Sources and Sectoral Trend Analysis of CO2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches
Abstract
:1. Introduction
2. Methodology
2.1. Source of Data and Coverage
2.2. The Mann-Kendall Test
3. Statistical Analysis
4. Results, Discussion, and Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akpan, G.E. Electricity Consumption, Carbon Emissions and Economic Growth in Nigeria. Int. J. Energy Econ. Policy 2012, 2, 292–306. [Google Scholar]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.; Wang, S. CO2 emission linkage analysis in global construction sectors: Alarming trends from 1995 to 2009 and possible repercussions. J. Clean. Prod. 2019, 221, 863–877. [Google Scholar] [CrossRef]
- UN (2012). UN (United Nations) Economic and Social Affairs, 2013. World Population Prospects: The 2012 Revision. New York. Available online: http://esa.un.org/unpd/wpp/ (accessed on 13 July 2012).
- Santos, G. Road transport and CO2 emissions: What are the challenges? Transp. Policy 2017, 59, 71–74. [Google Scholar] [CrossRef]
- Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel consumption and CO2 emissions from passenger cars in Europe Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions from Fuel Combustion by Sector in 2014, in CO2 Emissions from Fuel Combustion, IEA, 2016. In CO2 Highlights 2016. Excel Tables. 2016. Available online: http://www.iea.org/publications/freepublications/publication/CO$_{2}$-emissions-from-fuelcombustion-highlights-2016.html (accessed on 5 November 2020).
- Gottesfeld, P.; Pokhrel, A.K. Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J. Occup. Environ. Hyg. 2011, 8, 520–532. [Google Scholar] [CrossRef]
- Bhuyan, M.D.; Islam, M.M.; Bhuiyan, M.E.K. A Trend Analysis of the Temperature and Rainfal to predict Climate Change for Northwestern Region of Bangladesh. Am. J. Clim. Chang. 2018, 7, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Aydin, G. The Modeling of Coal-related CO2 Emissions and Projections into Future Planning. Energy Sources Part Recover. Util. Environ. Eff. 2013, 36, 191–201. [Google Scholar] [CrossRef]
- Köne, A.I.; Büke, T. Forecasting of CO2 emissions from fuel combustion using trend analysis. Renew. Sustain. Energy Rev. 2010, 14, 2906–2915. [Google Scholar] [CrossRef]
- Kwon, T.H. Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970–2000). Ecol. Econ. 2005, 53, 261–275. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Li, H.; He, P. CO2 emission trends of China’s primary aluminum industry: A scenario analysis using system dynamics model. Energy Policy 2017, 105, 225–235. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.; Wang, S.; Feng, K. The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis. Renew. Sustain. Energy Rev. 2021, 149, 111328. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Yuan, J. Economic growth, energy consumption, and carbon emission nexus: Fresh evidence from developing countries. Environ. Sci. Polution Res. 2019, 26, 1090–1094. [Google Scholar] [CrossRef]
- Miura, T.; Tamaki, T.; Kii, M.; Kajitani, Y. Efficiency by sectors in areas considering CO2 emissions: The case of Japan. Econ. Anal. Policy 2021, 70, 514–528. [Google Scholar] [CrossRef]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sens Slope Estimates. The Excel Template Application Makesens; Air Quality; Quality No. 31; Finnish Meteorological Institute: Helsinki, Finland, 2002.
- Hirsch, R.M.; Alexander, R.B.; Smith, R.A. Selection methods for the detection and estimation of trends in water quality. Water Resour. Res. 1991, 27, 803–813. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources. In Techniques of Water Resources Investigations, Book 4, Chapter A3; Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos. Res. 2013, 132–133, 375–398. [Google Scholar] [CrossRef]
- Araghi, A.; Mousavi-Baygi, M.; Adamowski, J. Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theor. Appl. Climatol. 2016, 125, 213–225. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1995. [Google Scholar]
- Martinez, C.J.; Maleski, J.J.; Miller, M.F. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452–453, 259–281. [Google Scholar] [CrossRef]
- Araghi, A.; Mousavi-Baygi, M.; Adamowski, J.; Malard, J.; Nalley, D.; Hasheminia, S.M. Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Atmos. Res. 2015, 155, 52–72. [Google Scholar] [CrossRef]
- Araghi, A.; Mousavi-Baygi, M.; Adamowski, J.; Martinez, C.J. Analyzing trends of days with low atmopsheric visibility in Iran during 1968–2013. Environ. Monit. Assess. 2019, 191, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Wilks, D.S. Statistical methods in the atmospheric science. In International Geophysics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Safari, B. Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. J. Environ. 2012, 3, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Robson, A.J. Detecting Trend and other Changes in Hydrological Data, World Climate Program-Data and Monitoring; WMO/TD-No. 1013; World Meteorological Organization: Geneva, Switzerland, 2000; Volume 45, pp. 1–158. [Google Scholar]
- Khaliq, M.N.; Quarda, T.B.M.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Onoz, B.; Bayazit, M. Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol. Process. 2012, 26, 3552–3560. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Andreoni, V.; Galmarini, S. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy 2012, 45, 595–602. [Google Scholar] [CrossRef]
- Bilgili, F.; Kuşkaya, S.; Gençoğlu, P.; Kassouri, Y.; Garang, A.P.M. The co-movements between geothermal energy usage and CO2 emissions through high and low frequency cycles. Environ. Sci. Pollut. Res. 2020, 28, 63723–63738. [Google Scholar] [CrossRef] [PubMed]
- Kassouri, Y.; Kacou, K.Y.T.; Alola, A.A. Are oil-clean energy and high technology stock prices in the same straits? Bubbles speculation and time-varying perspectives. Energy 2021, 232, 121021. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Shan, C. Research on the decoupling trend and mitigation potential of CO2 emissions from China’s transport sector. Energy 2019, 183, 837–843. [Google Scholar] [CrossRef]
Variable ID | Description. CO Emissions from: |
---|---|
GFC | Gaseous fuel consumption (% of total) |
LFC | Liquid fuel consumption (% of total) |
SFC | Solid fuel consumption (% of total) |
TRA | Transport (% of total fuel combustion) |
EHP | Electricity and heat production, total (% of total fuel combustion) |
RBCPS | Residential buildings and commercial and public services (% of total fuel combustion) |
MINC | Manufacturing industries and construction (% of total fuel combustion) |
OSEC | Other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion) |
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
---|---|---|---|---|---|---|---|
GFC | 44 | 16.540 | 9.721 | 1.091 | 8.390 | 23.443 | 34.411 |
LFC | 44 | 43.371 | 19.251 | 15.518 | 32.507 | 57.404 | 76.819 |
SFC | 44 | 0.436 | 0.537 | 0.009 | 0.088 | 0.471 | 2.071 |
TRA | 44 | 47.935 | 5.060 | 35.389 | 43.818 | 52.239 | 56.305 |
EHP | 44 | 27.540 | 6.718 | 13.587 | 22.983 | 32.363 | 39.062 |
RBCPS | 44 | 9.853 | 4.088 | 2.465 | 6.577 | 12.171 | 17.292 |
MINC | 44 | 11.493 e | 3.410 | 4.250 | 9.611 | 13.972 | 18.430 |
OSEC | 44 | 3.191 | 2.979 | 0.028 | 1.453 | 4.065 | 11.406 |
Variable | Z-Value | S-Value | Sen’s Slope | Change Period |
---|---|---|---|---|
GFC | 6.423 | 636 | 0.632 | 1986 |
LFC | 1.224 | 122 | 0.396 | 1975 |
SFC | −5.795 | −574 | −0.023 | 1982 |
TRA | −1.912 | −190 | −0.119 | Multiple |
EHP | 6.908 | 684 | 0.470 | 1987 |
RBCPS | −5.229 | −518 | −0.241 | 2004 |
MINC | −5.836 | −578 | −0.218 | 1984 |
OSEC | 1.588 | 158 | 0.065 | Multiple |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunde, O.L.; Adewole, O.O.; Alobid, M.; Szűcs, I.; Kassouri, Y. Sources and Sectoral Trend Analysis of CO2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches. Energies 2022, 15, 766. https://doi.org/10.3390/en15030766
Tunde OL, Adewole OO, Alobid M, Szűcs I, Kassouri Y. Sources and Sectoral Trend Analysis of CO2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches. Energies. 2022; 15(3):766. https://doi.org/10.3390/en15030766
Chicago/Turabian StyleTunde, Ogundele Lasun, Okunlola Oluyemi Adewole, Mohannad Alobid, István Szűcs, and Yacouba Kassouri. 2022. "Sources and Sectoral Trend Analysis of CO2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches" Energies 15, no. 3: 766. https://doi.org/10.3390/en15030766