Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron
Abstract
:1. Introduction
2. Structure and Modeling of the System
2.1. Construction of the System Experimental Platform
2.2. Mathematical Model of the Robot’s Hand-Eye System
2.2.1. Theory of Coordinate System Transformation
2.2.2. Eye-in-Hand Model
2.3. Mathematical Model of the Binocular Camera
3. Calibration of System Parameters
3.1. Calibration of Binocular Camera Parameters
3.2. Calibration of Hand-Eye Positional Relationship Parameters
- (1)
- Adjusting the end pose of the mechanical arm using a teach pendant or remote-control mode, and reading the pose of the end tool coordinate system {tool} under the coordinate system {base} from the information system of the mechanical arm;
- (2)
- Using the left-eye camera to capture the images containing the complete calibration plate and adopting the operator map_image() to correct the correction mapping images (file of maps) obtained from calibration by the binocular camera;
- (3)
- Using the operator find_calib_object() to find the object in the corrected calibration plate images and adopting the operator get_calib_data_observ_pose() to extract the pose of the calibration plate coordinate system {cal} under the camera coordinate system {cam};
- (4)
- Repeating the process above to obtain 15 sets of pose relationships, using calibrate_hand_eye() to perform calibration calculation according to the hand-eye system model and using get_calib_data() to read the results.
4. Binocular Stereo Matching
4.1. Image Preprocessing
4.1.1. Smoothing Filtering
4.1.2. Image Graying
4.1.3. Histogram Equalization
- (1)
- Traversing the whole image to count the number of pixel points with the gray value ;
- (2)
- Calculating the probability of pixels with each gray value in the image:
- (3)
- For the pixel points with in the original gray image, calculating the gray value of each pixel point after equalization:
4.1.4. Image Preprocessing Experiment
4.2. Binocular Stereo Matching
4.2.1. Parallax and Depth
4.2.2. Binocular Stereo Matching Experiment
5. Depth Image Object Segmentation
5.1. Workflow and Structure of Multi-Layer Perceptron
5.2. Object Segmentation Experiment
- (1)
- Creation of the Training Set and Neural Network
- (1)
- The number of nodes in the input layer is 3; the number of nodes in the hidden layer is 6; the number of nodes in the output layer is 2;
- (2)
- The tanh function is the activation function of the hidden layer;
- (3)
- The softmax function is the activation function of the output layer.
- (1)
- The number of training iterations is 400;
- (2)
- The threshold of weight change is 1;
- (3)
- The threshold of iteration error is 0.1.
- (2)
- Object Segmentation
- (3)
- Regional Morphologic Processing
- (1)
- the operator fill_up() is used to fill the holes in the regions;
- (2)
- the operator opening_rectangle1() is used with a rectangular template to perform an opening operation on the regions and eliminate isolated points, burrs on regional edges and narrow bridges connecting the regions;
- (3)
- the operator select_shape() is used to select regions with the pixel area of the region as the filtering element and retain the regions with a large pixel area;
- (4)
- the operator closing_rectangle1() is used with a rectangular template to perform a closed operation on the regions, fill in notches on region edges, and make region edges flat.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.Z.; Yun-Zhang, L.I. A study on construction technology of load-bearing structure of traditional architecture in Taiping district. Archit. Technol. 2017. [Google Scholar]
- He, G.; Ahmad, K.M.; Yu, W.; Xu, X.; Kumar, J. A comparative analysis of machine learning and grey models. Arxiv e-prints 2021, arXiv:2104.00871. [Google Scholar]
- Wei, B.; Xie, N. On unified framework for continuous-time grey models: An integral matching perspective. Appl. Math. Model. 2022, 101, 432–452. [Google Scholar] [CrossRef]
- Hu, M.; Mao, J.; Li, J.; Wang, Q.; Zhang, Y. A Novel lidar signal denoising method based on convolutional autoencoding deep learning neural network. Atmosphere 2021, 12, 1403. [Google Scholar] [CrossRef]
- Yul, C.J.; Keun, Y.T.; Gi, S.J.; Jiyong, K.; Taewoong, U.T.; Hyungtaek, R.T.; Liu, B. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PLoS ONE 2017, 12, e0187336. [Google Scholar]
- Zhu, D.; Cai, C.; Yang, T.; Zhou, X. A Machine learning approach for air quality prediction: Model regularization and optimization. Big Data Cogn. Comput. 2018, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. A Publ. IEEE Signal Process. Soc. 2016, 65, 794–816. [Google Scholar] [CrossRef]
- Jin, M. Further promotion of quadratic time-varying parameters discrete grey model. Am. J. Inf. Sci. Technol. 2018, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Shengwu, H.U. Study on deformation of foundation pit based on grey neural network model of genetic algorithm. Sci. Surv. Mapp. 2019, 18, 365–378. [Google Scholar]
- Yu, H.; Xiao, M.; University, N.A. Grey neural network model for prediction of carbon emissions. Comput. Meas. Control 2017, 6, 562166. [Google Scholar]
- Yang, M.; Bian, Y.; Zhang, H.; Liu, G.; Zhang, S. Fire image detection based on support vector machine with improved particle swarm optimization. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar]
- Liu, C.; Luosang, R.; Yao, X.; Su, L. An integrated intelligent manufacturing model based on scheduling and reinforced learning algorithms. Comput. Ind. Eng. 2021, 155, 107193. [Google Scholar] [CrossRef]
- Wei, J.; Wang, R.; Jin, Y.; Zhang, J. An integrated protection algorithm of intelligent substation. J. Chang. Univ. Sci. Technol. (Nat. Sci. Ed.) 2017, 158, 108569. [Google Scholar]
- Alsghaier, H.; Akour, M. Software fault prediction using particle swarm algorithm with genetic algorithm and support vector machine classifier. Softw. Pract. Exp. 2020, 50, 407–427. [Google Scholar] [CrossRef]
- Liang, Q. Application of Convolution Neural Network (CNN) model combined with pyramid algorithm in aerobics action recognition. Comput. Intell. Neurosci. 2021, 2021, 6170070. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial examples for semantic segmentation and object detection. IEEE Comput. Soc. 2017, 12, 1378–1387. [Google Scholar]
- Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. SCNN: An accelerator for compressed-sparse convolutional neural networks. IEEE Comput. Soc. 2017, 24, 1124–1137. [Google Scholar]
- Aziz, M.; Ewees, A.A.; Hassanien, A.E. Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [Google Scholar] [CrossRef]
- Yassin, I.M.; Jailani, R.; Ali, M.; Baharom, R.; Rizman, Z.I. Comparison between cascade forward and multi-layer perceptron neural networks for NARX Functional Electrical Stimulation (FES)-based muscle model. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 215. [Google Scholar] [CrossRef]
- Gong, N.; Zhang, C.; Zhou, H.; Zhang, K.; Wu, Z.; Zhang, X. Classification of hyperspectral images via improved cycle-MLP. IET Comput. Vis. 2022, 16, 468–478. [Google Scholar] [CrossRef]
- Htike, K.K. Hidden-layer ensemble fusion of MLP neural networks for pedestrian detection. Inform. Int. J. Comput. Inform. 2017, 41, 104265. [Google Scholar]
- Wang, L.; Qin, Y.; Tao, T. Data modeling of calibration parameter measurement based on MLP model. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, 1–3 November 2019. [Google Scholar]
- Chi, Z.; Xiangjun, F.; Xianying, Z. Traffic flow forecasting model of correlated roads based on MLP. J. Chongqing Univ. Technol. (Nat. Sci.) 2021, 35, 129–135. (In Chinese) [Google Scholar]
- Yongsheng, L.; Jisheng, Q.; Jianping, H.; Hailei, W.; Shaoting, Q.; Yuan, Q.; Yanping, L. Establishment of microbial growth model for a viation catering by artificial neural network. Food Technol. 2010, 35, 104–109. (In Chinese) [Google Scholar]
- XueSong, D.; Liqun, H.; Buzhong, Z.; Yang, Y.; Qiang, L. Prediction of protein denaturation temperature based on multilayer perceptron. Comput. Appl. Res. 2019, 36, 2421–2422. (In Chinese) [Google Scholar]
Parameter | /mm | /μm | /μm | Image Width | Image High | ||
---|---|---|---|---|---|---|---|
Left eye | 4.767 | 3.394 | 3.380 | 967.551 | 529.788 | 1920 | 1080 |
Right eye | 4.776 | 3.394 | 3.380 | 951.657 | 540.111 | 1920 | 1080 |
Parameter | /(m2)−1 | /(m4)−1 | /(m6)−1 | /(m2)−1 | /(m2)−1 |
---|---|---|---|---|---|
Left eye | −519.880 | −1.594 ×107 | 4.256 × 1012 | 0.124104 | −0.236724 |
Right eye | −482.356 | −3.230 ×107 | 5.406 × 1012 | 0.180746 | −0.204752 |
Parameter | ||||||
---|---|---|---|---|---|---|
/deg | /deg | /deg | /mm | /mm | /mm | |
parameter value | 0.0238 | 0.2601 | 359.9840 | 60.1305 | 0.0956 | 1.1106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Zhang, G.; Zhang, L.; Han, W.; Shi, Z.; Lv, X. Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron. Energies 2023, 16, 232. https://doi.org/10.3390/en16010232
Zhu M, Zhang G, Zhang L, Han W, Shi Z, Lv X. Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron. Energies. 2023; 16(1):232. https://doi.org/10.3390/en16010232
Chicago/Turabian StyleZhu, Mingxiang, Guangming Zhang, Lingxiu Zhang, Weisong Han, Zhihan Shi, and Xiaodong Lv. 2023. "Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron" Energies 16, no. 1: 232. https://doi.org/10.3390/en16010232
APA StyleZhu, M., Zhang, G., Zhang, L., Han, W., Shi, Z., & Lv, X. (2023). Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron. Energies, 16(1), 232. https://doi.org/10.3390/en16010232