit decisions. Build. Environ. 2019, 160, 106210. [Google Scholar] [CrossRef]
- Sameh, S.; Kamel, B. Promoting green retrofitting to enhance energy efficiency of residential buildings in Egypt. J. Eng. Appl. Sci. 2020, 67, 1709–1728. [Google Scholar]
- He, Q.; Hossain, M.U.; Ng, S.T.; Augenbroe, G. Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost mode. Renew. Sustain. Energy Rev. 2021, 151, 111578. [Google Scholar] [CrossRef]
- Hwang, B.G.; Shan, M.; Xie, S.; Chi, S. Investigating residents’ perceptions of green retrofit program in mature residential estates: The case of Singapore. Habitat Int. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Gugul, G.N.; Koksal, M.A.; Ugursal, V.I. Techno-economical analysis of building envelope and renewable energy technology retrofits to single family homes. Energy Sustain. Dev. 2018, 45, 159–170. [Google Scholar] [CrossRef]
- Seo, S.; Foliente, G. Carbon Footprint Reduction through Residential Building Stock Retrofit: A Metro Melbourne Suburb Case Study. Energies 2021, 14, 6550. [Google Scholar] [CrossRef]
- Lai, Y.; Li, Y.; Feng, X.; Ma, T. Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions. Energy Environ. 2022, 33, 332–353. [Google Scholar] [CrossRef]
- de Feijer, F.J.; Vliet, B.J.M.; Chen, Y. Household inclusion in the governance of housing retrofitting: Analysing Chinese and Dutch systems of energy retrofit provision. Energy Res. Soc. Sci. 2019, 53, 10–22. [Google Scholar] [CrossRef]
- Rached, E.; Anber, M. Energy retrofitting strategies for office buildings in hot arid climate. Int. J. Low-Carbon Technol. 2022, 17, 506–512. [Google Scholar] [CrossRef]
- He, Q.; Hossain, M.U.; Ng, S.T.; Skitmore, M.; Augenbroe, G. A cost-effective building retrofit decision-making model e Example of China’s temperate and mixed climate zones. J. Clean. Prod. 2021, 280, 124370. [Google Scholar] [CrossRef]
- Li, Z.; Chow, D.H.C.; Yao, J.; Zheng, X.; Zhao, W. The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy Build. 2019, 196, 227–239. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Giourka, P.; Martinopoulos, G.; Angelakoglou, K.; Kourtzanidis, K.; Nikolopoulos, N. Smart readiness indicator evaluation and cost estimation of smart retrofitting scenarios—A comparative case-study in European residential buildings. Sustain. Cities Soc. 2022, 82, 103921. [Google Scholar] [CrossRef]
- Loggia, C.L.T.; Tramontin, V.; Trois, C. Sustainable housing in developing countries: Meeting social and environmental targets by “greening” low-income settlements in South Africa. Int. J. Sustain. Policy Pract. 2015, 9, 1–12. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lee, K.T.; Kim, J.H. Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game. Sustainability 2022, 14, 7671. [Google Scholar] [CrossRef]
- Wilkinson, S.; Feitosa, R.C. Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil. Sustainability 2015, 7, 1081–1098. [Google Scholar] [CrossRef] [Green Version]
- Pasichnyi, O.; Levihn, F.; Shahrokni, H.; Wallin, J.; Kordas, O. Data-driven strategic planning of building energy retrofitting: The case of Stockholm. J. Clean. Prod. 2019, 233, 546–560. [Google Scholar] [CrossRef]
- Naphade, A.; Sharma, A.; Chani, P.; Garg, P. Green Building Retrofit for the Library of Indian Institute Technology, Roorkee. J. Inst. Eng. (India) Ser. A 2013, 94, 35–42. [Google Scholar] [CrossRef]
- Hanapiah, N.M.; Zaki, N.I.M.; Husain, M.K.A.; Mukhals, N.A. Green Building in Existing Development: A Review of Current Status, Challenges, and Implementation Strategy. Civ. Eng. Archit. 2022, 10, 3135–3146. [Google Scholar] [CrossRef]
- Khodeir, L.M.; Aly, D.; Tarek, S. Integrating HBIM (Heritage Building Information Modeling) Tools in the Application of Sustainable Retrofitting of Heritage Buildings in Egypt. Procedia Environ. Sci. 2016, 34, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Javid, A.S.; Aramoun, F.; Bararzadeh, M.; Avami, A. Multi objective planning for sustainable retrofit of educational buildings. J. Build. Eng. 2019, 24, 100759. [Google Scholar] [CrossRef]
Elements | Retrofitting Technologies | Sources | |
---|---|---|---|
Building Envelope | |||
Facade | 01 | Apply low-emissivity (low-e) glazing | [65,67] |
02 | Apply wall insulation (i.e., polystyrene, mineral wool, polyurethane foam) | [64,65,66,67,68,74,79,89,91,92,94,95,96,97,98] | |
03 | Apply shading devices (i.e., awnings, fins, overhangs, vegetation) | [61,64,65,66,69,70,71,72,73,74,82,91,99,100,101] | |
04 | Apply light shelves | [65] | |
05 | Apply surface reflectivity | [65] | |
Roof | 06 | Add insulation | [66,75,79,90,91,94,97,98] |
07 | Apply roof painting | [62,78] | |
08 | Install a suspended insulated ceiling with good thermal properties | [62,78,95,102] | |
09 | Apply vegetation on the roof | [60,61,76,77,82,100,103,104] | |
10 | Install low-impact cool or highly reflective clay tiles on the roof | [62,78] | |
Floor | 11 | Add insulation | [66,79,91,95,97] |
Window | 12 | Use of energy-efficient glazing | [82,91,94,95,97,103,105] |
13 | Install double-layer reflection hollow glass window | [84,89,98,99] | |
14 | Replace existing windows with low U-factor windows | [63,75,92] | |
15 | Add weather stripping on windows to prevent air leakage | [63] | |
16 | Replace the single-pane windows with double-pane windows | [63,84,86,98,99] | |
17 | Apply low-emissivity coating on the windows to further lower heat transfer between inside and outside | [63,68,74,93] | |
18 | Install diffusers/louvers to the windows | [78,86,98] | |
19 | Install windows that can obtain natural ventilation | [78,79,86] | |
20 | Install windows that can obtain natural lighting | [78,86] | |
Door | 21 | Seal, caulk, gasket, or weather strip the doors | [63,78,79] |
22 | Use door closers for air-conditioned spaces | [63,78] | |
23 | Install doors that can obtain natural ventilation | [29,63,78,79] | |
24 | Install doors that can obtain natural lighting | [63,78] | |
Orientation | 25 | Optimize building orientation and configuration | [79] |
Building Services | |||
HVAC | 26 | Replace inefficient systems with efficient systems (i.e., split AC, solar AC, and hybrid AC) | [29,64,78,85,98,103] |
27 | Tuning up the HVAC system | [89,90,91] | |
28 | Install variable devices (i.e., VFD, VSD, VAV, VRV) | [89,90,91] | |
29 | Incorporate automatic controls | [75,79,89,105,106] | |
30 | Use heat recovery systems | [75,79,89,105] | |
31 | Set the energy consumption metering device | [60,89,101] | |
32 | Ventilation system instead of air conditioning system | [75] | |
Lighting | 33 | Energy-efficient fixtures (i.e., LED, T5, T8, CFL) | [60,63,64,77,85,89,91,92,93,97,98,102,103,107] |
34 | Timer or occupancy sensor | [60,63,78,79,93,101] | |
35 | Lighting controls (i.e., daylighting control, lighting occupancy control, constant lighting control) | [60,78,79,90,93,106] | |
Renewable Energy | |||
Renewable Energy | 36 | Apply solar technology (i.e., solar water heater, photovoltaic panels) | [60,65,75,85,89,92,93,96,108,109] |
37 | Apply wind technology (i.e., wind turbine) | [60,85,109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madushika, U.G.D.; Ramachandra, T.; Karunasena, G.; Udakara, P.A.D.S. Energy Retrofitting Technologies of Buildings: A Review-Based Assessment. Energies 2023, 16, 4924. https://doi.org/10.3390/en16134924
Madushika UGD, Ramachandra T, Karunasena G, Udakara PADS. Energy Retrofitting Technologies of Buildings: A Review-Based Assessment. Energies. 2023; 16(13):4924. https://doi.org/10.3390/en16134924
Chicago/Turabian StyleMadushika, U. G. D., Thanuja Ramachandra, Gayani Karunasena, and P. A. D. S. Udakara. 2023. "Energy Retrofitting Technologies of Buildings: A Review-Based Assessment" Energies 16, no. 13: 4924. https://doi.org/10.3390/en16134924
APA StyleMadushika, U. G. D., Ramachandra, T., Karunasena, G., & Udakara, P. A. D. S. (2023). Energy Retrofitting Technologies of Buildings: A Review-Based Assessment. Energies, 16(13), 4924. https://doi.org/10.3390/en16134924