Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Fuzzy Analytic Hierarchy Process
- Step 1: Constructing the fuzzy AHP model.
- Step 2: Constructing the pairwise comparison matrix.
- Step 3: Determine the highest possible individual value.
- Step 4: Check for consistency.
3.2. The Weighted Aggregates Sum Product Assessment (WASPAS)
- 1.
- is used to create a decision matrix, where xij is the performance of the ith option with regard to the jth criterion, q denotes the number of alternatives, and r denotes the number of criteria.
- 2.
- The following two equations are used to normalize the decision matrix:
- 3.
- The following equation is used to determine the significance of the ith alternative:
- 4.
- The overall significance of the ith choice is then determined using the following equation:
- 5.
- The two WSM and WPM approaches are then blended using the joint additive based on the following equation:
- 6.
- The following equation defines a more generalized equation for estimating the importance using the WASPAS method:
- 7.
- The following equation is used to obtain the optimum values:The variances and are calculated by the following equations:
- 8.
- The normalized variance estimates for the first criterion values are derived as follows:
4. Case Study
5. Conclusions
- ✓ The first hybrid framework for location evaluation and selection in Vietnam that uses SWOC analysis.
- ✓ The first study with the assistance of a case study that utilizes SWOC analysis, FAHP, and WASPAS together.
- ✓ The results of this study serve as a suitable calculation method for evaluating and selecting optimal locations for solar power plants, for both solar energy projects in Mekong Delta and globally.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Điện Mặt Trời ở Đồng Bằng Sông Cửu Long Trên đà Phát Triển. Available online: https://kinhdoanhvaphattrien.vn/dien-mat-troi-o-dong-bang-song-cuu-long-tren-da-phat-trien.html (accessed on 10 August 2021).
- Điện Mặt Trời Phát Triển Mạnh ở Đồng Bằng Sông Cửu Long. Available online: http://ceid.gov.vn/dien-mat-troi-phat-trien-manh-o-dong-bang-song-cuu-long/ (accessed on 10 August 2021).
- Solar Resource Maps and GIS Data for 200+ Countries. Available online: https://solargis.com/maps-and-gis-data/overview (accessed on 10 August 2021).
- Kieu, P.; Nguyen, V.; Nguyen, V.; Ho, T. A Spherical Fuzzy Analytic Hierarchy Process (SF-AHP) and Combined Compromise Solution (CoCoSo) Algorithm in Distribution Center Location Selection: A Case Study in Agricultural Supply Chain. Axioms 2021, 10, 53. [Google Scholar] [CrossRef]
- Tadić, S.; Krstić, M.; Roso, V.; Brnjac, N. Dry port terminal location selection by applying the hybrid grey MCDM model. Sustainability 2020, 12, 6983. [Google Scholar] [CrossRef]
- Budak, A.; Kaya, İ.; Karaşan, A.; Erdoğan, M. Real-time location systems selection by using a fuzzy MCDM approach: An application in humanitarian relief logistics. Appl. Soft Comput. 2020, 92, 106322. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.; Thai, H.; Duong, D. Multi-criteria decision making (MCDM) approaches for solar power plant location selection in Viet Nam. Energies 2018, 11, 1504. [Google Scholar] [CrossRef] [Green Version]
- Ulutaş, A.; Balo, F.; Sua, L.; Demir, E.; Topal, A.; Jakovljević, V. A new integrated grey MCDM model: Case of warehouse location selection. Facta Univ. Ser. Mech. Eng. 2021, 19, 515. [Google Scholar] [CrossRef]
- Dweiri, F.; Kumar, S.; Khan, S.; Jain, V. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst. Appl. 2016, 62, 273–283. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.; Kao, J.; Chen, C.; Nguyen, V. Multi-criteria decision-making methods in fuzzy decision problems: A case study in the frozen shrimp industry. Symmetry 2021, 13, 370. [Google Scholar] [CrossRef]
- Rezaeisaray, M.; Ebrahimnejad, S.; Khalili-Damghani, K. A novel hybrid MCDM approach for outsourcing supplier selection. J. Model. Manag. 2016, 11, 536–559. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Liu, H.; Quan, M.; Li, Z.; Wang, Z. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 486, 254–270. [Google Scholar] [CrossRef]
- Prabhuram, T.; Rajmohan, M.; Tan, Y.; Johnson, R.R. Performance evaluation of Omni channel distribution network configurations using multi criteria decision making techniques. Ann. Oper. Res. 2020, 288, 435–456. [Google Scholar] [CrossRef]
- Titiyal, R.; Bhattacharya, S.; Thakkar, J. The distribution strategy selection for an e-tailer using a hybrid DANP VIKOR MCDM model. Benchmark. Int. J. 2019, 26, 395–433. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; García-Cascales, M.S. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Kannan, D.; Moazzeni, S.; mostafayi Darmian, S.; Afrasiabi, A. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. J. Clean. Prod. 2021, 279, 122368. [Google Scholar] [CrossRef]
- Simsek, Y.; Watts, D.; Escobar, R. Sustainability evaluation of concentrated solar power (CSP) projects under clean development mechanism (CDM) by using multi criteria decision method (MCDM). Renew. Sustain. Energy Rev. 2018, 93, 421–438. [Google Scholar] [CrossRef]
- Jahangiri, M.; Shamsabadi, A.A.; Mostafaeipour, A.; Rezaei, M.; Yousefi, Y.; Pomares, L.M. Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. Int. J. Hydrogen Energy 2020, 45, 13862–13875. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Kizielewicz, B.; Shekhovtsov, A.; Yelmikheiev, M.; Kozlov, V.; Sałabun, W. Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon. Energies 2021, 14, 5727. [Google Scholar] [CrossRef]
- Chen, C.R.; Huang, C.C.; Tsuei, H.J. A hybrid MCDM model for improving GIS-based solar farms site selection. Int. J. Photoenergy 2014, 2014, 925370. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for renewable energy spatial models: Assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain. Clean Technol. Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Wang, C.N.; Dang, T.T.; Wang, J.W. A combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Rep. 2022, 8, 1124–1142. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Periyanayagam AD, V.R.; Santhan Kumar, C.; Praveen Kumar, B.; Srinivasan, S.; Kathiravan, P. Optimal sizing, selection, and techno-economic analysis of battery storage for PV/BG-based hybrid rural electrification system. IETE J. Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Lee, A.H.I. A fuzzy supplier selection model with the consideration of benefits opportunities, costs and risks. Expert Syst. Appl. 2009, 36, 2879–2893. [Google Scholar] [CrossRef]
- Lee, H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. A green supplier selection model for high-tech industry. Expert Syst. Appl. 2009, 36, 7917–7927. [Google Scholar] [CrossRef]
- Lee, H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. Fuzzy multiple goal programming applied to TFT-LCD supplier selection by downstream manufacturers. Expert Syst. Appl. 2009, 36, 6318–6325. [Google Scholar] [CrossRef]
- Lee, H.I.; Kang, H.Y.; Wang, W.P. Analysis of priority mix planning for semiconductor fabrication under uncertainly. Int. J. Adv. Manuf. Technol. 2005, 28, 351–361. [Google Scholar] [CrossRef]
- Cheng, C.H. Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets Syst. 1999, 107, 25–35. [Google Scholar] [CrossRef]
- dehghani, M.; Esmaeilian, M.; Tavakkoli-Moghaddam, R. Employing Fuzzy ANP for Green Supplier Selection and Order Allocations: A Case Study. Int. J. Econ. Manag. Sci. 2013, 2, 565–575. [Google Scholar]
- Lin, R.; Lin, J.J.; Shu, C.J.; Diodes, T.; Chao, H.; Peter, J.C. Note on group consistency in analytic hierarchy process. Eur. J. Oper. Res. 2008, 190, 627–678. [Google Scholar] [CrossRef]
- Kuswandari, R. Assessment of Different Methods for Measuring the Sustainability of Forest Management. Master’s Thesis, International Institute for Geo-Information Science and Earth Observation Science, Enschede, The Netherlands, 2004. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process—Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zavadskas, E.; Turskis, Z.; Antucheviciene, J. Optimization of weighted aggregated sum product assessment. Electron. Electr. Eng. 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Bagočius, V.; Zavadskas, K.; Turskis, Z. Multi-criteria selection of a deep-water port in Klaipeda. Procedia Eng. 2013, 57, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Turskis, Z.; Zavadskas, E.; Antucheviciene, J.; Kosareva, N. A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. Int. J. Comput. Commun. Control 2015, 10, 113. [Google Scholar] [CrossRef]
- Chuyển Dịch Năng Lượng Bền Vững tại Đồng Bằng Sông Cửu Long—Bài 1: Xu Thế Tất Yếu và Bền Vững. Available online: https://moit.gov.vn/tin-tuc/70-nam-nganh-cong-thuong/chuyen-dich-nang-luong-ben-vung-tai-dong-bang-song-cuu-long-3.html (accessed on 10 August 2021).
- Đồng Bằng Sông Cửu Long: Phát Triển Năng Lượng Tái Tạo—Cơ Hội Ứng Phó Biến Đổi Khí Hậu. Available online: http://tnmttuyenquang.gov.vn/tin-tuc/khoa-hoc-cong-nghe!/Dong-bang-song-Cuu-Long-Phat-trien-nang-luong-tai-tao-co-hoi-ung-pho-BDKH-12577.html (accessed on 10 August 2021).
No. | Name | Symbol |
---|---|---|
1 | Long Xuyen, An Giang | SP01 |
2 | Can Tho | SP02 |
3 | My Tho, Tien Giang | SP03 |
4 | Rach Gia, Kien Giang | SP04 |
5 | Vi Thanh, Hau Giang | SP05 |
6 | Soc Trang | SP06 |
7 | Bac Lieu | SP07 |
8 | Ca Mau | SP08 |
Criteria | Fuzzy Sum of Each Row | Fuzzy Synthetic Extent | Degree of Possibility (Mi) | Normalization | ||||
---|---|---|---|---|---|---|---|---|
PP01 | 7.71623 | 10.35757 | 13.91593 | 0.03624 | 0.06463 | 0.11708 | 0.50695 | 0.06053 |
PP02 | 12.57650 | 17.28859 | 23.04919 | 0.05906 | 0.10787 | 0.19393 | 0.93112 | 0.11118 |
PP03 | 13.33665 | 18.84530 | 24.78639 | 0.06263 | 0.11759 | 0.20854 | 1.00000 | 0.11941 |
PP04 | 10.21413 | 13.82293 | 18.11561 | 0.04797 | 0.08625 | 0.15242 | 0.74128 | 0.08851 |
PP05 | 13.59007 | 17.57221 | 22.04804 | 0.06382 | 0.10964 | 0.18550 | 0.93928 | 0.11216 |
PP06 | 7.16564 | 9.43127 | 12.91733 | 0.03365 | 0.05885 | 0.10868 | 0.43946 | 0.05247 |
PP07 | 7.85250 | 10.27848 | 13.71735 | 0.03688 | 0.06413 | 0.11541 | 0.49684 | 0.05933 |
PP08 | 9.63003 | 12.86083 | 16.87061 | 0.04522 | 0.08025 | 0.14194 | 0.67990 | 0.08118 |
PP09 | 10.20564 | 13.81943 | 18.50159 | 0.04793 | 0.08623 | 0.15566 | 0.74790 | 0.08930 |
PP10 | 8.39975 | 11.30355 | 15.47744 | 0.03945 | 0.07053 | 0.13022 | 0.58955 | 0.07040 |
PP11 | 8.04400 | 10.68611 | 14.53360 | 0.03778 | 0.06668 | 0.12228 | 0.53952 | 0.06442 |
PP12 | 10.12401 | 13.99897 | 19.01034 | 0.04754 | 0.08735 | 0.15995 | 0.76293 | 0.09110 |
SP01 | SP02 | SP03 | SP04 | SP05 | SP06 | SP07 | SP08 | |
---|---|---|---|---|---|---|---|---|
PP01 | 1.0000 | 0.9000 | 0.8000 | 0.7000 | 0.6000 | 0.9000 | 1.0000 | 0.6000 |
PP02 | 1.0000 | 0.9000 | 0.8000 | 0.8000 | 0.6000 | 0.7000 | 0.8000 | 0.9000 |
PP03 | 0.8889 | 0.7778 | 1.0000 | 0.8889 | 0.8889 | 1.0000 | 0.7778 | 0.6667 |
PP04 | 0.7000 | 0.9000 | 0.9000 | 0.8000 | 0.9000 | 0.8000 | 1.0000 | 0.9000 |
PP05 | 1.0000 | 0.7778 | 0.6667 | 1.0000 | 0.8889 | 1.0000 | 0.8889 | 1.0000 |
PP06 | 0.8889 | 0.7778 | 0.7778 | 0.8889 | 0.8889 | 1.0000 | 0.8889 | 0.8889 |
PP07 | 1.0000 | 0.6667 | 0.7778 | 0.7778 | 1.0000 | 1.0000 | 0.8889 | 1.0000 |
PP08 | 0.7778 | 0.8889 | 0.8889 | 1.0000 | 1.0000 | 0.8889 | 0.7778 | 1.0000 |
PP09 | 1.0000 | 0.7778 | 0.6667 | 0.8889 | 0.8889 | 0.8889 | 0.7778 | 1.0000 |
PP10 | 0.8889 | 0.6667 | 0.7778 | 0.8889 | 1.0000 | 0.7778 | 0.8889 | 0.7778 |
PP11 | 1.0000 | 0.6667 | 0.7778 | 0.6667 | 0.8889 | 0.7778 | 1.0000 | 0.8889 |
PP12 | 0.6667 | 0.7778 | 0.8889 | 1.0000 | 0.8889 | 0.7778 | 1.0000 | 1.0000 |
SP01 | SP02 | SP03 | SP04 | SP05 | SP06 | SP07 | SP08 | |
---|---|---|---|---|---|---|---|---|
PP01 | 0.0605 | 0.0545 | 0.0484 | 0.0424 | 0.0363 | 0.0545 | 0.0605 | 0.0363 |
PP02 | 0.1112 | 0.1001 | 0.0889 | 0.0889 | 0.0667 | 0.0778 | 0.0889 | 0.1001 |
PP03 | 0.1061 | 0.0929 | 0.1194 | 0.1061 | 0.1061 | 0.1194 | 0.0929 | 0.0796 |
PP04 | 0.0620 | 0.0797 | 0.0797 | 0.0708 | 0.0797 | 0.0708 | 0.0885 | 0.0797 |
PP05 | 0.1122 | 0.0872 | 0.0748 | 0.1122 | 0.0997 | 0.1122 | 0.0997 | 0.1122 |
PP06 | 0.0466 | 0.0408 | 0.0408 | 0.0466 | 0.0466 | 0.0525 | 0.0466 | 0.0466 |
PP07 | 0.0593 | 0.0396 | 0.0461 | 0.0461 | 0.0593 | 0.0593 | 0.0527 | 0.0593 |
PP08 | 0.0631 | 0.0722 | 0.0722 | 0.0812 | 0.0812 | 0.0722 | 0.0631 | 0.0812 |
PP09 | 0.0893 | 0.0695 | 0.0595 | 0.0794 | 0.0794 | 0.0794 | 0.0695 | 0.0893 |
PP10 | 0.0626 | 0.0469 | 0.0548 | 0.0626 | 0.0704 | 0.0548 | 0.0626 | 0.0548 |
PP11 | 0.0644 | 0.0429 | 0.0501 | 0.0429 | 0.0573 | 0.0501 | 0.0644 | 0.0573 |
PP12 | 0.0607 | 0.0709 | 0.0810 | 0.0911 | 0.0810 | 0.0709 | 0.0911 | 0.0911 |
SP01 | SP02 | SP03 | SP04 | SP05 | SP06 | SP07 | SP08 | |
---|---|---|---|---|---|---|---|---|
PP01 | 1.0000 | 0.9936 | 0.9866 | 0.9786 | 0.9696 | 0.9936 | 1.0000 | 0.9696 |
PP02 | 1.0000 | 0.9884 | 0.9755 | 0.9755 | 0.9448 | 0.9611 | 0.9755 | 0.9884 |
PP03 | 0.9860 | 0.9704 | 1.0000 | 0.9860 | 0.9860 | 1.0000 | 0.9704 | 0.9527 |
PP04 | 0.9689 | 0.9907 | 0.9907 | 0.9804 | 0.9907 | 0.9804 | 1.0000 | 0.9907 |
PP05 | 1.0000 | 0.9722 | 0.9555 | 1.0000 | 0.9869 | 1.0000 | 0.9869 | 1.0000 |
PP06 | 0.9938 | 0.9869 | 0.9869 | 0.9938 | 0.9938 | 1.0000 | 0.9938 | 0.9938 |
PP07 | 1.0000 | 0.9762 | 0.9852 | 0.9852 | 1.0000 | 1.0000 | 0.9930 | 1.0000 |
PP08 | 0.9798 | 0.9905 | 0.9905 | 1.0000 | 1.0000 | 0.9905 | 0.9798 | 1.0000 |
PP09 | 1.0000 | 0.9778 | 0.9644 | 0.9895 | 0.9895 | 0.9895 | 0.9778 | 1.0000 |
PP10 | 0.9917 | 0.9719 | 0.9825 | 0.9917 | 1.0000 | 0.9825 | 0.9917 | 0.9825 |
PP11 | 1.0000 | 0.9742 | 0.9839 | 0.9742 | 0.9924 | 0.9839 | 1.0000 | 0.9924 |
PP12 | 0.9637 | 0.9774 | 0.9893 | 1.0000 | 0.9893 | 0.9774 | 1.0000 | 1.0000 |
Alternatives | Qi1 | Qi2 | Qi | Ranking |
---|---|---|---|---|
SP01 | 0.8981 | 0.8892 | 0.8937 | 1 |
SP02 | 0.7970 | 0.7926 | 0.7948 | 8 |
SP03 | 0.8157 | 0.8093 | 0.8125 | 7 |
SP04 | 0.8704 | 0.8640 | 0.8672 | 5 |
SP05 | 0.8637 | 0.8637 | 0.8637 | 6 |
SP06 | 0.8737 | 0.8737 | 0.8737 | 4 |
SP07 | 0.8806 | 0.8806 | 0.8806 | 3 |
SP08 | 0.8874 | 0.8874 | 0.8874 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh, N.V.; Lan, N.T.K. Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis. Energies 2022, 15, 2798. https://doi.org/10.3390/en15082798
Thanh NV, Lan NTK. Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis. Energies. 2022; 15(8):2798. https://doi.org/10.3390/en15082798
Chicago/Turabian StyleThanh, Nguyen Van, and Nguyen Thi Kim Lan. 2022. "Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis" Energies 15, no. 8: 2798. https://doi.org/10.3390/en15082798
APA StyleThanh, N. V., & Lan, N. T. K. (2022). Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis. Energies, 15(8), 2798. https://doi.org/10.3390/en15082798