A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements
Abstract
:1. Introduction
- Dedicated to the choice of the best product for THE customer;
- Supporting the prediction of future improvement actions;
- Integrating the main (key) aspects of choice of product for the customer while simultaneously including a need for environmental protection, i.e., customer and expert expectations towards qualitative criteria, price of purchase, and impact on the natural environment;
- The coherent combination of the actual values of the product criteria parameters with the values determining customer satisfaction with the quality (immeasurable) criteria;
- Dedicated both to the customer (individual choice of product according to preference) and also to production enterprises aspiring to the continuous and thoughtful improvement of their products;
- Including a new integration of techniques, i.e., SMART(-ER) method, brainstorming (BM), rule 7 + 2, a questionnaire with the Likert scale, AHP method, PROMETHEE II method, and matrix data analysis.
2. Model
2.1. General Concept of Model
2.2. Assumptions and Limitations of Model
- The product for research is not limited, but it is preferred for a moderately complex product [32];
- The number of products of the same type should be equal to maximum 7 ± 2 [43];
- The number of product criteria should be equal to maximum 7 ± 2 [43];
- The price of purchase of the product is expressed in the selected currency and is the current price of purchase by the customer for a single piece of product [6];
- The effectiveness of the model is mainly in meeting the expectations of individual customers;
- The effectiveness of the model is only for the analysis of existing products (predicting customer satisfaction with current products);
- There is a need for many calculations, which is relatively time-consuming.
2.3. Algorithm of Model and Its Description
- Stage 1.
- Selecting products and determining the purpose of research
- Stage 2.
- Characteristic of products according to criteria
- Stage 3.
- Obtaining customer expectations
- Stage 4.
- Estimating product criteria weights
- Stage 5.
- Developing ranking of selecting products according to customer expectations
- Stage 6.
- Qualitative price analysis
- (1)
- Calculate values from ranking products (considering the quality of the product and its impact on the natural environment);
- (2)
- Estimate the current price of purchase for analyzed products;
- (3)
- Draw coordinate axes for parameters ( values and price of purchase);
- (4
- Scale or mark the axis;
- (5)
- Enter the parameter values ( and price of purchase);
- (6)
- Analyze the distribution of the values obtained.
- Stage 7.
- Predicting direction of product improvement
3. Test of Model
- Stage 1.
- Selecting products and determining the purpose of research
- Stage 2.
- Characteristic of products according to criteria
- Impact on the natural environment—impact of the solar collector on the natural environment, e.g., in the context of the way of packing the product (amount and kind of used materials, e.g., stretch foil, foam, tapes, and other plastics), recycling of collectors or possibilities of collector recovery, or vitality (degradation), which determines the time of trouble-free operation [54];
- Total surface ()—total outer surface occupied by the installed collector, but the surface does not have an impact on its efficiency, and the larger the surface, the more difficult an installation on the roof;
- Surface of absorber/aperture ()—the task of the absorber is to absorb energy from the sun, which is why it generates heat and transfers it to the heating medium; the absorber generates the efficiency of the collector, but the aperture is the average of the optical device hole through which light enters, so it is the biggest surface through which light enters; in flat-plate collectors, the aperture is the internal area of the collector frame, while in vacuum collectors, it is the sum of all sections of glass tubes;
- Optical efficiency (%)—the result of sunlight absorbed by the aperture of the collector surface, which later is processed AS heat;
- Thickness of the glass pane or the wall of the glass tube (mm)—for flat-plate collectors, it is the thickness of the collector glass, while for tube-vacuum collectors, it is the wall of the glass pipe;
- Maximum volume of heated water (l)—the maximum volume of water that is able to heat the solar collector;
- System of absorber tubes or vacuum tubes that receive the generated heat from the absorber and can be in the form of parallel tubes, the so-called harp arrangement;
- Diameter of connections or vacuum tubes (mm)—diameter of connections in a flat solar collector or diameter of pipes in a vacuum solar collector;
- Housing color—external color of the solar collector.
- Stage 3.
- Obtaining customer expectations
- Stage 4.
- Estimating product criteria weights
- Stage 5.
- Developing ranking of selecting products according to customer expectations
- Stage 6.
- Qualitative-price analysis
- Stage 7.
- Predicting direction of products improvement
4. Discussion
- Choice of product as expected by the customer;
- Prediction of product improvement direction according to customer requirements;
- Possibilities of the product choice by criteria including the quality of the product (resulting from customer expectations and real parameters of the product), and its price of purchase and impact on the natural environment;
- Ensuring that analyses are carried out on the actual values of the product criteria parameters and also the current price of purchase and data expressed in a qualitative way (verbal), e.g., impact on the natural environment;
- Reducing the waste of enterprise resources by methodically identifying appropriate product improvement activities;
- Low-cost model, which could be useful for meeting customer expectations, and also will be useful for enterprises in striving to improve products in order to achieve customer satisfaction (in the future).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez, C.; Ponce, P.; Meier, A.; Dorantes, L.; Sandoval, J.O.; Palma, J.; Molina, A. S4 Framework for the Integration of Solar Energy Systems in Small and Medium-Sized Manufacturing Companies in Mexico. Energies 2022, 15, 6882. [Google Scholar] [CrossRef]
- Pacana, A.; Gazda, A.; Dušan, M.; Štefko, R. Study on Improving the Quality of Stretch Film by Shainin Method. Przem. Chem. 2014, 93, 243–245. [Google Scholar]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental Impacts of Solar Photovoltaic Systems: A Critical Review of Recent Progress and Future Outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations. Energies 2022, 15, 1101. [Google Scholar] [CrossRef]
- Ostasz, G.; Siwiec, D.; Pacana, A. Universal Model to Predict Expected Direction of Products Quality Improvement. Energies 2022, 15, 1751. [Google Scholar] [CrossRef]
- Korzyński, M.; Pacana, A. Centreless burnishing and influence of its parameters on machining effects. J. Mater. Process. Technol. 2010, 210, 1217–1223. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Pires, A.J. Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA. Energies 2021, 14, 7278. [Google Scholar] [CrossRef]
- Idzikowski, A.; Cierlicki, T. Economy and Energy Analysis in the Operation of Renewable Energy Installations—A Case Study. Prod. Eng. Arch. 2021, 27, 90–99. [Google Scholar] [CrossRef]
- Calì, M.; Hajji, B.; Nitto, G.; Acri, A. The Design Value for Recycling End-of-Life Photovoltaic Panels. Appl. Sci. 2022, 12, 9092. [Google Scholar] [CrossRef]
- al Siyabi, I.; al Mayasi, A.; al Shukaili, A.; Khanna, S. Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Jeremiasz, O.; Nowak, P.; Szendera, F.; Sobik, P.; Kulesza-Matlak, G.; Karasiński, P.; Filipowski, W.; Drabczyk, K. Laser Modified Glass for High-Performance Photovoltaic Module. Energies 2022, 15, 6742. [Google Scholar] [CrossRef]
- Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV. Appl. Sci. 2022, 12, 9682. [Google Scholar] [CrossRef]
- Bhowmik, C.; Bhowmik, S.; Ray, A. Selection of Optimum Green Energy Sources by Considering Environmental Constructs and Their Technical Criteria: A Case Study. Env. Dev. Sustain. 2021, 23, 13890–13918. [Google Scholar] [CrossRef]
- el Badaoui, M.; Touzani, A. AHP QFD Methodology for a Recycled Solar Collector. Prod. Eng. Arch. 2022, 28, 30–39. [Google Scholar] [CrossRef]
- Kuzior, A.; Lobanova, A.; Kalashnikova, L. Green Energy in Ukraine: State, Public Demands, and Trends. Energies 2021, 14, 7745. [Google Scholar] [CrossRef]
- Welzel, F.; Klinck, C.-F.; Pohlmann, Y.; Bednarczyk, M. Grid and User-Optimized Planning of Charging Processes of an Electric Vehicle Fleet Using a Quantitative Optimization Model. Appl. Energy 2021, 290, 116717. [Google Scholar] [CrossRef]
- Ding, L.; Dai, Q.; He, C.; Zhang, Z.; Shi, Y. How Do Individual Characteristics, Cognition, and Environmental Factors Affect the Beneficiaries’ Satisfaction of Photovoltaic Poverty Alleviation Projects?—Empirical Evidence of 41 Villages in Rural China. Energy Sustain. Dev. 2022, 66, 271–286. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Yüksel, S.; Dinçer, H.; Ubay, G.G. Kano-Based Mapping of Innovation Strategies for Renewable Energy Alternatives Using Hybrid Interval Type-2 Fuzzy Decision-Making Approach. Energy 2020, 211, 118679. [Google Scholar] [CrossRef]
- Wu, W.-W.; Lee, Y.-T. Developing Global Managers’ Competencies Using the Fuzzy DEMATEL Method. Expert Syst. Appl. 2007, 32, 499–507. [Google Scholar] [CrossRef]
- Tan, K.C.; Shen, X.X. Integrating Kano’s Model in the Planning Matrix of Quality Function Deployment. Total Qual. Manag. 2000, 11, 1141–1151. [Google Scholar] [CrossRef]
- Ingaldi, M.; Ulewicz, R. How to Make E-Commerce More Successful by Use of Kano’s Model to Assess Customer Satisfaction in Terms of Sustainable Development. Sustainability 2019, 11, 4830. [Google Scholar] [CrossRef]
- Pacana, A.; Czerwinska, K.; Bednarova, L. Comprehensive improvement of the surface quality of the diesel engine piston. Metalurgija 2019, 58, 329–332. [Google Scholar]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- Vu, H.; Vu, N.H.; Shin, S. Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator. Energies 2022, 15, 6951. [Google Scholar] [CrossRef]
- Chien, F.; Huang, L.; Zhao, W. The influence of sustainable energy demands on energy efficiency: Evidence from China. J. Innov. Knowl. 2023, 8, 100298. [Google Scholar] [CrossRef]
- Lan, J.; Khan, S.; Sadiq, M.; Chien, F.; Baloch, Z. Evaluating energy poverty and its effects using multi-dimensional based DEA-like mathematical composite indicator approach: Findings from Asia. Energy Policy 2022, 164, 112933. [Google Scholar] [CrossRef]
- Schipfer, F.; Maki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thran, D. Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition. Renew. Sustain. Energy Rev. 2022, 158, 112094. [Google Scholar] [CrossRef]
- Maka, A.; Alabid, J. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Burnett, D.; Barbour, E.; Harrison, G. The UK solar energy resource and the impact of climate change. Renew. Energy 2014, 71, 333–343. [Google Scholar] [CrossRef]
- Lazar, S.; Potočan, V.; Klimecka-Tatar, D.; Obrecht, M. Boosting Sustainable Operations with Sustainable Supply Chain Modeling: A Case of Organizational Culture and Normative Commitment. Int J Env. Res Public Health 2022, 19, 11131. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Grebski, W.W. An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption. Energies 2022, 15, 7909. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations. Sustainability 2021, 13, 5542. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Universal Model to Support the Quality Improvement of Industrial Products. Materials 2021, 14, 7872. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model Supporting Development Decisions by Considering Qualitative–Environmental Aspects. Sustainability 2021, 13, 9067. [Google Scholar] [CrossRef]
- Pacana, A.; Bednarova, L.; Pacana, J.; Liberko, I.; Wozny, A.; Malindzak, D. Effect of selected factors of the production process of stretch film for its resistance to puncture. Przem. Chem. 2014, 93, 2263–2264. [Google Scholar]
- Haber, N.; Fargnoli, M. Product-Service Systems for Circular Supply Chain Management: A Functional Approach. Sustainability 2022, 14, 14953. [Google Scholar] [CrossRef]
- Poszewiecki, A.; Czerepko, J. New Trends in Consumption in Poland as Shown by the Example of a Freeshop Concept. Sustainability 2022, 14, 15078. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D.; Bednárová, L. Method of Choice: A Fluorescent Penetrant Taking into Account Sustainability Criteria. Sustainability 2020, 12, 5854. [Google Scholar] [CrossRef]
- Iordache Platis, M.; Olteanu, C.; Hotoi, A.L. Evolution of the Online Sales of Sustainable Products in the COVID-19 Pandemic. Sustainability 2022, 14, 15291. [Google Scholar] [CrossRef]
- Kuzior, A.; Vyshnevskyi, O.; Trushkina, N. Assessment of the Impact of Digitalization on Greenhouse Gas Emissions on the Example of EU Member States. Prod. Eng. Arch. 2022, 28, 407–419. [Google Scholar] [CrossRef]
- García-Martínez, J.A.; Meca, A.; Vergara, G.A. Cooperative Purchasing with General Discount: A Game Theoretical Approach. Mathematics 2022, 10, 4195. [Google Scholar] [CrossRef]
- Lo, S.-C. A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management. Logistics 2022, 6, 62. [Google Scholar] [CrossRef]
- Putman, V.L.; Paulus, P.B. Brainstorming, Brainstorming Rules and Decision Making. J. Creat. Behav. 2009, 43, 29–40. [Google Scholar] [CrossRef]
- Lawor, B.; Hornyak, M. Smart goals: How the application of smart goals can contribute to achievement of student learning outcomes. Dev. Bus. Simul. Exp. Learn. 2012, 39, 259–267. [Google Scholar]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, ISBN 978-3-319-33860-6. [Google Scholar]
- Sullivan, G.M.; Artino, A.R. Analyzing and Interpreting Data From Likert-Type Scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef]
- Stoltmann, A. Application of AHP Method for Comparing the Criteria Used in Locating Wind Farms. Acta Energetica 2016, 28, 144–149. [Google Scholar] [CrossRef]
- Horváthová, P.; Čopíková, A.; Mokrá, K. Methodology Proposal of the Creation of Competency Models and Competency Model for the Position of a Sales Manager in an Industrial Organisation Using the AHP Method and Saaty’s Method of Determining Weights. Econ. Res. Ekon. Istraživanja 2019, 32, 2594–2613. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-Making with the AHP: Why Is the Principal Eigenvector Necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Abedi, M.; Ali Torabi, S.; Norouzi, G.-H.; Hamzeh, M.; Elyasi, G.-R. PROMETHEE II: A Knowledge-Driven Method for Copper Exploration. Comput. Geosci. 2012, 46, 255–263. [Google Scholar] [CrossRef]
- Kądziołka, K. The Promethee II Method in Multi-Criteria Evaluation of Cryptocurrency Exchanges. Econ. Reg. Stud. Stud. Ekon. I Reg. 2021, 14, 131–145. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A.; Mehra, A. Best Criteria Selection Based PROMETHEE II Method. Opsearch 2021, 58, 160–180. [Google Scholar] [CrossRef]
- Kabassi, K.; Martinis, A. Sensitivity Analysis of PROMETHEE II for the Evaluation of Environmental Websites. Appl. Sci. 2021, 11, 9215. [Google Scholar] [CrossRef]
- Mele, M.; Gurrieri, A.R.; Morelli, G.; Magazzino, C. Nature and Climate Change Effects on Economic Growth: An LSTM Experiment on Renewable Energy Resources. Environ. Sci. Pollut. Res. 2021, 28, 41127–41134. [Google Scholar] [CrossRef] [PubMed]
- Siwiec, D.; Pacana, A. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies 2021, 14, 5977. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Renewable Energy Planning Using an Integrated Fuzzy VIKOR & AHP Methodology: The Case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar] [CrossRef]
- Gazda, A.; Pacana, A.; Dušan, M. Study on Improving the Quality of Stretch Film by Taguchi Method. Przem. Chem. 2013, 92, 980–982. [Google Scholar]
- Grabowski, M.; Gawlik, J.; Krajewska-Śpiewak, J.; Skoczypiec, S.; Tyczyński, P. Technological Possibilities of the Carbide Tools Application for Precision Machining of WCLV Hardened Steel. Adv. Sci. Technol. Res. J. 2022, 16, 141–148. [Google Scholar] [CrossRef]
- Wu, H.; Fareed, Z.; Wolanin, E.; Rozkrut, D.; Hajduk-Stelmachowicz, M. Role of Green Financing and Eco-Innovation for Energy Efficiency in Developed Countries: Contextual Evidence for Pre- and Post-COVID-19 Era. Front Energy Res 2022, 10, 947901. [Google Scholar] [CrossRef]
- Siwiec, D.; Hajduk Stelmachowicz, M.; Bełch, P.; Pacana, A. A method for selection of industrial paints by using analysis of mutual impact of criteria. Przem. Chem. 2021, 100, 1187–1190. [Google Scholar] [CrossRef]
Individual Customer Expectations | Price of Purchase | Efficiency (Based on the Actual Parameters of Criteria) | Criterion of Environmental Influence | Importance (Weight) of Criteria |
---|---|---|---|---|
[13] | [18] | [16] | Not included in this approach and not combined with other selected criteria | [13] |
[14] | [23] | [17] | [14] | |
[16] | [17] | |||
[17] | [23] | |||
[23] | ||||
Survey | ACJ method, Kano model, DEMATEL, factor analysis | DEMATEL, EWM, factor analysis, Kano model, fuzzy VIKOR | - | AHP, fuzzy AHP, QFD, TOPSIS |
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.48 | 1.56 | 1.57 | 1.59 |
Type of Collector | Solar Collector 1 (Flat) | Solar Collector 2 (Flat) | Solar Collector 3 (Tube-Vacuum) | Solar Collector 4 (Flat) | Solar Collector 5 (Flat) | Solar Collector 6 (Flat) | Solar Collector 7 (Tube-Vacuum) |
---|---|---|---|---|---|---|---|
Impact on the natural environment | 3 | 4 | 2 | 2 | 4 | 3 | 3 |
Total surface (m2) | 2.0 | 2.8 | 3.61 | 2.0 | 2.8 | 2.5 | 2.98 |
Absorber surface/or aperture (m2) | 1.8 | 2.6 | 2.67 | 1.8 | 2.8 | 2.3 | 2.21 |
Optical efficiency (%) | 80 | 80 | 93.7 | 80 | 80 | 80 | 0.94 |
Thickness of glass or glass tube (mm) | 4 | 4 | 2 | 4 | 4 | 4 | 2 |
Maximum volume of heated water (l) | 100 | 150 | 150 | 100 | 150 | 120 | 100 |
Absorber tube layout or number of vacuum tubes (pieces) | Single harp | Double harp | 22 | Single harp | Single harp | Double harp | 11 |
Diameter of connections or vacuum tubes (mm) | 4 × 22 | 2 × 22 | 58 | 4 × 18 | 4 × 18 | 2 × 22 | 58 |
Housing color | Black | Silver | Silver/Black | Gray | Gray | Silver | Silver/Black |
QUESTIONNAIRE Assess the Importance of Solar Collectors on the Likert Scale Using “X” in Each Criterion | |||||
---|---|---|---|---|---|
Criteria of Solar Collectors | 1 | 2 | 3 | 4 | 5 |
Impact on the natural environment | X | ||||
Total surface (square meter) | X | ||||
Absorber surface/or aperture (square meter) | X | ||||
Optical efficiency (%) (percent) | X | ||||
Thickness of glass or glass tube (millimeter) | X | ||||
Maximum volume of heated water (liter) | X | ||||
Absorber tube layout or number of vacuum tubes (pieces) | X | ||||
Diameter of connections or vacuum tubes (millimeter) | X | ||||
Housing color | X |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|
C1 | 1.00 | 1.50 | 0.75 | 0.75 | 0.60 | 0.60 | 1.00 | 1.00 | 1.50 |
C2 | 0.67 | 1.00 | 0.50 | 0.50 | 0.40 | 0.40 | 0.67 | 0.67 | 1.00 |
C3 | 1.33 | 2.00 | 1.00 | 1.00 | 0.80 | 0.80 | 1.33 | 1.33 | 2.00 |
C4 | 1.33 | 2.00 | 1.00 | 1.00 | 0.80 | 0.80 | 1.33 | 1.33 | 2.00 |
C5 | 1.67 | 2.50 | 1.25 | 1.25 | 1.00 | 1.00 | 1.67 | 1.67 | 2.50 |
C6 | 1.67 | 2.50 | 1.25 | 1.25 | 1.00 | 1.00 | 1.67 | 1.67 | 2.50 |
C7 | 1.00 | 1.50 | 0.75 | 0.75 | 0.60 | 0.60 | 1.00 | 1.00 | 1.50 |
C8 | 1.00 | 1.50 | 0.75 | 0.75 | 0.60 | 0.60 | 1.00 | 1.00 | 1.50 |
C9 | 0.67 | 1.00 | 0.50 | 0.50 | 0.40 | 0.40 | 0.67 | 0.67 | 1.00 |
Sum | 10.33 | 15.50 | 7.75 | 7.75 | 6.20 | 6.20 | 10.33 | 10.33 | 15.50 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
C2 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
C3 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
C4 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
C5 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
C6 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
C7 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
C8 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
C9 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.10 | 0.06 | 0.13 | 0.13 | 0.16 | 0.16 | 0.10 | 0.10 | 0.06 | |||
C1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.87 | 9 |
C2 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.58 | 9 |
C3 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 1.16 | 9 |
C4 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 1.16 | 9 |
C5 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 1.45 | 9 |
C6 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 1.45 | 9 |
C7 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.87 | 9 |
C8 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.87 | 9 |
C9 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.58 | 9 |
CI = 0 | CR = 0 | where: r = 1.45 |
0.10 | 0.06 | 0.13 | 0.13 | 0.16 | 0.16 | 0.10 | 0.10 | 0.06 | ||
---|---|---|---|---|---|---|---|---|---|---|
Beneficial or Non-Beneficial | NB | NB | B | B | B | B | B | B | B | |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
Parameters and assessments of criteria | P1 | 3 | 2 | 1.8 | 80 | 4 | 100 | 3 | 5 | 5 |
P2 | 4 | 2.8 | 2.6 | 80 | 4 | 150 | 4 | 3 | 3 | |
P3 | 2 | 3.61 | 2.67 | 93.7 | 2 | 150 | 22 | 5 | 5 | |
P4 | 2 | 2 | 1.8 | 80 | 4 | 100 | 3 | 4 | 3 | |
P5 | 4 | 2.8 | 2.8 | 80 | 4 | 150 | 3 | 4 | 3 | |
P6 | 3 | 2.5 | 2.3 | 80 | 4 | 120 | 4 | 3 | 2 | |
P7 | 3 | 2.98 | 2.21 | 0.94 | 2 | 100 | 11 | 5 | 5 | |
MIN | 2 | 2 | 1.8 | 0.94 | 2 | 100 | 3 | 3 | 2 | |
MAX | 4 | 3.61 | 2.8 | 93.7 | 4 | 150 | 22 | 5 | 5 | |
Normalized values of parameters and assessments of criteria | P1 | −1.00 | 0.00 | 0.00 | 0.85 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 |
P2 | −2.00 | −0.80 | 0.80 | 0.85 | 1.00 | 1.00 | 0.05 | 0.00 | 0.33 | |
P3 | 0.00 | −1.61 | 0.87 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
P4 | 0.00 | 0.00 | 0.00 | 0.85 | 1.00 | 0.00 | 0.00 | 0.50 | 0.33 | |
P5 | −2.00 | −0.80 | 1.00 | 0.85 | 1.00 | 1.00 | 0.00 | 0.50 | 0.33 | |
P6 | −1.00 | −0.50 | 0.50 | 0.85 | 1.00 | 0.40 | 0.05 | 0.00 | 0.00 | |
P7 | −1.00 | −0.98 | 0.41 | 0.00 | 0.00 | 0.00 | 0.42 | 1.00 | 1.00 |
0.10 | 0.06 | 0.13 | 0.13 | 0.16 | 0.16 | 0.10 | 0.10 | 0.06 | |
---|---|---|---|---|---|---|---|---|---|
Beneficial or Non-Beneficial | NB | NB | B | B | B | B | B | B | B |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
P1–P2 | 1.00 | 0.80 | −0.80 | 0.00 | 0.00 | −1.00 | −0.05 | 1.00 | 0.67 |
P1–P3 | −1.00 | 1.61 | −0.87 | −0.15 | 1.00 | −1.00 | −1.00 | 0.00 | 0.00 |
P1–P4 | −1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.67 |
P1–P5 | 1.00 | 0.80 | −1.00 | 0.00 | 0.00 | −1.00 | 0.00 | 0.50 | 0.67 |
P1–P6 | 0.00 | 0.50 | −0.50 | 0.00 | 0.00 | −0.40 | −0.05 | 1.00 | 1.00 |
P1–P7 | 0.00 | 0.98 | −0.41 | 0.85 | 1.00 | 0.00 | −0.42 | 0.00 | 0.00 |
P2–P1 | −1.00 | −0.80 | 0.80 | 0.00 | 0.00 | 1.00 | 0.05 | −1.00 | −0.67 |
P2–P3 | −2.00 | −0.39 | −2.87 | −3.00 | −2.00 | −3.00 | −3.00 | −3.00 | −3.00 |
P2–P4 | 0.00 | 0.00 | 0.00 | −0.85 | −1.00 | 0.00 | 0.00 | −0.50 | −0.33 |
P2–P5 | 2.00 | 0.80 | −1.00 | −0.85 | −1.00 | −1.00 | 0.00 | −0.50 | −0.33 |
P2–P6 | −1.00 | −1.50 | −2.50 | −2.85 | −3.00 | −2.40 | −2.05 | −2.00 | −2.00 |
P2–P7 | 0.00 | −0.02 | −1.41 | −1.00 | −1.00 | −1.00 | −1.42 | −2.00 | −2.00 |
P3–P1 | 1.00 | −1.61 | 0.87 | 0.15 | −1.00 | 1.00 | 1.00 | 0.00 | 0.00 |
P3–P2 | 2.00 | −0.81 | 0.07 | 0.15 | −1.00 | 0.00 | 0.95 | 1.00 | 0.67 |
P3–P4 | 0.00 | 0.00 | 0.00 | −0.85 | −1.00 | 0.00 | 0.00 | −0.50 | −0.33 |
P3–P5 | 2.00 | 0.80 | −1.00 | −0.85 | −1.00 | −1.00 | 0.00 | −0.50 | −0.33 |
P3–P6 | −1.00 | −1.50 | −2.50 | −2.85 | −3.00 | −2.40 | −2.05 | −2.00 | −2.00 |
P3–P7 | 0.00 | −0.02 | −1.41 | −1.00 | −1.00 | −1.00 | −1.42 | −2.00 | −2.00 |
0.10 | 0.06 | 0.13 | 0.13 | 0.16 | 0.16 | 0.10 | 0.10 | 0.06 | ||
---|---|---|---|---|---|---|---|---|---|---|
Beneficial or Non-Beneficial | NB | NB | B | B | B | B | B | B | B | |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |
P1–P2 | 0.10 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.04 | 0.29 |
P1–P3 | 0.19 | 0.10 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 |
P1–P4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.04 | 0.09 |
P1–P5 | 0.10 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.04 | 0.24 |
P1–P6 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.06 | 0.19 |
P1–P7 | 0.29 | 0.06 | 0.00 | 0.11 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 |
P2–P1 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.16 | 0.01 | 0.00 | 0.00 | 0.27 |
P2–P3 | 0.10 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 |
P2–P4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P2–P5 | 0.10 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 |
P2–P6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P2–P7 | 0.29 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 |
P3–P1 | 0.00 | 0.00 | 0.11 | 0.02 | 0.00 | 0.16 | 0.10 | 0.00 | 0.00 | 0.39 |
P3–P2 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.09 | 0.10 | 0.04 | 0.26 |
P3–P4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P3–P5 | 0.10 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 |
P3–P6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P3–P7 | 0.29 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 |
Solar Collector | P1 | P2 | P3 | P4 | P5 | P6 | P7 | |
---|---|---|---|---|---|---|---|---|
P1 | - | 0.29 | 0.46 | 0.09 | 0.24 | 0.19 | 0.62 | 0.32 |
P2 | 0.27 | - | 0.14 | 0.00 | 0.15 | 0.00 | 0.35 | 0.15 |
P3 | 0.39 | 0.26 | - | 0.00 | 0.15 | 0.00 | 0.35 | 0.19 |
P4 | 0.00 | 0.20 | 0.46 | - | 0.15 | 0.00 | 0.35 | 0.19 |
P5 | 0.29 | 0.07 | 0.33 | 0.29 | - | 0.00 | 0.35 | 0.22 |
P6 | 0.13 | 0.12 | 0.43 | 0.13 | 0.12 | - | 0.67 | 0.27 |
P7 | 0.09 | 0.18 | 0.04 | 0.19 | 0.13 | 0.20 | - | 0.14 |
0.20 | 0.19 | 0.31 | 0.12 | 0.16 | 0.07 | 0.45 | - |
Solar Collector | Ranking | Decision | |||
---|---|---|---|---|---|
P1 | 0.32 | 0.20 | 0.12 | 2 | |
P2 | 0.15 | 0.19 | −0.03 | 5 | |
P3 | 0.19 | 0.31 | −0.12 | 6 | |
P4 | 0.19 | 0.12 | 0.08 | 3 | |
P5 | 0.22 | 0.16 | 0.07 | 4 | |
P6 | 0.27 | 0.07 | 0.20 | 1 | The best solar collector |
P7 | 0.14 | 0.45 | −0.31 | 7 | The worst solar collector |
ACJ | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P (cost, EUR) | 482.02 | 454.90 | 589.84 | 309.82 | 401.71 | 286.85 | 368.39 |
0.12 | −0.03 | −0.12 | 0.08 | 0.07 | 0.20 | −0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulewicz, R.; Siwiec, D.; Pacana, A. A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements. Energies 2023, 16, 4378. https://doi.org/10.3390/en16114378
Ulewicz R, Siwiec D, Pacana A. A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements. Energies. 2023; 16(11):4378. https://doi.org/10.3390/en16114378
Chicago/Turabian StyleUlewicz, Robert, Dominika Siwiec, and Andrzej Pacana. 2023. "A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements" Energies 16, no. 11: 4378. https://doi.org/10.3390/en16114378
APA StyleUlewicz, R., Siwiec, D., & Pacana, A. (2023). A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements. Energies, 16(11), 4378. https://doi.org/10.3390/en16114378