Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates Characteristics
2.2. Experimental Set-Up
2.2.1. Ozonation—Experiment A
2.2.2. Ultrasonication—Experiment B
2.2.3. Combination of Ozonation and Ultrasonication—Experiment C
2.3. Analytical Methods
2.4. Calculations
2.5. Statistics
3. Results and Discussion
3.1. Ozonation (O3)—Experiment A
3.2. Ultrasonication (US)—Experiment B
3.3. Combination of Ozonation and Ultrasonication—Experiment C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Salud Camilleri-Rumbau, M.; Popovic, O.; Briceño, K.; Errico, M.; Søtoft, L.F.; Christensen, K.V.; Norddahl, B. Ultrafiltration of separated digestate by tubular membranes: Influence of feed pretreatment on hydraulic performance and heavy metals removal. J. Environ. Manag. 2019, 250, 109404. [Google Scholar] [CrossRef]
- Świątczak, P.; Cydzik–Kwiatkowska, A.; Zielińska, M. Treatment of the liquid phase of digestate from a biogas plant for water reuse. Bioresour. Technol. 2019, 276, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Gienau, T.; Ehrmanntraut, A.; Kraume, M.; Rosenberger, S. Influence of Ozone Treatment on Ultrafiltration Performance and Nutrient Flow in a Membrane Based Nutrient Recovery Process from Anaerobic Digestate. Membranes 2020, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Gienau, T.; Brüss, U.; Kraume, M.; Rosenberger, S. Nutrient Recovery from Biogas Digestate by Optimised Membrane Treatment. Waste Biomass Valoriz. 2018, 9, 2337–2347. [Google Scholar] [CrossRef]
- European Commission. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options; Wood Environment & Infrastructure Solutions UK Limited: London, UK, 2019.
- Bateman, A.; van der Horst, D.; Boardman, D.; Kansal, A.; Carlliel-Marquet, C. Closing the phosphorus loop in England: The spatio-temporal balance of phosphorus capture from manure versus crop demand for fertilizer. Resour. Conserv. Recycl. 2011, 55, 1146–1153. [Google Scholar] [CrossRef]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef]
- Drosg, B.; Fuchs, W.; Al Seadi, T.; Madsen, M.; Linke, B. Nutrient recovery by biogas digestate processing. IEA Bioenergy Task 37. 2015. Available online: http://task37.ieabioenergy.com/files/daten-redaktion/download/Technical%20Brochures/NUTRIENT_RECOVERY_RZ_web1.pdf (accessed on 2 April 2022).
- Guilayn, F.; Jimenez, J.; Rouez, M.; Crest, M.; Patureau, D. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice. Bioresour. Technol. 2019, 274, 180–189. [Google Scholar] [CrossRef]
- Guilayn, F.; Jimenez, J.; Martel, J.-L.; Rouez, M.; Crest, M.; Patureau, D. First fertilizing-value typology of digestates: A decision-making tool for regulation. Waste Manag. 2019, 86, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Chuda, A.; Ziemiński, K. Digestate mechanical separation in industrial conditions: Efficiency profiles and fertilising potential. Waste Manag. 2021, 128, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V. Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason. Sonochem. 2013, 20, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Chakma, S.; Moholkar, V.S. Intensification of Wastewater Treatment using Sono-hybrid Processes: An Overview of Mechanistic Synergism. Indian Chem. Eng. 2015, 57, 359–381. [Google Scholar] [CrossRef]
- Boni, M.R.; D’Amato, E.; Polettini, A.; Pomi, R.; Rossi, A. Effect of ultrasonication on anaerobic degradability of solid waste digestate. Waste Manag. 2016, 48, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Somers, M.H.; Azman, S.; Sigurnjak, I.; Ghyselbrecht, K.; Meers, E.; Meesschaert, B.; Appels, L. Effect of digestate disintegration on anaerobic digestion of organic waste. Bioresour. Technol. 2018, 268, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Somers, M.H.; Azman, S.; Bollansée, G.; Goedemé, T.; Leermakers, M.; Alonso Fariñas, B.; Appels, L. Behavior of trace elements and micronutrients in manure digestate during ozone treatment. Chemosphere 2020, 252, 126477. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tian, W.; Zhang, Y.; Fan, W.; Liu, F.; Zhao, J.; Wang, M.; Liu, Y.; Lyu, T. Nanobubble Technology Enhanced Ozonation Process for Ammonia Removal. Water 2022, 14, 1865. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Sarif, S.M.; Alias, S.S.; Ridwan, F.M.; Salim, K.K.; Abidin, C.Z.A.; Ali, U.M. Ozonation of return activated sludge for disintegration and solubilisation with synthesised titanium oxide as catalyst. E3S Web Conf. 2018, 34, 02009. [Google Scholar] [CrossRef]
- Romio, C.; Kofoed, M.V.W.; Møller, H.B. Effect of ultrasonic and electrokinetic post-treatments on methane yield and viscosity of agricultural digestate. Bioresour. Technol. 2022, 358, 127388. [Google Scholar] [CrossRef]
- Takdastan, A.; Rahmani, A.R.; Almasi, H. A review of the effects of ozonation process on biological sludge reduction. Desalin. Water Treat. 2019, 162, 125–133. [Google Scholar] [CrossRef]
- Tuncay, S.; Akcakaya, M.; Icgen, B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation. Fuel 2022, 313, 122690. [Google Scholar] [CrossRef]
- Sangave, P.C.; Gogate, P.R.; Pandit, A.B. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment. Chemosphere 2007, 68, 32–41. [Google Scholar] [CrossRef]
- Bougrier, C.; Battimelli, A.; Delgenes, J.-P.; Carrere, H. Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment. Ozone Sci. Eng. 2007, 29, 201–206. [Google Scholar] [CrossRef]
- Naddeo, V.; Belgiorno, V.; Landi, M.; Zarra, T.; Napoli, R.N.A. Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability. Desalination 2009, 249, 762–767. [Google Scholar] [CrossRef]
- Somers, M.H.; Jimenez, J.; Azman, S.; Steyer, J.-P.; Baeyens, J.; Appels, L. Ultrasonication affects the bio-accessibility of primary dairy cow manure digestate for secondary post-digestion. Fuel 2021, 291, 120140. [Google Scholar] [CrossRef]
- Garoma, T.; Pappaterra, D. An investigation of ultrasound effect on digestate solubilization and methane yield. Waste Manag. 2018, 71, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V.; Siciliano, A.; Guida, M. The sustainable recovery of the organic fraction of municipal solid waste by integrated ozonation and anaerobic digestion. Resour. Conserv. Recycl. 2019, 141, 390–397. [Google Scholar] [CrossRef]
- Azman, S.; Milh, H.; Somers, M.H.; Zhang, H.; Huybrechts, I.; Meers, E.; Meesschaert, B.; Dewil, R.; Appels, L. Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters. Renew. Energy 2020, 152, 664–673. [Google Scholar] [CrossRef]
- Karimi, B.; Sadet-Bourgeteau, S.; Cannavacciuolo, M.; Chauvin, C.; Flamin, C.; Haumont, A.; Jean-Baptiste, V.; Reibel, A.; Vrignaud, G.; Ranjard, L. Impact of biogas digestates on soil microbiota in agriculture: A review. Environ. Chem. Lett. 2022, 20, 3265–3288. [Google Scholar] [CrossRef]
- Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresour. Technol. 2015, 178, 194–200. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF): Washington, DC, USA, 2005.
- Luo, X.; Yan, Q.; Wang, C.; Luo, C.; Zhou, N.; Jian, C. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. Int. J. Environ. Res. Public Health. 2015, 12, 11975–11987. [Google Scholar] [CrossRef]
- Chacana, J.; Alizadeh, S.; Labelle, M.-A.; Laporte, A.; Hawari, J.; Barbeau, B.; Comeau, Y. Effect of ozonation on anaerobic digestion sludge activity and viability. Chemosphere 2017, 176, 405–411. [Google Scholar] [CrossRef]
- Khuntia, S.; Majumder, S.K.; Ghosh, P. Removal of Ammonia from Water by Ozone Microbubbles. Ind. Eng. Chem. Res. 2013, 52, 318–326. [Google Scholar] [CrossRef]
- Krisbiantoro, P.A.; Kato, K.; Mahardiani, L.; Kamiya, Y. Oxidation of Ammonia Nitrogen with Ozone in Water: A Mini Review. J. Indones. Chem. Soc. 2020, 3, 17. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Hafez, H.; Nakhla, G. Viability of ultrasonication of food waste for hydrogen production. Int. J. Hydrogen Energy 2012, 37, 2960–2964. [Google Scholar] [CrossRef]
- Cesaro, A.; Velten, S.; Belgiorno, V.; Kuchta, K. Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production. J. Clean. Prod. 2014, 74, 119–124. [Google Scholar] [CrossRef]
- Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A. Effect of ultrasonic post-treatment on anaerobic digestion of lignocellulosic waste. Waste Manag. Res. 2020, 39, 221–232. [Google Scholar] [CrossRef]
- Somers, M.H.; Azman, S.; Vanhecke, R.; Appels, L. Dairy Manure Digestate Age Increases Ultrasound Disintegration Efficiency at Low Specific Energies. Energies 2021, 14, 1640. [Google Scholar] [CrossRef]
- Ohrdes, H.; Nothdurft, S.; Nowroth, C.; Grajczak, J.; Twielfel, J.; Hermsdorf, J.; Kaierle, S.; Wallaschek, J. Influence of the ultrasonic vibration amplitude on the melt pool dynamics and the weld shape of laser beam welded EN AW-6082 utilizing a new excitation system for laser beam welding. Prod. Eng. Res. Devel. 2021, 15, 151–160. [Google Scholar] [CrossRef]
- Abdurahman, M.A.; Abdullah, A.Z. Mechanism and reaction kinetic of hybrid ozonation-ultrasonication treatment for intensified degradation of emerging organic contaminants in water: A critical review. Chem. Eng. Process. 2020, 154, 108047. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manag. 2012, 95, S139–S143. [Google Scholar] [CrossRef] [PubMed]
- Gujar, S.K.; Gogate, P.R. Application of hybrid oxidative processes based on cavitation for the treatment of commercial dye industry effluents. Ultrason. Sonochem. 2021, 75, 105586. [Google Scholar] [CrossRef] [PubMed]
Indicator | Digestate | Liquid Fraction of Digestate |
---|---|---|
COD [g O2/dm3] | 14.91 ± 0.45 | 9.51 ± 0.11 |
BOD5 [g O2/dm3] | 1.47 ± 0.06 | 1.86 ± 0.05 |
sCOD [g O2/dm3] | 2.15 ± 0.05 | 2.58 ± 0.03 |
TN [g/dm3] | 2.84 ± 0.03 | 2.22 ± 0.09 |
NH4–N [g/dm3] | 2.53 ± 0.04 | 1.93 ± 0.05 |
TP [mg/dm3] | 35.84 ± 0.45 | 19.17 ± 0.23 |
pH | 7.67 ± 0.21 | 8.08 ± 0.15 |
TS [g/dm3] | 40.92 ± 0.78 | 11.55 ± 0.39 |
VS [% TS] | 74.93 ± 0.68 | 55.73 ± 0.28 |
TSS [g/dm3] | 15.12 ± 0.82 | 2.73 ± 0.22 |
VSS [% TSS] | 52.58 ± 0.87 | 47.08 ± 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuda, A.; Jastrząbek, K.; Ziemiński, K. Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment. Energies 2022, 15, 9183. https://doi.org/10.3390/en15239183
Chuda A, Jastrząbek K, Ziemiński K. Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment. Energies. 2022; 15(23):9183. https://doi.org/10.3390/en15239183
Chicago/Turabian StyleChuda, Aleksandra, Konrad Jastrząbek, and Krzysztof Ziemiński. 2022. "Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment" Energies 15, no. 23: 9183. https://doi.org/10.3390/en15239183
APA StyleChuda, A., Jastrząbek, K., & Ziemiński, K. (2022). Changes in the Composition of Digestate Liquid Fraction after Ozone and Ultrasonic Post-Treatment. Energies, 15(23), 9183. https://doi.org/10.3390/en15239183