Review of Photovoltaic Power and Aquaculture in Desert
Abstract
:1. Introduction
2. PV Power Plants and Aquaculture System in Desert
2.1. Solar Cells and PV System
2.2. Possibility of Combining PV Power Plants and Aquaculture System in Desert
2.3. PV Power Plants in Desert
2.4. Aquaculture in Desert
2.4.1. Aquaculture System
2.4.2. Cultured Species
2.4.3. Water Utilization
3. Challenges
3.1. Challenges of PV Power Plants in Desert Area
3.1.1. Dust/Soiling
3.1.2. Other Factors
3.2. Challenges of Aquaculture Operation in Desert Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
GW | Gigawatt |
SGD | Sustainable Development Goal |
CSP | Concentrated Solar Power |
ESS | Energy Storage System |
BESS | Battery Energy Storage System |
DC | Direct Current |
AC | Alternating Current |
RAS | Recirculation Aquaculture Systems |
MW | Megawatt |
CPV | Concentrated PV |
VLS-PV | Very Large-Scale PV |
UV | Ultraviolet |
LED | Light-Emitting Diode |
GDP | Gross Domestic Product |
References
- Murdock, H.E.; Gibb, D.; Andre, T.; Sawin, J.L.; Brown, A.; Ranalder, L.; Andre, T.; Brown, A.; Collier, U.; Dent, C.; et al. Renewables 2021 Global Status Report; REN21: Paris, France, 2021; ISBN 978-3-948393-03-8. [Google Scholar]
- The SDGs in Action. UNDP. Available online: https://www.undp.org/sustainable-development-goals (accessed on 24 April 2022).
- Obaideen, K.; AlMallahi, M.N.; Al-Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [Google Scholar] [CrossRef]
- De Groote, O.; Verboven, F. Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. Am. Econ. Rev. 2019, 109, 2137–2172. [Google Scholar] [CrossRef]
- Ong, S.; Campbell, C.M.; Denholm, P.; Margolis, R.M.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; NREL: Denver, CO, USA, 2013.
- Energy from the Desert: Very Large Scale Photovoltaic Systems: Socio-economic, Financial, Technical and Environmental Aspects. Manag. Environ. Qual. Int. J. 2010, 21, 1–152. [CrossRef]
- Khan, J.; Arsalan, M.H. Solar power technologies for sustainable electricity generation—A review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Shafiullah, G.M.; Mo, H.; Atef, M. A review on hybrid photovoltaic–Battery energy storage sysem: Current status, challenges, and future directions. J. Energy Storage 2022, 51, 104597. [Google Scholar] [CrossRef]
- Rana, M.M.; Romlie, M.F.; Abdullah, M.F. Peak load shaving in isolated microgrid by using hybrid PV-BESS system. Int. J. 2020, 8, 7–14. [Google Scholar] [CrossRef]
- Menicou, M.; Vassiliou, V. Prospective energy needs in Mediterranean offshore aquaculture: Renewable and sustainable energy solutions. Renew. Sustain. Energy Rev. 2010, 14, 3084–3091. [Google Scholar] [CrossRef]
- Pringle, A.M.; Handler, R.; Pearce, J. Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef] [Green Version]
- “Solar Cells”, Chemistry Explained. Available online: http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html (accessed on 22 April 2022).
- Akella, A.; Saini, R.; Sharma, M. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. Aesthetic impact of solar energy systems. Renew. Sustain. Energy Rev. 2018, 98, 227–238. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Fuhrmann, M.; Heiser, J.; Lanzirotti, A.; Fitts, J.; Wang, W. Emissions and encapsulation of cadmium in CdTe PV modules during fires. Prog. Photovolt. Res. Appl. 2005, 13, 713–723. [Google Scholar] [CrossRef]
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Guerin, T. A case study identifying and mitigating the environmental and community impacts from construction of a utility-scale solar photovoltaic power plant in eastern Australia. Sol. Energy 2017, 146, 94–104. [Google Scholar] [CrossRef]
- Soliño, M.; Prada, A.; Vázquez, M. Green electricity externalities: Forest biomass in an Atlantic European Region. Biomass-Bioenergy 2009, 33, 407–414. [Google Scholar] [CrossRef]
- Alsema, E. Energy Payback Time and CO2 Emissions of PV Systems. Pract. Handb. Photovolt. 2012, 2, 1097–1117. [Google Scholar] [CrossRef]
- Da Silva, G.D.P.; Branco, D.A.C. Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assess. Proj. Apprais. 2018, 36, 390–400. [Google Scholar] [CrossRef]
- Tammaro, M.; Salluzzo, A.; Rimauro, J.; Schiavo, S.; Manzo, S. Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. J. Hazard. Mater. 2016, 306, 395–405. [Google Scholar] [CrossRef]
- De Marco, A.; Petrosillo, I.; Semeraro, T.; Pasimeni, M.R.; Aretano, R.; Zurlini, G. The contribution of Utility-Scale Solar Energy to the global climate regulation and its effects on local ecosystem services. Glob. Ecol. Conserv. 2014, 2, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Beylot, A.; Payet, J.; Puech, C.; Adra, N.; Jacquin, P.; Blanc, I.; Beloin-Saint-Pierre, D. Environmental impacts of large-scale grid-connected ground-mounted PV installations. Renew. Energy 2014, 61, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Alami, A.H.; Faraj, M.; Aokal, K.; Abu Hawili, A.; Tawalbeh, M.; Zhang, D. Investigating Various Permutations of Copper Iodide/FeCu Tandem Materials as Electrodes for Dye-Sensitized Solar Cells with a Natural Dye. Nanomaterials 2020, 10, 784. [Google Scholar] [CrossRef] [Green Version]
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.; Mokhlis, H.; Bakar, A.; Kazi, S. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Environmental impacts of copper-indium-galliumselenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition. Sci. Total Environ. 2019, 688, 1092–1101. [Google Scholar] [CrossRef]
- Komoto, K.; Sinha, P.; Ehara, T.; Wade, A. Energy from the Desert: Very Large Scale PV Power Plants for Shifting to Re-Newable Energy Future. 2018. Available online: https://www.researchgate.net/publication/273886472 (accessed on 22 April 2022).
- Breckle, S.W.; Veste, M.; Wucherer, W. Deserts, Land-Use and Desertification. In Sustainable Land-Use in Deserts; Breckle, S.W., Veste, M., Wucherer, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–13. [Google Scholar]
- Apeh, O.; Overen, O.; Meyer, E. Monthly, Seasonal and Yearly Assessments of Global Solar Radiation, Clearness Index and Diffuse Fractions in Alice, South Africa. Sustainability 2021, 13, 2135. [Google Scholar] [CrossRef]
- Kolkovski, S. An overview on desert aquaculture in Australia. In Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities; Crespi, V., Lovatelli, A., Eds.; FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20; FAO: Rome, Italy, 2011; pp. 39–60. [Google Scholar]
- Mapfumo, B. An overview on desert aquaculture in Sothern Africa. In Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities; Crespi, V., Lovatelli, A., Eds.; FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20; FAO: Rome, Italy, 2011; pp. 119–140. [Google Scholar]
- Allan, G.L.; Heasman, H.; Bennison, S. Development of Industrial-Scale Inland Saline Aquaculture: Coordination and Communication of Research and Development in Australia; Final Report to the Fisheries Research and Development Corporation for Project No. 2004/241; Fisheries Final Report Series No. 99; NSW Department of Primary Industries: Orange, NSW, Australia, 2008; p. 245.
- Allan, G.; Fielder, D.; Fitzsimmons, K.; Applebaum, S.; Raizada, S. Inland saline aquaculture. In New Technologies in Aquaculture; Elsevier BV: Amsterdam, The Netherlands, 2009; pp. 1118–1147. [Google Scholar]
- Doupé, R.G.; Sarre, G.A.; Partridge, G.; Lymbery, A.J.; Jenkins, G.I. What are the prospects for black bream Acanthopagrus butcheri (Munro) aquaculture in salt-affected inland Australia? Aquac. Res. 2005, 36, 1345–1355. [Google Scholar] [CrossRef]
- Johnston, B. Profit model consultancy: Economic models for inland saline aquaculture of finfish, prawns and re-circulation culture. In Development of Industrial-Scale Inland Saline Aquaculture: Coordination and Communication of Research and Development in Australia; Allan, G.L., Heasman, H., Bennison, S., Eds.; 191—Final report to FRDC Project No. 2004/241, Fisheries Final Report Series; NSW Department of Primary Industries: Orange, NSW, Australia, 2008. [Google Scholar]
- Parker, S.S.; Cohen, B.S.; Moore, J. Impact of solar and wind development on conservation values in the Mojave Desert. PLoS ONE 2018, 13, e0207678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boretti, A.; Castelletto, S.; Al-Kouz, W.; Nayfeh, J. Capacity factors of solar photovoltaic energy facilities in California, annual mean and variability. In E3S Web of Conferences 181, Proceedings of the 2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020), Paris, France, 6–9 May 2020; EDP Sciences: Les Ulis, France, 2020; pp. 1–5. [Google Scholar]
- Mukwaya, P. Solar Power Prospects in North Africa’s Sahara Desert. Backfrounder No 4, April 2011. Available online: https://www.africaportal.org/ (accessed on 22 April 2022).
- Al Habaibeh, A. Should We Turn the Sahara Desert into a Huge Solar Farm? Available online: https://theconversation.com/should-we-turn-the-sahara-desert-into-a-huge-solar-farm-114450 (accessed on 22 April 2022).
- Mendelsohn, M.; Lowder, T.; Canavan, B. Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview; National Renewable Energy Laboratory: Golden, CO, USA, 2012; pp. 1–65.
- Lu, Z.; Zhang, Q.; Miller, P.A.; Berntell, E.; Smith, B. Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation Cover. Geophys. Res. Lett. 2021, 48, e2020GL090789. [Google Scholar] [CrossRef]
- Balghouthi, M.; Trabelsi, S.E.; Ben Amara, M.; Ali, A.B.H.; Guizani, A. Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe. Renew. Sustain. Energy Rev. 2016, 56, 1227–1248. [Google Scholar] [CrossRef]
- Hernández, C.; Barraza, R.; Saez, A.; Ibarra, M.; Estay, D. Potential Map for the Installation of Concentrated Solar Power Towers in Chile. Energies 2020, 13, 2131. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, K.; Wang, C. Analysis of the Cost and Value of Concentrating Solar Power in China; NREL/TP-6A20-74303; National Renewable Energy Laboratory: Golden, CO, USA, 2019; pp. 11–44.
- Available online: https://scroll.in/article/744257/china-is-building-a-massive-solar-plant-in-the-gobi-desert (accessed on 22 April 2022).
- Available online: http://english.www.gov.cn/news/photos/202009/15/content_WS5f6013cbc6d0f7257693bfd1.html (accessed on 22 April 2022).
- Available online: https://www.dewa.gov.ae/en/about-us/media-publications/latest-news/2019/03/mohammed-bin-rashid-al-maktoum-solar-park (accessed on 22 April 2022).
- Available online: https://helioscsp.com/cerro-dominador-solar-thermal-plant-inaugurated-in-chile (accessed on 22 April 2022).
- Available online: https://www.reddit.com/r/InfrastructurePorn/comments/a7b55j/ivanpah_solar_power_facility_in_the_mojave_desert (accessed on 22 April 2022).
- Appelbaum, S. Aquaculture experiences in the Negev Desert in Israel. In Aquaculture in Desert and Arid Lands: DevelOpmental Constraints and Opportunities; FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No; FAO: Rome, Italy, 2011; pp. 113–118. [Google Scholar]
- Available online: https://www.mof.go.kr/iframe/article/view.do?articleKey=13742&boardKey=10&menuKey=376¤tPageNo=1 (accessed on 22 April 2022).
- Van Anrooy, R.; Marmulla, G.; Çelebi, R. (Eds.) Report of the Regional Workshop on Inland Fisheries and Aquaculture in Central Asia: Status and Development Prospects; FAO: Rome, Italy, 2008; p. 58. [Google Scholar]
- Karimov, B. An overview on desert aquaculture in Central Asia (Aral Sea Drainage Basin). In Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities; Crespi, V., Lovatelli, A., Eds.; FAO: Rome, Italy, 2011; pp. 61–84. [Google Scholar]
- Partridge, G.; Creeper, J. Skeletal myopathy in juvenile barramundi, Lates calcarifer (Bloch), cultured in potassium-deficient saline groundwater. J. Fish Dis. 2004, 27, 523–530. [Google Scholar] [CrossRef]
- Partridge, G.; Lymbery, A. The effect of salinity on the requirement for potassium by barramundi (Lates calcarifer) in saline groundwater. Aquaculture 2008, 278, 164–170. [Google Scholar] [CrossRef]
- Kolkovski, S.; Curnow, J.; King, J. Further Development towards Commercialization of Marine Fish Larvae Feeds—Artemia; Final Report to Fisheries Research and Development Corporation Project No. 2004; Department of Fisheries: Hillarys, WA, Australia, 2010; no. 195.
- Kassim, N.K. New Technique for Treatment of the dust accumulation from PV solar panels surface. Iraqi J. Phys. 2010, 8, 54–59. [Google Scholar]
- Ju, F.; Fu, X. Research on impact of dust on solar photovoltaic(PV) performance. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 3601–3606. [Google Scholar]
- Touati, F.; Al-Hitmi, M.; Bouchech, H. Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia, 26–28 March 2012; pp. 78–83. [Google Scholar]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Fountoukis, C.; Figgis, B.; Ackermann, L.; Ayoub, M.A. Effects of atmospheric dust deposition on solar PV energy production in a desert environment. Sol. Energy 2018, 164, 94–100. [Google Scholar] [CrossRef]
- Sinha, P. Experiences of First Solar with VLS PV; IEA PVPS Task 8 Meeting: Casablanca, Morocco, 2014. [Google Scholar]
- Ghazi, S.; Sayigh, A.; Ip, K. Dust effect on flat surfaces—A review paper. Renew. Sustain. Energy Rev. 2014, 33, 742–751. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Lu, H. A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment. Sol. Energy 2016, 140, 236–240. [Google Scholar] [CrossRef]
- Zahedi, R.; Ranjbaran, P.; Gharehpetian, G.; Mohammadi, F.; Ahmadiahangar, R. Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives. Energies 2021, 14, 2018. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Samara, A.; Suwaileh, W.; Johnson, D.; Yiming, W.; Abdallah, A.A.; Aïssa, B. Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- He, G.; Zhou, C.; Li, Z. Review of Self-Cleaning Method for Solar Cell Array. Procedia Eng. 2011, 16, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Arabatzis, I.; Todorova, N.; Fasaki, I.; Tsesmeli, C.; Peppas, A.; Li, W.X.; Zhao, Z. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol. Energy 2018, 159, 251–259. [Google Scholar] [CrossRef]
- Zhong, H.; Hu, Y.; Wang, Y.; Yang, H. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels. Appl. Energy 2017, 204, 932–938. [Google Scholar] [CrossRef]
- Piliougine, M.; Cañete, C.; Moreno, R.; Carretero, J.; Hirose, J.; Ogawa, S.; Sidrach-De-Cardona, M. Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Appl. Energy 2013, 112, 626–634. [Google Scholar] [CrossRef]
- Grau-Luque, E.; Antonanzas-Torres, F.; Escobar, R. Effect of soiling in bifacial PV modules and cleaning schedule optimization. Energy Convers. Manag. 2018, 174, 615–625. [Google Scholar] [CrossRef]
- Abushgair, K.; Al-Waked, R. Effects of Coating Materials as a Cleaning Agent on the Performance of Poly-Crystal PV Panels. Coatings 2021, 11, 544. [Google Scholar] [CrossRef]
- Moharram, K.; Abd-Elhady, M.; Kandil, H.; El-Sherif, H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Convers. Manag. 2013, 68, 266–272. [Google Scholar] [CrossRef]
- Bin Ahmed, A.; Kazmi, S.A.A.; Ameer, U.; Shehzad, S. Cleaning Mechanism to Improve Efficiency and Sustainability of Desert Solar Plant. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019; pp. 1–6. [Google Scholar]
- Kumar, N.M.; Sudhakar, K.; Samykano, M.; Jayaseelan, V. On the technologies empowering drones for intelligent monitoring of solar photovoltaic power plants. Procedia Comput. Sci. 2018, 133, 585–593. [Google Scholar] [CrossRef]
- Al-Housani, M.; Bicer, Y.; Koç, M. Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Convers. Manag. 2019, 185, 800–815. [Google Scholar] [CrossRef]
- Sharma, D.; Talwariya, A.; Pandey, A.; Singh, P. Shrouded problems of solar power plant and recommendations. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5. [Google Scholar]
- Micheli, L.; Muller, M. An investigation of the key parameters for predicting PV soiling losses. Prog. Photovolt. Res. Appl. 2017, 25, 291–307. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Sabziparvar, A.A. A simple formula for estimating global solar radiation in central arid deserts of Iran. Renew. Energy 2008, 33, 1002–1010. [Google Scholar] [CrossRef]
- Zsiborács, H.; Zentkó, L.; Pintér, G.; Vincze, A.; Baranyai, N.H. Assessing shading losses of photovoltaic power plants based on string data. Energy Rep. 2021, 7, 3400–3409. [Google Scholar] [CrossRef]
- Hulata, G.; Simon, Y. An overview on desert aquaculture in Israel. In Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities; Crespi, V., Lovatelli, A., Eds.; FAO: Rome, Italy, 2011; pp. 85–112. [Google Scholar]
- Prasetyaningsari, I.; Setiawan, A.; Setiawan, A.A. Design Optimization of Solar Powered Aeration System for Fish Pond in Sleman Regency, Yogyakarta by HOMER Software. Energy Procedia 2013, 32, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Mayilsamy, S. A conceptual approach for development of solar powered aeration system in aquaculture farms. Int. J. Environ. Sci. Technol. 2016, 5, 2921–2925. [Google Scholar]
- Kirihara, S.; Shida, T.; Kubota, T.; Honda, A.; Itaka, K.; Guan, G.; Ioka, S. Research on utilization of renewable energy for aquaculture of horse mackerel and sea cucumber in fishing ports. In Grand Renewable Energy 2018, Proceedings of the Japan council for Renewable Energy (2018), Yokohama, Japan, 17–22 June 2018; Japan Council for Renewable Energy: Tokyo, Japan, 2018. [Google Scholar]
- Cornejo-Ponce, L.; Vilca-Salinas, P.; Lienqueo-Aburto, H.; Arenas, M.J.; Pepe-Victoriano, R.; Carpio, E.; Rodríguez, J. Integrated Aquaculture Recirculation System (IARS) Supported by Solar Energy as a Circular Economy Alternative for Resilient Communities in Arid/Semi-Arid Zones in Southern South America: A Case Study in the Camarones Town. Water 2020, 12, 3469. [Google Scholar] [CrossRef]
- Satriadi, A.B. Designing Windmill as a Driver of Shrimp Pond Aerator. Undergraduate Thesis, Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia, 2010; p. 57. [Google Scholar]
- Tien, N.N.; Matsuhashi, R.; Chau, V.T.T.B. A Sustainable Energy Model for Shrimp Farms in the Mekong Delta. Energy Procedia 2019, 157, 926–938. [Google Scholar] [CrossRef]
- Chowdhury, T.; Chowdhury, H.; Chowdhury, P.; Hasnat, A.; Barua, B.; Islama, R. Analysis of a Solar PV System for Aeration System in Aquaculture. In Proceedings of the International Conference on Mechanical, Industrial and Energy Engineering 2018, Khulna, Bangladesh, 23–24 December 2018. [Google Scholar]
- Liu, X.; Xu, H.; Ma, Z.; Zhang, Y.; Tian, C.; Cheng, G.; Zou, H.; Lu, S.; Liu, S.; Tang, R. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture. PLoS ONE 2016, 11, e0146637. [Google Scholar] [CrossRef]
- Zamora, D.T.; Sánchez, F.D.L.R.; Teba, E.M.S.; Tous, M.C.; Campos, R.R. Design of an aquaponic system run on solar power for a family business in Chad. Eur. J. Manag. Bus. Econ. 2019, 9, 39–48. [Google Scholar] [CrossRef]
- Babiyola, D.; Thamarai Selva, J. A Conceptual approach for development of solar power supply in aquaculture farm using net meter system in Nagapattinam Area. Emp. J. Appl. Sci. Res. 2019, 5, 1–7. [Google Scholar]
- Hua, H.; Qin, Z.; Dong, N.; Qin, Y.; Ye, M.; Wang, Z.; Chen, X.; Cao, J. Data-Driven Dynamical Control for Bottom-up Energy Internet System. IEEE Trans. Sustain. Energy 2021, 13, 315–327. [Google Scholar] [CrossRef]
- Hua, H.; Wei, Z.; Qin, Y.; Wang, T.; Li, L.; Cao, J. Review of distributed control and optimization in energy internet: From traditional methods to artificial intelligence-based methods. IET Cyber-Phys. Syst. Theory Appl. 2021, 6, 63–79. [Google Scholar] [CrossRef]
- Farrag, M.S. Towards the Integrated Agri-aquaculture in the Desert Using Groundwater Reservoirs for Plants and Nile Tilapia Farming. Egypt. J. Aquat. Biol. Fish. 2021, 25, 215–235. [Google Scholar]
- Kaleem, O.; Sabi, A.-F.B.S. Overview of aquaculture systems in Egypt and Nigeria, prospects, potentials, and constraints. Aquac. Fish. 2021, 6, 535–547. [Google Scholar] [CrossRef]
- Jawad, L.A.; Abdulsamad, S.M.S. How Possible to Use the Desert Area in Iraq for Aquaculture Industry: Basic Facts and Recommondations. In Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; pp. 1047–1052. [Google Scholar]
- Hülya, S.; Abdallah, T.S.Y. Aquaculture production of North African countries in the year. J. Surv. Fish. Sci. 2021, 8, 107–118. [Google Scholar] [CrossRef]
Position | Name of Desert | Area (106 ha) [28] | Average Solar Irradiation (MJ/m2/d) [29] |
---|---|---|---|
North America | Great basin | 49 | 20.32 |
Chihuahuan | 45 | 19.68 | |
Sonoran | 31 | 17.21 | |
South Africa | Patagonian | 67 | 12.81 |
Atacama | 36 | 22.08 | |
Africa | Sahara | 907 | 26.46 |
Kalahari | 57 | 22.54 | |
Asia | Arabia | 246 | 22.24 |
Gobi | 130 | 16.53 | |
Thar | 60 | 21.44 | |
Takia Makan | 52 | 16.19 | |
Kara kum | 35 | 16.34 | |
Kyzyl kum | 30 | 16.34 | |
Kavir | 26 | 18.33 | |
Lut | 5 | 5 | |
Australia | Great Victoria | 65 | 21.57 |
Great Sandy | 40 | 23.11 | |
Simpson | 15 | 21.57 | |
Total | 1896 | 339.76 |
Area | Aquaculture Systems | References | Remark |
---|---|---|---|
Australia | Pond-based | Kolkovski [30] | Can cover FPV [33] |
Enclosed tanks | For culture of artemia | ||
Shallow lakes | Microalgae | ||
Asia | Pond | Karimov [51] | |
Israel | Pond | Appelbaum [50] Hulata and Simon [52] | |
South Africa | Recirculation aquaculture system (RAS) | Mapfumo [30] | |
Cage culture | |||
Earth pond culture | |||
Open tank |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, T.T.E.; Je, S.-M.; Jung, S.-H.; Choi, J.; Huh, J.-H.; Ko, H.-J. Review of Photovoltaic Power and Aquaculture in Desert. Energies 2022, 15, 3288. https://doi.org/10.3390/en15093288
Vo TTE, Je S-M, Jung S-H, Choi J, Huh J-H, Ko H-J. Review of Photovoltaic Power and Aquaculture in Desert. Energies. 2022; 15(9):3288. https://doi.org/10.3390/en15093288
Chicago/Turabian StyleVo, Thi Thu Em, Seung-Mo Je, Se-Hoon Jung, Jaehyeon Choi, Jun-Ho Huh, and Han-Jong Ko. 2022. "Review of Photovoltaic Power and Aquaculture in Desert" Energies 15, no. 9: 3288. https://doi.org/10.3390/en15093288