Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ming, R.S.; Pan, J.; Norton, M.P.; Wende, S.; Huang, H. The sound-field characterization of a power transformer. Appl. Acoust. 1999, 56, 257–272. [Google Scholar] [CrossRef]
- Zhou, B.; Pei, C.M.; Ni, Y.; Zhang, J. Measurement and analysis of noise in UHV AC ausatation. High Volt. Eng. 2013, 39, 1447–1453. [Google Scholar]
- Piana, E.A.; Roozen, N.B. On the control of low-frequency audible noise from electrical substation: A case study. Appl. Sci. Basel 2020, 10, 637. [Google Scholar] [CrossRef] [Green Version]
- Di, G.Q.; Zhou, X.W.; Chen, X.W. Annoyance response to low frequency noise with tonal components: A case study on transformer noise. Appl. Acoust. 2015, 91, 40–46. [Google Scholar] [CrossRef]
- Sjödin, F.; Kjellberg, A.; Knutsson, A.; Landström, U.; Lindberg, L. Noise exposure and auditory effects on preschool personnel. Noise Health 2012, 14, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Leventhall, G. Low Frequency Noise. What we know, what we do not know, and what we would like to know. J. Low Freq. Noise Vib. Act. Control 2009, 28, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.; Yazdanirad, S.; Mehri, A.; Fallah Madvari, R.; Alizadeh, A.; Ghaljahi, M.; Falahati, M. Noise exposure and job stress —A structural equation model in textile industries. Arch. Acoust. 2015, 45, 601–611. [Google Scholar]
- Alayrac, M.; Marquis-Favre, C.; Viollon, S.; Morel, J.-C.; Le Nost, G. Annoyance from industrial noise: Indicators for a wide variety of industrial sources. J. Acoust. Soc. Am. 2010, 128, 1128–1139. [Google Scholar] [CrossRef]
- Liu, H.; Yin, J.G.; Zhang, G.Y.; Zhang, Y.; Xie, L.K.; Ji, Y.F.; Liu, G.S.; An, S.H. Analysis of noise pollution of 110 kV outdoor substation and discussion of noise control. Guangdong Electr. Power 2018, 31, 12–19. [Google Scholar]
- Chen, Y.Y.; Wang, X.P.; Yang, W. Experimental research on evaluation of sound quality annoyance of urban substation noise. Sci. Technol. Eng. 2018, 18, 214–218. [Google Scholar]
- Liu, G. Study on Evaluation Method of Sound Quality Improvement Effect of Noise Control Measures on Substation Noise; Zhejiang University: Hangzhou, China, 2018. [Google Scholar]
- Li, J.; Li, L.; Zhang, Y.; Fan, X. Annoyance evaluation of noise emitted by urban substation. J. Low Freq. Noise Vib. Act. Control 2021, 40, 2106–2114. [Google Scholar]
- Di, G.-Q.; Chen, X.-W.; Song, K.; Zhou, B.; Pei, C.-M. Improvement of Zwicker’s psychoacoustic annoyance model aiming at tonal noises. Appl. Acoust. 2016, 105, 164–170. [Google Scholar] [CrossRef]
- Su, L.L.; Wang, D.F.; Wang, Q. Sound quality prediction of vehicle interior noise based on GRNN. J. Jilin Univ. 2011, 41, 82–86. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y.L.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1058–1066. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yuan, J.H.; Han, T.; Tang, J.; An, L. An approach to intelligent fault diagnosis of rolling bearing using wavelet time-frequency representations and CNN. Mech. Design Res. 2017, 33, 93–97. [Google Scholar]
- Liang, K.; Zhao, H.J.; Song, W.Z. Research on evaluation method of internal combustion engine sound quality based on convolutional neural network. Chin. Intern. Combust. Engine Eng. 2019, 40, 67–75. [Google Scholar]
- Huang, X.; Huang, H.; Wu, J.; Yang, M.; Ding, W. Sound quality prediction and improving of vehicle interior noise based on deep convolutional neural networks. Expert Syst. Appl. 2020, 160, 113657. [Google Scholar] [CrossRef]
- Huang, H.; Wu, J.; Lim, T.C.; Yang, M.; Ding, W. Pure electric vehicle nonstationary interior sound quality prediction based on deep CNNs with an adaptable learning rate tree. Mech. Syst. Signal Process. 2021, 148. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Yang, Q.A. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhao, L.X.; Hou, F.D.; Lu, Z.C.; Zhu, H.C.; Ding, X.L. Image recognition of cotton leaf diseases and pests based on transfer learning. Trans. Chin. Soc. Agric. Eng. 2020, 36, 184–191. [Google Scholar]
- Roshani, G.H.; Nazemi, E.; Roshani, M.M. Flow regime independent volume fraction estimation in three-phase flows using dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 2016, 28, 1265–1274. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
Statistic | Convolutional Neural Network | Multiple Linear Regression |
---|---|---|
MAE | 0.132 | 0.299 |
SSE | 0.978 | 4.960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Li, J.; Li, L.; Chu, Z. Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network. Energies 2022, 15, 749. https://doi.org/10.3390/en15030749
Fan S, Li J, Li L, Chu Z. Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network. Energies. 2022; 15(3):749. https://doi.org/10.3390/en15030749
Chicago/Turabian StyleFan, Shengping, Jun Li, Linyong Li, and Zhigang Chu. 2022. "Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network" Energies 15, no. 3: 749. https://doi.org/10.3390/en15030749
APA StyleFan, S., Li, J., Li, L., & Chu, Z. (2022). Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network. Energies, 15(3), 749. https://doi.org/10.3390/en15030749