Toxicity of Perovskite Solar Cells
Abstract
:1. Introduction
Development of Perovskite Solar Cells (PVSCs)
2. Toxicity Due to Organic Solvents
2.1. Origin and Hazards of the Toxicity
2.2. Strategies to Reduce the Toxicity
2.2.1. The “Green” Solvents
2.2.2. Fabrication Methods without Solvent Treatment
3. Toxicity due to Perovskite Materials: Pb
3.1. Origin and Hazards of the Toxicity
3.2. Strategies to Reduce the Toxicity
3.2.1. Lead-Free Perovskite
3.2.2. Pb Recycling Technologies
3.2.3. Device Encapsulation to Prevent the Pb Leakage
3.2.4. Immobilization of the Pb
4. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheng, P.; He, Y.; Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 2017, 28, 673–686. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Lekesi, L.P.; Koao, L.F.; Motloung, S.V.; Motaung, T.E.; Malevu, T. Developments on Perovskite Solar Cells (PSCs): A Critical Review. Appl. Sci. 2022, 12, 672. [Google Scholar] [CrossRef]
- Nazir, G.; Lee, S.Y.; Lee, J.H.; Rehman, A.; Lee, J.K.; Seok, S.I.; Park, S.J. Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Adv. Mater. 2022, 34, 2204380. [Google Scholar] [CrossRef]
- Barichello, J.; Di Girolamo, D.; Nonni, E.; Paci, B.; Generosi, A.; Kim, M.; Levtchenko, A.; Cacovich, S.; Di Carlo, A.; Matteocci, F. Semi-Transparent Blade-Coated FAPbBr3 Perovskite Solar Cells: A Scalable Low-Temperature Manufacturing Process under Ambient Condition. Sol. RRL 2023, 7, 2200739. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, L. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat 2021, 1, 324–344. [Google Scholar] [CrossRef]
- Brinkmann, K.; Becker, T.; Zimmermann, F.; Kreusel, C.; Gahlmann, T.; Theisen, M.; Haeger, T.; Olthof, S.; Tückmantel, C.; Günster, M. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 2022, 604, 280–286. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Ji, L.; Liu, C.; Ahmad, W.; Chen, Z.D. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154. [Google Scholar] [CrossRef]
- Umeyama, T.; Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. Acc. Chem. Res. 2019, 52, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Cai, J.; Yang, L.; Li, W.; Gurney, R.S.; Yi, H.; Iraqi, A.; Liu, D.; Wang, T. Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 2018, 45, 28–36. [Google Scholar] [CrossRef]
- Kung, P.K.; Li, M.H.; Lin, P.Y.; Chiang, Y.H.; Chan, C.R.; Guo, T.F.; Chen, P. A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800882. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, S. Review on applications of PEDOTs and PEDOT: PSS in perovskite solar cells. J. Mater. Sci. Mater. Electron. 2021, 32, 12746–12757. [Google Scholar] [CrossRef]
- Malevu, T.; Mwankemwa, B.; Tshabalala, K.; Diale, M.; Ocaya, R. Effect of 6R and 12R lead iodide polytypes on MAPbI 3 perovskite device performance. J. Mater. Sci. Mater. Electron. 2018, 29, 13011–13018. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, L. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ. Sci. 2021, 14, 3233–3255. [Google Scholar] [CrossRef]
- Li, G.; Su, Z.; Canil, L.; Hughes, D.; Aldamasy, M.H.; Dagar, J.; Trofimov, S.; Wang, L.; Zuo, W.; Jerónimo-Rendon, J.J. Highly efficient pin perovskite solar cells that endure temperature variations. Science 2023, 379, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-L.; Zhou, Y.-H.; Lou, Y.-H.; Wang, Z.-K. Perovskite indoor photovoltaics: Opportunity and challenges. Chem. Sci. 2021, 12, 11936–11954. [Google Scholar] [CrossRef]
- Liu, C.; Dong, H.; Zhang, Z.; Chai, W.; Li, L.; Chen, D.; Zhu, W.; Xi, H.; Zhang, J.; Zhang, C. Promising applications of wide bandgap inorganic perovskites in underwater photovoltaic cells. Sol. Energy 2022, 233, 489–493. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Perovskite solar cells for BIPV application: A review. Buildings 2020, 10, 129. [Google Scholar] [CrossRef]
- Tong, J.; Song, Z.; Kim, D.H.; Chen, X.; Chen, C.; Palmstrom, A.F.; Ndione, P.F.; Reese, M.O.; Dunfield, S.P.; Reid, O.G. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Laboratory, N.R.E. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (accessed on 19 April 2023).
- Kim, J.; Jang, J.H.; Choi, E.; Shin, S.J.; Kim, J.-H.; Jeon, G.G.; Lee, M.; Seidel, J.; Kim, J.H.; Yun, J.S. Chlorine incorporation in perovskite solar cells for indoor light applications. Cell Rep. Phys. Sci. 2020, 1, 100273. [Google Scholar] [CrossRef]
- Bing, J.; Caro, L.G.; Talathi, H.P.; Chang, N.L.; Mckenzie, D.R.; Ho-Baillie, A.W. Perovskite solar cells for building integrated photovoltaics—Glazing applications. Joule 2022, 6, 1446–1474. [Google Scholar] [CrossRef]
- Im, J.-H.; Kim, H.-S.; Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. Apl. Mater. 2014, 2, 081510. [Google Scholar] [CrossRef]
- Zeng, J.; Bi, L.; Cheng, Y.; Xu, B.; Jen, A.K.-Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, e9120004. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, Y.; Jen, A.K.-Y.; Yip, H.-L. Development and challenges of metal halide perovskite solar modules. Solar RRL 2022, 6, 2100545. [Google Scholar] [CrossRef]
- Seo, Y.-H.; Cho, S.-P.; Lee, H.-J.; Kang, Y.-J.; Kwon, S.-N.; Na, S.-I. Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. J. Power Sources 2022, 539, 231621. [Google Scholar] [CrossRef]
- Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T. Slot-die coating of perovskite solar cells: An overview. Mater. Today Commun. 2020, 22, 100808. [Google Scholar] [CrossRef]
- Chou, L.-H.; Chan, J.M.; Liu, C.-L. Progress in Spray Coated Perovskite Films for Solar Cell Applications. Solar RRL 2022, 6, 2101035. [Google Scholar] [CrossRef]
- Irshad, Z.; Adnan, M.; Lee, J.K. Simple preparation of highly efficient MA x FA1− x PbI3 perovskite films from an aqueous halide-free lead precursor by all dip-coating approach and application in high-performance perovskite solar cells. J. Mater. Sci. 2022, 57, 1936–1946. [Google Scholar] [CrossRef]
- Rico-Yuson, C.A.; Danwittayakul, S.; Kumar, S.; Hornyak, G.L.; Bora, T. Sequential dip-coating of CsPbBr3 perovskite films in ambient conditions and their photovoltaic performance. J. Mater. Sci. 2022, 57, 10285–10298. [Google Scholar] [CrossRef]
- Lohmann, K.B.; Motti, S.G.; Oliver, R.D.; Ramadan, A.J.; Sansom, H.C.; Yuan, Q.; Elmestekawy, K.A.; Patel, J.B.; Ball, J.M.; Herz, L.M. Solvent-free method for defect reduction and improved performance of pin vapor-deposited perovskite solar cells. ACS Energy Lett. 2022, 7, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, J.; Tan, L.; Li, M.; Jiang, C.; Wang, S.; Zhao, X.; Liu, Y.; Zhang, Y.; Ye, Y. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 2022, 8, eabo7422. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Wang, L.; Li, J.; Luo, J.; Ma, Y.; Tang, J.; Zhai, T. Thermal evaporation for halide perovskite optoelectronics: Fundamentals, progress, and outlook. Adv. Opt. Mater. 2022, 10, 2101770. [Google Scholar] [CrossRef]
- Bae, S.-R.; Heo, D.; Kim, S. Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Mater. Today Adv. 2022, 14, 100232. [Google Scholar] [CrossRef]
- Li, L.; Fang, Y.; Yang, D. Interlayer-Assisted Growth of Si-Based All-Inorganic Perovskite Films via Chemical Vapor Deposition for Sensitive and Stable X-ray Detection. J. Phys. Chem. Lett. 2022, 13, 5441–5450. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Han, H.; Chao, L.; Hu, J.; Niu, T.; Dong, H.; Yang, S.; Xia, Y.; Chen, Y. Perovskite solar cells based on screen-printed thin films. Nature 2022, 612, 266–271. [Google Scholar] [CrossRef]
- Park, N.-G. Green solvent for perovskite solar cell production. Nat. Sustain. 2021, 4, 192–193. [Google Scholar] [CrossRef]
- Vidal, R.; Alberola-Borràs, J.-A.; Habisreutinger, S.N.; Gimeno-Molina, J.-L.; Moore, D.T.; Schloemer, T.H.; Mora-Seró, I.; Berry, J.J.; Luther, J.M. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 2021, 4, 277–285. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Huang, Y.; Luo, X.; Chen, H. New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbI3: A mixture of Pb and Ge/Sn. New J. Chem. 2017, 41, 11413–11421. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, X.; Liang, X.; Duan, D.; Ge, C.-Y.; Lin, H.; Zhu, Q.; Li, L.; Hu, H. Solvent Engineering of Ionic Liquids for Stable and Efficient Perovskite Solar Cells. Adv. Energy Sustain. Res. 2023, 4, 2200140. [Google Scholar] [CrossRef]
- Li, N.; Niu, X.; Li, L.; Wang, H.; Huang, Z.; Zhang, Y.; Chen, Y.; Zhang, X.; Zhu, C.; Zai, H. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 2021, 373, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Xue, J.; Liu, A.; Ma, T.; Gao, L. Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method. Molecules 2022, 27, 1828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ma, G.; Green, K.A.; Gollinger, K.; Moore, J.; Demeritte, T.; Ray, P.C.; Hill Jr, G.A.; Gu, X.; Morgan, S.E. FAPbI3 Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications. ACS Appl. Energy Mater. 2022, 5, 1487–1495. [Google Scholar] [CrossRef]
- Comstock, A.H.; Chou, C.-T.; Wang, Z.; Wang, T.; Song, R.; Sklenar, J.; Amassian, A.; Zhang, W.; Lu, H.; Liu, L. Hybrid magnonics in hybrid perovskite antiferromagnets. Nat. Commun. 2023, 14, 1834. [Google Scholar] [CrossRef]
- Qaid, S.M.; Ghaithan, H.M.; Bawazir, H.S.; Aldwayyan, A.S. Simple approach for crystallizing growth of MAPbI3 perovskite nanorod without thermal annealing for Next-Generation optoelectronic applications. Mater. Chem. Phys. 2023, 298, 127423. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Wang, J.; Zheng, Y.; Wu, X.; Tian, C.; Sun, A.; Huang, Y.; Zhou, Z.; Yang, Y. DMSO-Free Solvent Strategy for Stable and Efficient Methylammonium-Free Sn–Pb Alloyed Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300181. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Zhao, Y.; Che, M.; Zhu, L.; Gu, X.; Qiang, Y. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater. Sci. Eng. B 2017, 217, 18–25. [Google Scholar] [CrossRef]
- Cao, X.; Hao, L.; Liu, Z.; Su, G.; He, X.; Zeng, Q.; Wei, J. All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chem. Eng. J. 2022, 437, 135458. [Google Scholar] [CrossRef]
- Hamill Jr, J.C.; Schwartz, J.; Loo, Y.-L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 2017, 3, 92–97. [Google Scholar] [CrossRef]
- Jones, E.W.; Holliman, P.J.; Connell, A.; Davies, M.L.; Baker, J.; Hobbs, R.J.; Ghosh, S.; Furnell, L.; Anthony, R.; Pleydell-Pearce, C. A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability. Chem. Commun. 2016, 52, 4301–4304. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-J.; Zeng, T. The deleterious effects of N, N-dimethylformamide on liver: A mini-review. Chem.-Biol. Interact. 2019, 298, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wrbitzky, R. Liver function in workers exposed to N, N-dimethylformamide during the production of synthetic textiles. Int. Arch. Occup. Environ. Health 1999, 72, 19–25. [Google Scholar] [CrossRef]
- Scailteur, V.; Lauwerys, R. Dimethylformamide (DMF) hepatotoxicity. Toxicology 1987, 43, 231–238. [Google Scholar] [CrossRef]
- Lauwerys, R.; Kivits, A.; Lhoir, M.; Rigolet, P.; Houbeau, D.; Buchet, J.-P.; Roels, H. Biological surveillance of workers exposed to dimethylformamide and the influence of skin protection on its percutaneous absorption. Int. Arch. Occup. Environ. Health 1980, 45, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, B.; Wu, C.; Priya, S. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J–V hysteresis. Nano Energy 2015, 17, 269–278. [Google Scholar] [CrossRef]
- Fritz, H.; Reineke, W.; Schmidt, E. Toxicity of chlorobenzene on Pseudomonas sp. strain RHO1, a chlorobenzene-degrading strain. Biodegradation 1991, 2, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Jerina, D.M.; Daly, J.W.; Rice, J.M. Induction, activation and inhibition of epoxide hydrase: An anomalous prevention of chlorobenzene-induced hepatotoxicity by an inhibitor of epoxide hydrase. Chem.-Biol. Interact. 1973, 6, 189–202. [Google Scholar] [CrossRef]
- Willhite, C.; Book, S. Toxicology update: Chlorobenzene. J. Appl. Toxicol. 1990, 10, 307–310. [Google Scholar] [CrossRef]
- Donald, J.M.; Hooper, K.; Hopenhayn-Rich, C. Reproductive and developmental toxicity of toluene: A review. Environ. Health Perspect. 1991, 94, 237–244. [Google Scholar]
- Filley, C.M.; Halliday, W.; Kleinschmidt-DeMasters, B. The effects of toluene on the central nervous system. J. Neuropathol. Exp. Neurol. 2004, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, D.; Fine, L.; Langolf, G.; Schork, A.; Sampaio, C. Acute neurobehavioural effects of toluene. Occup. Environ. Med. 1989, 46, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Pandey, P.; Park, J.; Lee, T.-W.; Kang, D.-W. Mixed Solvent Engineering for Morphology Optimization of the Electron Transport Layer in Perovskite Photovoltaics. ACS Appl. Energy Mater. 2021, 5, 387–396. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Lin, C.-M.; Kuei, C.-H. Investigation of the effects of various organic solvents on the PCBM electron transport layer of perovskite solar cells. Coatings 2020, 10, 237. [Google Scholar] [CrossRef]
- Heo, D.Y.; Jang, W.J.; Jeong, M.J.; Noh, J.H.; Kim, S.Y. Optimal Solvents for Interfacial Solution Engineering of Perovskite Solar Cells. Solar RRL 2022, 6, 2200485. [Google Scholar] [CrossRef]
- Bu, T.; Wu, L.; Liu, X.; Yang, X.; Zhou, P.; Yu, X.; Qin, T.; Shi, J.; Wang, S.; Li, S. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576. [Google Scholar] [CrossRef]
- Lee, J.; Kim, G.W.; Kim, M.; Park, S.A.; Park, T. Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency. Adv. Energy Mater. 2020, 10, 1902662. [Google Scholar] [CrossRef]
- Ashurst, J.V.; Nappe, T.M. Isopropanol Toxicity. 2018. Available online: https://europepmc.org/article/NBK/nbk493181 (accessed on 19 April 2023).
- Versonnen, B.J.; Arijs, K.; Verslycke, T.; Lema, W.; Janssen, C.R. In vitro and in vivo estrogenicity and toxicity of o-, m-, and p-dichlorobenzene. Environ. Toxicol. Chem. Int. J. 2003, 22, 329–335. [Google Scholar] [CrossRef]
- Feuston, M.; Bodnar, K.; Kerstetter, S.; Grink, C.; Belcak, M.; Singer, E. Reproductive toxicity of 2-methoxyethanol applied dermally to occluded and nonoccluded sites in male rats. Toxicol. Appl. Pharmacol. 1989, 100, 145–161. [Google Scholar] [CrossRef]
- Ono, L.K.; Park, N.-G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells Towards Commercialization. ACS Energy Lett. 2017, 2, 1749–1751. [Google Scholar] [CrossRef]
- Galagan, Y. Perovskite solar cells: Toward industrial-scale methods. J. Phys. Chem. Lett. 2018, 9, 4326–4335. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Zheng, Y.; Xiao, X.; Cheng, H.; Zhang, G.; Shi, Y.; Shao, Y. Sustainable development of perovskite solar cells: Keeping a balance between toxicity and efficiency. J. Mater. Chem. A 2022, 10, 8159–8171. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 6228, N,N-Dimethylformamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N_N-Dimethylformamide (accessed on 19 April 2023).
- PubChem Compound Summary for CID 679, Dimethyl Sulfoxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dimethyl-Sulfoxide (accessed on 19 April 2023).
- PubChem Compound Summary for CID 31374, N,N-Dimethylacetamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N_N-Dimethylacetamide (accessed on 19 April 2023).
- PubChem Compound Summary for CID 13387, 1-Methyl-2-pyrrolidinone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1-Methyl-2-pyrrolidinone (accessed on 19 April 2023).
- PubChem Compound Summary for CID 86594259, n-hexane DMI. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/n-hexane-DMI (accessed on 19 April 2023).
- PubChem Compound Summary for CID 7302, gamma-Butyrolactone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/gamma-Butyrolactone (accessed on 19 April 2023).
- PubChem Compound Summary for CID 8028, Tetrahydrofuran. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetrahydrofuran (accessed on 19 April 2023).
- PubChem Compound Summary for CID 81646, 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_3-dimethyl-1_3-diazinan-2-one (accessed on 19 April 2023).
- Gong, J.; Darling, S.B.; You, F. Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 2015, 8, 1953–1968. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Ding, L.; Hao, F. Green–solvent–processable perovskite solar cells. Adv. Energy Sustain. Res. 2021, 2, 2000047. [Google Scholar] [CrossRef]
- Jang, G.; Ma, S.; Kwon, H.-C.; Goh, S.; Ban, H.; Lee, J.; Lee, C.U.; Moon, J. Binary antisolvent bathing enabled highly efficient and uniform large-area perovskite solar cells. Chem. Eng. J. 2021, 423, 130078. [Google Scholar] [CrossRef]
- Li, J.; Hua, X.; Gao, F.; Ren, X.; Zhang, C.; Han, Y.; Li, Y.; Shi, B.; Liu, S.F. Green antisolvent additive engineering to improve the performance of perovskite solar cells. J. Energy Chem. 2022, 66, 1–8. [Google Scholar] [CrossRef]
- Zhang, P.; Gu, N.; Song, L.; Chen, X.; Du, P.; Zha, L.; Chen, W.-H.; Xiong, J. The disappearing additive: Introducing volatile ethyl acetate into a perovskite precursor for fabricating high efficiency stable devices in open air. Nanoscale 2022, 14, 5204–5213. [Google Scholar] [CrossRef]
- Stancu, V.; Tomulescu, A.G.; Leonat, L.N.; Balescu, L.M.; Galca, A.C.; Toma, V.; Besleaga, C.; Derbali, S.; Pintilie, I. Partial Replacement of Dimethylformamide with Less Toxic Solvents in the Fabrication Process of Mixed-Halide Perovskite Films. Coatings 2023, 13, 378. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Jiang, L.; Cai, Y.; Wang, Y.; He, X.; Zeng, Q.; Chen, J.; Jia, Y.; Wei, J. Achieving environment-friendly production of CsPbBr 3 films for efficient solar cells via precursor engineering. Green Chem. 2021, 23, 2104–2112. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Cai, Y.; Jiang, L.; Yang, W.; Song, W.; He, X.; Zeng, Q.; Jia, Y.; Wei, J. A sustainable solvent system for processing CsPbBr 3 films for solar cells via an anomalous sequential deposition route. Green Chem. 2021, 23, 470–478. [Google Scholar] [CrossRef]
- Wang, J.; Di Giacomo, F.; Brüls, J.; Gorter, H.; Katsouras, I.; Groen, P.; Janssen, R.A.; Andriessen, R.; Galagan, Y. Highly efficient perovskite solar cells using non-toxic industry compatible solvent system. Solar RRL 2017, 1, 1700091. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, Z.; Dong, J. Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials 2023, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tan, Y.; Lai, H.; Li, S.; Chen, Y.; Li, S.; Xu, P.; Yang, J. All-inorganic CsPbBr3 perovskite solar cells with 10.45% efficiency by evaporation-assisted deposition and setting intermediate energy levels. ACS Appl. Mater. Interfaces 2019, 11, 29746–29752. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Chin, X.Y.; Dewi, H.A.; Vergeer, K.; Goh, T.W.; Lim, J.W.M.; Lew, J.H.; Loh, K.P.; Soci, C. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule 2020, 4, 1035–1053. [Google Scholar] [CrossRef]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nature materials 2016, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 2021, 13, 152. [Google Scholar] [CrossRef]
- Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D. Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 1543–1547. [Google Scholar] [CrossRef]
- CHEN, S.-b.; Meng, W.; LI, S.-s.; ZHAO, Z.-q.; Wen-di, E. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. J. Integr. Agric. 2018, 17, 765–774. [Google Scholar] [CrossRef]
- Rabinowitz, M.B.; Wetherill, G.W.; Kopple, J.D. Kinetic analysis of lead metabolism in healthy humans. J. Clin. Investig. 1976, 58, 260–270. [Google Scholar] [CrossRef]
- Ellenhorn, M.J.; Barceloux, D.G. Medical Toxicology: Diagnosis and Treatment of Human Poisoning; Elsevier: New York, NY, USA, 1988. [Google Scholar]
- Goodman, L.S.; Gilman, A. The Pharmacological Basis of Therapeutics; The Macmillan: New York, NY, USA, 1955. [Google Scholar]
- World Health Organization. Exposure to Lead: A Major Public Health Concern. 2010. Available online: https://www.who.int/publications/i/item/9789240037632 (accessed on 19 April 2023).
- Cullen, G.; Dines, A.; Kolev, S. Monograph for UKPID: Lead. Natl. Poisons Inf. Serv. 1996. Available online: https://inchem.org/documents/ukpids/ukpids/ukpid25.htm (accessed on 19 April 2023).
- World Health Organization. Environmental Health Criteria 3. Lead. Environ. Health Criteria 3 Lead. 1977. Available online: https://wedocs.unep.org/handle/20.500.11822/29263;jsessionid=9586356DB86BBFCDEF8D50499A1AA675 (accessed on 19 April 2023).
- Fewtrell, L.; Kaufman, R.; Prüss-Üstün, A. Lead: Assessing the Environmental Burden of Diseases at National and Local Levels. 2003. Available online: https://apps.who.int/iris/bitstream/handle/10665/42715/9241546107.pdf (accessed on 19 April 2023).
- de Menorval, M.-A.; Mir, L.M.; Fernández, M.L.; Reigada, R. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: A comparative study of experiments in silico and with cells. PLoS ONE 2012, 7, e41733. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-free perovskite materials for solar cells. Nano-Micro Lett. 2021, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Filip, M.R.; Giustino, F. Computational screening of homovalent lead substitution in organic–inorganic halide perovskites. J. Phys. Chem. C 2016, 120, 166–173. [Google Scholar] [CrossRef]
- Kim, G.Y.; Kim, K.; Kim, H.J.; Jung, H.S.; Jeon, I.; Lee, J.W. Sustainable and environmentally viable perovskite solar cells. EcoMat 2023, 5, e12319. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Shi, J.; Lian, J.; Gao, W.; Agiorgousis, M.L.; Zhang, P.; Zhang, S. Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 2016, 8, 6284–6289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, H.; Zhou, Q.; Wei, Q.; Wei, M.; Jiang, L.; Wang, Z.; Peng, Z.; Wang, F.; Zang, Z. One-step synthesis of SnI2·(DMSO) x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 2021, 143, 10970–10976. [Google Scholar] [CrossRef]
- Giorgi, G.; Fujisawa, J.-I.; Segawa, H.; Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J. Phys. Chem. Lett. 2013, 4, 4213–4216. [Google Scholar] [CrossRef]
- Park, S.Y.; Park, J.-S.; Kim, B.J.; Lee, H.; Walsh, A.; Zhu, K.; Kim, D.H.; Jung, H.S. Sustainable lead management in halide perovskite solar cells. Nat. Sustain. 2020, 3, 1044–1051. [Google Scholar] [CrossRef]
- Park, B.W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. J. Adv. Mater. 2015, 27, 6806–6813. [Google Scholar] [CrossRef]
- Nie, R.; Mehta, A.; Park, B.-w.; Kwon, H.-W.; Im, J.; Seok, S.I. Mixed sulfur and iodide-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 872–875. [Google Scholar] [CrossRef]
- Abd Mutalib, M.; Ahmad Ludin, N.; Nik Ruzalman, N.A.A.; Barrioz, V.; Sepeai, S.; Mat Teridi, M.A.; Su’ait, M.S.; Ibrahim, M.A.; Sopian, K. Progress towards highly stable and lead-free perovskite solar cells. Mater. Renew. Sustain. Energy 2018, 7, 7. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Li, X.; Qu, J.; Xie, H.; Gao, S.; Wang, D.; Yin, H. Recovery of lead and iodine from spent perovskite solar cells in molten salt. Chem. Eng. J. 2022, 447, 137498. [Google Scholar] [CrossRef]
- Poll, C.G.; Nelson, G.W.; Pickup, D.M.; Chadwick, A.V.; Riley, D.J.; Payne, D.J. Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chem. 2016, 18, 2946–2955. [Google Scholar] [CrossRef]
- Feng, X.; Guo, Q.; Xiu, J.; Ying, Z.; Ng, K.W.; Huang, L.; Wang, S.; Pan, H.; Tang, Z.; He, Z. Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine. Cell Rep. Phys. Sci. 2021, 2, 100341. [Google Scholar] [CrossRef]
- Wang, K.; Ye, T.; Huang, X.; Hou, Y.; Yoon, J.; Yang, D.; Hu, X.; Jiang, X.; Wu, C.; Zhou, G. “One-key-reset” recycling of whole perovskite solar cell. Matter 2021, 4, 2522–2541. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Gollavelli, G.; Chao, Y.-H.; Hsu, C.-S. Rejuvenation of perovskite solar cells. J. Mater. Chem. C 2016, 4, 7595–7600. [Google Scholar] [CrossRef]
- Xu, J.; Hu, Z.; Huang, L.; Huang, X.; Jia, X.; Zhang, J.; Zhang, J.; Zhu, Y. In situ recycle of PbI2 as a step towards sustainable perovskite solar cells. Prog. Photovolt. Res. Appl. 2017, 25, 1022–1033. [Google Scholar] [CrossRef]
- Chhillar, P.; Dhamaniya, B.P.; Dutta, V.; Pathak, S. Recycling of perovskite films: Route toward cost-efficient and environment-friendly perovskite technology. ACS Omega 2019, 4, 11880–11887. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.I.; Jeon, N.J.; Kim, B.J.; Shim, H.; Yang, T.Y.; Seok, S.I.; Seo, J.; Im, S.G. A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 2018, 8, 1701928. [Google Scholar] [CrossRef]
- Kim, N.-K.; Min, Y.H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S.-W.; Lee, J.S.; Kim, S.; Ihm, K. Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 2017, 7, 4645. [Google Scholar] [CrossRef]
- Su, P.; Liu, Y.; Zhang, J.; Chen, C.; Yang, B.; Zhang, C.; Zhao, X. Pb-based perovskite solar cells and the underlying pollution behind clean energy: Dynamic leaching of toxic substances from discarded perovskite solar cells. J. Phys. Chem. Lett. 2020, 11, 2812–2817. [Google Scholar] [CrossRef]
- Chen, S.; Deng, Y.; Gu, H.; Xu, S.; Wang, S.; Yu, Z.; Blum, V.; Huang, J. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 2020, 5, 1003–1011. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; He, H.; Berry, J.J.; Zhu, K.; Xu, T. On-device lead sequestration for perovskite solar cells. Nature 2020, 578, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, Z.; Wang, R. Long non-coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications. Int. J. Oncol. 2019, 55, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Wu, H.; Yin, J.; Wang, B.; Wu, G.; Kong, X.; Yan, B.; Yao, J.; Li, C.-Z.; Chen, H. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 2021, 6, 3443–3449. [Google Scholar] [CrossRef]
- Bi, H.; Han, G.; Guo, M.; Ding, C.; Zou, H.; Shen, Q.; Hayase, S.; Hou, W. Multistrategy Preparation of Efficient and Stable Environment-Friendly Lead-Based Perovskite Solar Cells. ACS Appl. Mater. 2022, 14, 35513–35521. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, J.; Duan, H.; Wang, H.; Fan, L.; Sun, Y.; Sui, Y.; Yang, J.; Wang, F.; Yang, L. Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering. Nano Res. 2022, 15, 1375–1382. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Z.; Guo, H.; Cheng, Y. Toxicity of Perovskite Solar Cells. Energies 2023, 16, 4007. https://doi.org/10.3390/en16104007
Yue Z, Guo H, Cheng Y. Toxicity of Perovskite Solar Cells. Energies. 2023; 16(10):4007. https://doi.org/10.3390/en16104007
Chicago/Turabian StyleYue, Ziyao, Hu Guo, and Yuanhang Cheng. 2023. "Toxicity of Perovskite Solar Cells" Energies 16, no. 10: 4007. https://doi.org/10.3390/en16104007