Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems †
Abstract
:1. Introduction
2. Energy Grids
2.1. Feed-in from EEG Plants
2.2. Possible Trends in the German Power Grid up to 2050
2.3. Grid Stability with Increased Use of Distributed Energy Systems
3. Algorithms for Load Flow Simulation
3.1. Mathematical Models Using an Admittance Matrix
3.1.1. Setting up the Equation System
3.1.2. Current Iteration Method
- Low convergence speed, i.e., many iterations are required until a sufficiently accurate solution is found;
- The number of iterations required depends on the network size and increases with the number of nodes;
- The inclusion of generator nodes is complex;
- High radius of convergence; even a poor initial prediction leads to a solution;
- Easy to program;
- Constant system matrix, which, unlike each iteration step, only needs to be built or inverted once.
3.1.3. Newton-Raphson Method
- Complex programme structure;
- System matrices are usually highly overdefined. A network with N nodes has 2(N − 1) equations;
- Iterative recalculation of the Jacobian matrix required after each iteration step (very complex and time-consuming);
- Bad starting conditions can make convergence impossible;
- Fast iteration (approx. 3 …5 steps);
- Number of iterations is independent of the system size.
- The Jacobian matrix is easier to set up;
- The gradients of quadratic instead of trigonometric functions can be formed;
- The radius of convergence is larger.
3.2. State Space Modelling and Analytical Solution Methods
- The state-space matrices provide a system representation of the physically minimum valid order;
- Direct system-theoretical solution of the load flow problem -> minimum of calculation operations and calculation times;
- Since the differential equation systems are available, it is possible to switch between static and transient simulations at any time without having to recalculate the system;
- Very good convergence properties;
- System matrices enable the implementation of control structures with increasing complexity (AI or agent system-based strategies for controlling smart grid systems, etc.).
4. Simulation of Basic Network Resources in State-Space
4.1. Loads
4.2. Transformers
4.3. Cables and Overhead Power Lines
- with
4.4. Symmetrical and Asymmetrical Simulation
5. Comparison of Newton–Raphson Simulation and State-Space-Based Load Flow Calculation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen. Bericht zum Zustand und Ausbau der Verteilernetze 2021. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/NetzentwicklungUndSmartGrid/ZustandAusbauVerteilernetze2021.pdf?__blob=publicationFile&v=4 (accessed on 19 January 2023).
- Heuck, K.; Dettmann, K.D.; Schulz, D. Elektrische Energieversorgung; Vieweg+Teubner: Wiesbaden, Germany, 2010. [Google Scholar]
- Bundesnetzagentur und Bundeskartellamt Monitoringbericht 2022, Bonn, Germany, 2023. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Monitoringberichte/start.html (accessed on 19 January 2023).
- Neuer Schwung für erneuerbare Energien, Berlin, Germany, 2022. Available online: https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2022/10/05-neuer-schwung-fuer-erneuerbare-energien.html (accessed on 19 January 2023).
- Höflich, B. Ergebniszusammenfassung der PSG zur dena-Verteilnetzstudie: Zusammenfassung der zentralen Ergebnisse der Studie “Ausbau- und Innovationsbedarf in den Stromverteilnetzen in Deutschland bis 2030” durch die Projektsteuergruppe. 2012. Available online: https://www.dena.de/fileadmin/dena/Dokumente/Pdf/9100_dena-Verteilnetzstudie_Abschlussbericht.pdf (accessed on 4 May 2023).
- Jessen, L. Untersuchung der Wechselwirkungen Zwischen Dezentralen Erzeugungsanlagen und Energieversorgungsnetzen. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2018. [Google Scholar]
- Rogalla, S.C. Analyse frequenzabhängiger Netzwechselwirkungen von selbstgeführten Wechselrichtern Mittels Differentieller Impedanzspektroskopie und Oberschwingungsquellenbetrachtung. Ph.D Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2020. [Google Scholar]
- Blenk, T.; Weindl, C. Characteristics and Advantages of a State-Space Orientated Calculation in Regenerative Energy Systems. In Proceedings of the 2022 IEEE International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 6–8 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Schwab, A.J. Elektroenergiesysteme; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Oeding, D.; Oswald, B.R. Elektrische Kraftwerke und Netze; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Wolter, M. “Elektrische Netze 1”: Stationäre und quasistationäre Netzberechnung, Magdeburg, Germany, 2020. Available online: https://www.lena.ovgu.de/lena_media/Dokumente+und+Skripte/Skript_EN1.pdf (accessed on 4 May 2022).
- Nirupama, S. Newton-Raphson Method to Solve Power Flow Problem: Electrical Engineering, 2021. Available online: https://www.engineeringenotes.com/electrical-engineering/power-flow/newton-raphson-method-to-solve-power-flow-problem-electrical-engineering/25354 (accessed on 10 January 2023).
- Schäfer, K.F. Netzberechnung; Springer: Wiesbaden, Germany, 2020. [Google Scholar] [CrossRef]
- Schneider, M.E. Stationäre Optimierung elektrischer Energieversorgungsnetze im Zustandsraum. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 1999. [Google Scholar]
- Schwarz, R. Analyse Nichtlinearer Netzwerke im Erweiterten Zustandsraum; Grundlagen der Schaltungstechnik, Oldenbourg: München, Germany; Wien, Austria, 1989. [Google Scholar]
- Weindl, C.; Herold, G. Description of a State-Space Oriented Transient Network Simulation Methodology for Power Systems with Semiconductor Based Devices. Ph.D. Thesis, University of Erlangen-Nürnberg, Bavaria, Germany, 2004. [Google Scholar]
- Herold, G. Parameter Elektrischer Stromkreise—Leitungen—Transformatoren, 2nd ed.; Elektrische Energieversorgung/von Gerhard Herold; Schlembach: Wilburgstetten, Germany, 2008; Volume 2. [Google Scholar]
- Tabellen mit Projektierungsdaten für Kabel, Leitungen und Garnituren: Angaben zur Querschnittsbemessung, 4th ed.; Kabel und Leitungen für Starkstrom/Hrsg; Siemens-Aktienges: Berlin, Germany, 1989; Volume Teil 2.
- Zimmerman, R.D.; Murillo-Sánchez, C.E. MATPOWER, 2020. Available online: https://matpower.org/ (accessed on 19 January 2023). [CrossRef]
- Ramalinga Raju, M.; Ramachandra Murthy, K.; Ravindra, K. Direct search algorithm for capacitive compensation in radial distribution systems. Int. J. Electr. Power Energy Syst. 2012, 42, 24–30. [Google Scholar] [CrossRef]
Difference State-Space — MatPower | |||
---|---|---|---|
Bus_ID | P (W) | Q (VA) | U (V) |
1 | 4.011 | 1.978 | 0 |
2 | −1.700 | −2.100 | 0.810 |
3 | −1.401 | −1.699 | −0.149 |
4 | −7.502 | −8.397 | −0.960 |
5 | −3.200 | −2.699 | −0.446 |
6 | −2.401 | −3.200 | −0.3402 |
7 | −1.959 | −2.599 | −0.411 |
8 | −3.200 | −4.198 | −0.429 |
9 | −7.596 | −9.899 | 0.408 |
10 | −5.601 | −7.200 | −0.799 |
11 | −8.800 | −10.601 | −1.493 |
12 | −8.900 | −10.699 | −1.166 |
13 | −51.907 | −44.805 | −1.483 |
14 | −28.696 | −24.400 | −1.4315 |
15 | −29.002 | −24.698 | −1.804 |
16 | −67.303 | −58.004 | −1.8135 |
17 | −43.598 | −41.597 | −2.097 |
18 | −43.801 | −41.699 | −1.8481 |
19 | −40.302 | −35.499 | −1.966 |
20 | −34.699 | −32.996 | −1.994 |
21 | −34.801 | −32.996 | −2.012 |
22 | −28.998 | −27.201 | −2.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blenk, T.; Weindl, C. Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems. Energies 2023, 16, 4872. https://doi.org/10.3390/en16134872
Blenk T, Weindl C. Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems. Energies. 2023; 16(13):4872. https://doi.org/10.3390/en16134872
Chicago/Turabian StyleBlenk, Tobias, and Christian Weindl. 2023. "Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems" Energies 16, no. 13: 4872. https://doi.org/10.3390/en16134872
APA StyleBlenk, T., & Weindl, C. (2023). Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems. Energies, 16(13), 4872. https://doi.org/10.3390/en16134872