Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources
Abstract
:1. Introduction
2. Power Flow and Short Circuit Level Analysis
2.1. Power Flow Problem Formulation
2.2. Short-Circuit Analysis
- Phase-to-ground fault
- Three-phase fault
3. HVDC System: Modelling and Control
3.1. LCC-HVDC System
3.2. HVDC System Control with LCC Converters
3.3. Fault Handling Strategy
3.3.1. AC Faults
3.3.2. DC Pole-to-Ground Fault
4. Stability Analysis of the HVDC/HVAC Power System in the Presence of Large-Scale Solar Plant
4.1. System Strength Evaluation
4.1.1. Short Circuit Ratio (SCR)
4.1.2. Weighted Short Circuit Ratio
4.2. Stability Analysis
5. Results and Discussion
5.1. Iraqi Power System
5.2. Power Flow and Short Circuit Levels Simulation Results
5.3. System Strengths Evaluation for Large-Scale Solar Plant Integration
5.4. Dynamic Simulation Results and Discussion
- First case: the base system;
- Second case: after the integration of the solar plant using an overhead AC double-circuit line;
- Third case: after integrating the solar plant using a bipolar DC link for each pole.
- Line disturbance
- Bus disturbance
- Line and bus disturbance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavan, K.N.R.; Meikandasivam, S. Power quality enhancement in a grid-connected hybrid system with coordinated PQ theory & fractional order PID controller in DPFC. Sustain. Energy Grids Netw. 2020, 21, 100317. [Google Scholar]
- International Renewable Energy Agency (IRENA). Renewable Capacity Statistics. Available online: https://www.irena.org/publications/2019/Mar/Renewable-Capacity-Statistics-2019 (accessed on 2 April 2019).
- Sirine, E.; Adel, K.; Bouallegue, A. Integration of distributed generation in electrical grid: Optimal placement and sizing under different load conditions. Comput. Electr. Eng. 2019, 79, 106461. [Google Scholar]
- Swain, P.; Jagadish, S.; Mahesh, K.U. Integration of renewable sources of energy into power grid. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017. [Google Scholar]
- Bayindir, R.; Demirbas, S.; Irmak, E.; Cetinkaya, U.; Ova, A.; Yesil, M. Effects of renewable energy sources on the power system. In Proceedings of the 2016 IEEE International power electronics and motion control conference (PEMC), Varna, Bulgaria, 25–28 September 2016. [Google Scholar]
- National Renewable Energy Laboratory (NREL). Using Distributed Energy Resources. Available online: http://www.nrel.gov (accessed on 10 April 2019).
- Ahsan, S. Smart grid integration of renewable energy systems. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018. [Google Scholar]
- Ali, M.E.; Abou, H.A.; Amer, N.A.; Yahia, S. Mitigation voltage sag using DVR with power distribution networks for enhancing the power system quality. IJEEAS 2018, 1, 2600–7495. [Google Scholar]
- Ali, M.E.; Amer, N.A. Multi-control module static VAR compensation techniques for enhancement of power system quality. Ann. Fac. Eng. Int. J. Eng. 2018. ISSN 2601-2332. Available online: http://annals.fih.upt.ro/pdf-full/2018/ANNALS-2018-3-06.pdf (accessed on 10 April 2019).
- Ali, M.E.; Yahia, S.; Abou, H.A.; Amer, N.A. HVDC over HVAC transmission system: Fault conditions stability study. Int. J. Res. Stud. Electr. Electron. Eng. (IJRSEEE) 2019, 5, 24–37. [Google Scholar]
- Masoud, R.; Mahmoud, S.M.; Mojtaba, S.; Soheil, R. Online estimation of power system separation as controlled islanding scheme in the presence of inter-area oscillations. Sustain. Energy Grids Netw. 2020, 21, 100306. [Google Scholar]
- Ning, L. An evaluation of the HVAC load potential for providing load balancing service. IEEE Trans. Smart Grid 2012, 3, 1263–1270. [Google Scholar]
- Assefa, A. Study on Conversion of Existing HVAC Lines to Hybrid HVAC/HVDC Transmission Line to Increase Transmission Capacity and Efficiency. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, December 2015. [Google Scholar]
- Marten, A.K.; Akmatov, V.; Sørensen, T.B.; Stornowski, R.; Westermann, D.; Brosinsky, C. Kriegers flak-combined grid solution: Coordinated cross-border control of a meshed HVAC/HVDC offshore wind power grid. IET Renew. Power Gener. 2018, 12, 1493–1499. [Google Scholar]
- Abdulrahman, A.; Santiago, B.; Omar; Grain, A.; Callum, M. HVDC transmission: Technology review, market trends and future outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar]
- Zhou, L.; Ruopei, Z.; Yazhou, L.; Yan, H.; Jinming, H.; Xiaoling, Z.; Xiao, P.Z. Recent developments in HVDC transmission systems to support renewable energy integration. Glob. Energy Interconnect. 2018, 1, 595–607. [Google Scholar]
- Andrea, T.; Tilman, W.; Spyros, C. Market integration of HVDC lines: Internalizing HVDC losses in market clearing. IEEE Trans. Power Syst. 2019, 35, 451–461. [Google Scholar]
- Tarek, A.; Shahadat, H.L.; Mahammad, A.H.; Pin, J.K.; Safwan, A.R.; Chong, T.Y.; Sieh, K.T.; Kashem, M.M. Dynamic modeling of HVDC for power system stability assessment: A review, issues, and recommendations. Energies 2021, 14, 4829. [Google Scholar] [CrossRef]
- Umar, J.; Neelam, M.; Muhammad, J.; Omar, A.; Ghulam, A.; Nasim, U.; Shahariar, C.; Kuaanan, T.; Khurram, S.; Umair, T. A systematic review of key challenges in hybrid HVAC–HVDC grids. Energies 2021, 14, 5451. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rabbi, M.F.; Islam, M.K.; Rahman, F.M.M. HVDC over HVAC power transmission system: Fault current analysis and effect comparison. In Proceedings of the International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), Dhaka, Bangladesh, 10–12 April 2014. [Google Scholar]
- Nwaigwe, K.N.; Mutabilwa, P.; Dintwa, E. An Overview of Solar power (PV systems) integration into electricity grids. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Zahedi, A. A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid. Renew. Sustain. Energy Rev. 2011, 15, 4775–4779. [Google Scholar] [CrossRef]
- Martha, N.A.; Francisco, G.L.; Juan, M.R.; Manuel, B. A coordinated control of offshore wind power and BESS to provide power system flexibility. Energies 2021, 14, 4650. [Google Scholar] [CrossRef]
- Sang, H.C.; Min, H.K.; Seung, H.S.; Eel, H.K. Analysis of the jeju island power system with an offshore wind farm applied to a diode rectifier HVDC. Energies 2019, 12, 4515. [Google Scholar] [CrossRef] [Green Version]
- Andersson, G. Power System Analysis; Lecture 227-0526-00; ITET ETH: Zürich, Schwitzerland, 2012. [Google Scholar]
- Umar, H.R.; Mahmoud, S.; Joakim, M.; Joakim, W.; Nicholas, E. Review of probabilistic load flow approaches for power distribution systems with photovoltaic generation and electric vehicle charging. Electr. Power Energy Syst. 2020, 120, 106003. [Google Scholar]
- John, J.G.; William, D.S. Power System Analysis, International ed.; McGraw-Hill: Singapore, 1994; pp. 329–376. [Google Scholar]
- Archita, V.; Sweety, J.; Sneha, M.; Vinita, G.; Mahendra, L. Comparison between different load flow methodologies by analyzing various bus systems. Int. J. Electr. Eng. 2016, 9, 127–138. [Google Scholar]
- Saadat, H. Power System Analysis; Mc Grawhill: New York, NY, USA, 1999; Volume 2. [Google Scholar]
- Subhan, R. Load flow based electrical system design and short circuit analysis. Master’s Thesis, Kadir Has University, Istanbul, Turkey, February 2019. [Google Scholar]
- Benoît, d.M.N.; Frédéric, D.; Christophe, P. Calculation of Short-Circuit Currents, Cahier Technique no.; 158, Schneider Electric. 2005, p. 35. Available online: https://www.se.com/ww/en/download/document/ECT158/ (accessed on 10 July 2020).
- Noman, A.; Arif, H.; Dirk, V.H.; Lidong, Z.; Hans, P.N. Prospects and challenges of future HVDC supergrids with modular multilevel converters. In Proceedings of the 14th European Conference on Power Electronics and Applications, European Conference, Birmingham, UK, 30 August–1 September 2011. [Google Scholar]
- Noman, A.; Staffan, N.; Hans, P.N.; Arif, H.; Dirk, V.H.; Lidong, Z.; Lennart, H. HVDC supergrids with modular multilevel converters; the power transmission backbone of the future. In Proceedings of the International Multi-Conference on Systems, Signals and Devices, Chemnitz, Germany, 20–23 March 2012. [Google Scholar]
- Spahic, E.; Schettler, F.; Varma, D.; Dorn, J. Impact of the DC technology on transmission grids. In Proceedings of the 11th IET International Conference on AC and DC Power Transmission, Birmingham, UK, 10–12 February 2015. [Google Scholar]
- Udeesha, S.A. Hybrid LCC and multi-terminal full-bridge modular multilevel converters for HVDC transmission. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Younggi, L.; Shenghui, C.; Sungmin, K.; Seung, K.S. Control of hybrid HVDC transmission system with LCC and FB-MMC. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014. [Google Scholar]
- Mike, B.; Damian, S.V.R.; Roger, S. HVDC Circuit Breakers—A Review. IEEE Access 2020, 8, 211829–211848. [Google Scholar]
- Yunkai, L.; Ting, L.; Quan, T.; Yunling, W.; Chuan, Y.; Xiaoxi, Y.; Yang, L. Comparison of UPFC, SVC and STATCOM in improving commutation failure immunity of LCC-HVDC systems. IEEE Access 2020, 8, 135298–135307. [Google Scholar]
- Xiaodong, L.; Zheng, X. Feasibility evaluation on elimination of DC filters for line-commutated converter-based high-voltage direct current projects in new situations. Energies 2021, 14, 5770. [Google Scholar] [CrossRef]
- Alireza, N.; Jiaqi, L.; Frans, D.; Georgios, D.D. Modular multilevel converters for HVDC Applications: Review on converter cells and functionalities. IEEE Trans. Power Electron. 2014, 30, 18–36. [Google Scholar]
- Geng, T.; Zheng, X. A LCC and MMC Hybrid HVDC Topology with DC Line Fault Clearance Capability. Electr. Power Energy Syst. 2014, 62, 419–428. [Google Scholar]
- Drgan, J.; Khaled, A. High-Voltage Direct-Current Transmission, 1st ed.; John Wiley & Sons: Chichester, UK, 2015; pp. 5–118. [Google Scholar]
- Zhao, J.; Tao, Y. Control Characteristic Analysis and Coordinated Strategy Design for Hybrid HVDC With Multi-Infeed MMC Inverters. Front. Energy Res. 2021, 558. [Google Scholar] [CrossRef]
- Abbey, C.; Khodabakhchian, B.; Zhou, F.; Dennetière, S.; Mahseredjian, J.; Joos, G. Transient modeling and comparison of wind generator topologies. In Proceedings of the International Conference on Power Systems Transients, Montreal, QC, Canada, 19–23 June 2005. [Google Scholar]
- Yang, Z.; Shun, H.F.H.; John, S.; José, C.; Jeffrey, B.; Ehsan, R. Evaluating system strength for large-scale wind plant integration. In Proceedings of the 2014 IEEE PES General Meeting, Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014. [Google Scholar]
- ABB. Comp. ERCOT CREZ Reactive Power Compensation Study. 2010. Available online: https://www.hitachienergy.com/ru/ru/case-studies/reference-crez (accessed on 3 August 2020).
- Huang, S.H.; Schmall, J.; Conto, J.; Adams, J.; Zhang, Y.; Carter, C. Voltage Stability Concerns on Weak Grids with High Penetration of Wind Generation: ERCOT Experience. In Proceedings of the IEEE PES General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Kong, D. Advanced HVDC systems for renewable energy integration and power transmission: Modelling and control for power system transient stability. Ph.D. Thesis, University of Birmingham, Birmingham, UK, June 2013. [Google Scholar]
- Prabha, K.; John, P.; Venkat, A.; Göran, A.; Anjan, B.; Claudio, C.; Nikos, H.; David, H.; Alex, S.; Carson, T.; et al. Definiation and classification of power system stability. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- The Republic of Iraq, Ministry of Electricity, Planning and Studies Office. Yearly Report; Ministry of Electricity, Planning and Studies Office: Baghdad, Iraq, 2017. [Google Scholar]
- Israa, I.H.; Sirine, E.; Adel, K. Comparative study of HVDC and HVAC systems in presence of large scale renewable energy sources. In Proceedings of the 20th International Conference IEEE on Sciences and Techniques of Automatic Control and Computer Engineering (STA IEEE Conference), Monastir, Tunisia, 20–22 December 2020. [Google Scholar]
Classification | Short Circuit Ratio (SCR) |
---|---|
Strong system | SCR > 3 |
Weak system | 2 < SCR ≤ 3 |
Very weak system | SCR < 2 |
Parameter | Value |
---|---|
System frequency | 50 Hz |
Rated AC voltage | 400 kV |
Rated power | 1000 MW |
Transformer ratio | 400/132 kV |
Line length | 500 km |
Bus No. | Bus Name | Three-Phase Short Circuit Currents (A) |
---|---|---|
16407 | BGW4 | 29,501.2 |
12413 | SLDP | 19,715.9 |
16470 | BGC4 | 27,845.8 |
16491 | TAJ4 | 34,262.8 |
19430 | ANBG | 16,776.2 |
Solar Power Plant Capacity (MW) | Short Circuit Capacity (MVA) | SCR |
---|---|---|
500 | 11,800.48 | 23.6 |
1000 | 11.8 | |
1500 | 7.87 | |
2000 | 5.9 | |
3000 | 3.93 | |
3500 | 3.37 | |
3700 | 3.19 | |
3800 | 3.11 | |
3900 | 3.03 | |
4000 | 2.95 | |
5000 | 2.36 | |
6000 | 1.97 |
Bus No. | Bus Name | Short Circuit Capacity (MVA) | Solar Plant Capacity (MW) | SCR |
---|---|---|---|---|
16407 | BGW4 | 11,800.48 | 1500 | 7.87 |
12413 | SLDP | 7886.36 | 500 | 15.77 |
16470 | BGC4 | 11,138.32 | 700 | 15.91 |
16491 | TAJ4 | 13,704.8 | 400 | 34.26 |
19430 | ANBG | 6710.48 | 800 | 8.39 |
System Parameters | Rectifier | Inverter |
---|---|---|
AC voltage base (kV) | 400 | 400 |
Tap setting (pu) | 1.10 | 1.10 |
Nominal DC voltage (kV) | ±400 | ±400 |
Nominal DC current (kA) | 1.250 | 1.250 |
Transformer impedance (pu) | 0.14 | 0.14 |
System frequency (Hz) | 50 | 50 |
Minimum angle (deg) | α = 15.863° | α = 18° |
Power (MW) | 1000 | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, I.I.; Essallah, S.; Khedher, A. Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources. Energies 2022, 15, 1142. https://doi.org/10.3390/en15031142
Hussein II, Essallah S, Khedher A. Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources. Energies. 2022; 15(3):1142. https://doi.org/10.3390/en15031142
Chicago/Turabian StyleHussein, Israa Ismael, Sirine Essallah, and Adel Khedher. 2022. "Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources" Energies 15, no. 3: 1142. https://doi.org/10.3390/en15031142
APA StyleHussein, I. I., Essallah, S., & Khedher, A. (2022). Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources. Energies, 15(3), 1142. https://doi.org/10.3390/en15031142