Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes
Abstract
:1. Introduction
2. Experimental Configuration and Image Processing Method
2.1. Axial Swirler
2.2. Experimental Setup
2.3. Flame Image Processing
2.3.1. Inverse Abel Transform
2.3.2. POD Method
3. FTF Optimization Method
3.1. Flame Transfer Function
3.2. Low Order Thermoacoustic Network Model
3.3. Optimization Method
4. Results and Discussion
4.1. Influence of Swirler on Flame Pulsation Characteristics
4.2. Influence of Swirler on FTF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.Y. The Mechanism and Control for Combustion Instabilities of Aeroengine Afterburner. Ph.D. Thesis, Beihang University, Beijing, China, 2010. (In Chinese). [Google Scholar]
- Huang, L. Investigation on the Mechanism of Combustion Oscillation in a LPP Combustor. Master’s Thesis, Nanjing University of Aeronautics, Nanjing, China, 2016. (In Chinese). [Google Scholar]
- Orth, M.R.; Vodney, C.; Liu, T.; Hallum, W.Z.; Pourpoint, T.L.; Anderson, W.E. Measurement of linear growth of self-excited instabilities in an idealized rocket combustor. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Poinsot, T. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 2017, 36, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Sarli, V.D.; Marra, F.S.; Benedetto, A.D. Spontaneous oscillations in lean premixed combustors: CFD simulation. Combust. Sci. Technol. 2007, 179, 2335–2359. [Google Scholar] [CrossRef]
- Di Sarli, V.; Di Benedetto, A.; Marra, F.S. Influence of system parameters on the dynamic behaviour of an LPM combustor: Bifurcation analysis through CFD simulations. Combust. Theory Model. 2008, 12, 1109–1124. [Google Scholar] [CrossRef]
- Garcia-Agreda, A.; Di Sarli, V.; Di Benedetto, A. Bifurcation analysis of the effect of hydrogen addition on the dynamic behavior of lean premixed pre-vaporized ethanol combustion. Int. J. Hydrogen Energy 2012, 37, 6922–6932. [Google Scholar] [CrossRef]
- Kojourimanesh, M.; Kornilov, V.; Arteaga, I.L.; de Goey, L.P.H. Theoretical and experimental investigation on the linear growth rate of the thermo-acoustic combustion instability. In Proceedings of the 10th European Combustion Meeting, Naples, Italy, 14–15 April 2021. [Google Scholar]
- Durox, D.; Schuller, T.; Gandel, S. Self-induced instability of a premixed jet flame impinging on a plate. Proc. Combust. Inst. 2002, 29, 69–75. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Z.J. Stability analysis of swirl premixed flame based on flame transfer function. Gas Turbine Technol. 2021, 34, 14–20. (In Chinese) [Google Scholar]
- Sun, X.F. Study on Dynamics of Partially Premixed Flames by Large Eddy Simulation Combined with System Identification. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Kraus, C.; Selle, L.; Poinsot, T. Coupling heat transfer and large eddy simulation for combustion instability prediction in a swirl burner. Combust. Flame 2018, 191, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Meloni, R.; Ceccherini, G.; Michelassi, V. Analysis of the self-excited dynamics of a heavy-duty annular combustor by large-eddy simulation. J. Eng. Gas Turbines Power 2019, 141, 111016. [Google Scholar] [CrossRef]
- Silva, C.F.; Emmert, T.; Jaensch, S. Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame. Combust. Flame 2015, 162, 3370–3378. [Google Scholar] [CrossRef]
- Kaiser, T.L.; Öztarlik, G.; Selle, L. Impact of symmetry breaking on the Flame Transfer Function of a laminar premixed flame. Proc. Combust. Inst. 2019, 37, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Nicoud, F.; Benoit, L.; Sensiau, C. Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 2007, 45, 426–441. [Google Scholar] [CrossRef]
- Ni, F.; Nicoud, F.; Méry, Y. Including flow–acoustic interactions in the Helmholtz computations of industrial combustors. AIAA J. 2018, 56, 4815–4829. [Google Scholar] [CrossRef]
- Stow, S.R.; Dowling, A.P. Thermoacoustic oscillations in an annular combustor. In Proceedings of the ASME TURBO EXPO, New Orleans, LA, USA, 4–7 June 2001. [Google Scholar]
- D’Alessandro, S.; Frezzotti, M.L.; Favini, B. A Multi-dimensional Approach for Low Order Modeling of Combustion Instability in a Rocket Combustor. In Proceedings of the Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Yang, F.J.; Guo, Z.H.; Fu, X. Combustion Instability Analysis Based on Thermoacoustic Network Method. J. Propuls. Technol. 2014, 35, 822–829. (In Chinese) [Google Scholar]
- Weng, F.L.; Zhou, S.W.; Zhu, M. Modeling and Simulation of combustion oscillation based on description function. J. Propuls. Technol. 2021, 42, 2306–2314. (In Chinese) [Google Scholar]
- He, Z.Q.; Wang, P.; Meenatchidevi, M. Experimental study on thermoacoustic oscillation in a new Double Swirl Combustor. J. Exp. Fluid Mech. 2021, 35, 44–52. (In Chinese) [Google Scholar]
- Kim, K.T. Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor. Combust. Flame 2016, 171, 137–151. [Google Scholar] [CrossRef]
- Choi, J.J.; Rusak, Z.; Kapila, A.K. Numerical simulation of premixed chemical reactions with swirl. Combust. Theory Model. 2007, 11, 863–887. [Google Scholar] [CrossRef]
- Wang, S.; Hsieh, S.Y.; Yang, V. Unsteady flow evolution in swirl injector with radial entry: I. Stationary conditions. Phys. Fluids 2005, 17, 045106. [Google Scholar] [CrossRef] [Green Version]
- Ateshkadi, A.; McDonell, V.G.; Samuelsen, G.S. Effect of hardware geometry on gas and drop behavior in a radial mixer spray. Symp. (Int.) Combust. 1998, 27, 1985–1992. [Google Scholar] [CrossRef]
- Palies, P.; Durox, D.; Schuller, T. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 2010, 157, 1698–1717. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Nori, V.N.; Seitzman, J.M. CH∗ chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst. 2009, 32, 895–903. [Google Scholar] [CrossRef]
- Keefer, D.R.; Smith, L.M.; Sudharsanan, S.I. Abel inversion using transform techniques. J. Quant. Spectrosc. Radiat. Transf. 1988, 39, 367–373. [Google Scholar]
- Lai, A.Q.; Liu, Y.P.; Fu, Y.M. Image processing of combustion oscillation flame. J. Combust. Sci. Technol. 2020, 26, 8. (In Chinese) [Google Scholar]
- Zhu, R.; Pan, D.; Ji, C. Combustion instability analysis on a partially premixed swirl combustor by thermoacoustic experiments and modeling. Energy 2020, 211, 118884. [Google Scholar] [CrossRef]
- Palies, P.; Durox, D.; Schuller, T. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 2011, 158, 1980–1991. [Google Scholar] [CrossRef]
- Yu, D.; Guo, Z.H.; Yang, F.J. Analysis of distributed flame transfer function in lean premixed combustor. J. Propuls. Technol. 2016, 37, 2210–2218. (In Chinese) [Google Scholar]
- Merk, M.; Jaensch, S.; Silva, C. Simultaneous identification of transfer functions and combustion noise of a turbulent flame. J. Sound Vib. 2018, 422, 432–452. [Google Scholar] [CrossRef]
- Han, X.; Morgans, A.S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Combust. Flame 2015, 162, 1778–1792. [Google Scholar] [CrossRef] [Green Version]
- Crocco, L. Aspects of combustion stability in liquid propellant rocket motors part I—Fundamentals: Low frequency instability with monopropellants. J. Am. Rocket. Soc. 1951, 21, 163–178. [Google Scholar] [CrossRef]
- Harrje, D.T.; Reardon, F.H. Liquid Propellant Rocket Combustion Instability; Scientific and Technical Information Office, National Aeronautics and Space Administration: Oak Ridge, TN, USA, 1972.
- Hield, P.A.; Brear, M.J.; Jin, S.H. Thermoacoustic limit cycles in a premixed laboratory combustor with open and choked exits. Combust. Flame 2009, 156, 1683–1697. [Google Scholar] [CrossRef]
- Bernier, D.; Lacas, F.; Candel, S. Instability mechanisms in a premixed prevaporized combustor. J. Propuls. Power 2004, 20, 648–656. [Google Scholar] [CrossRef]
- Sun, P.F.; Ge, B.; Yuan, Y.R.; Zang, S.S. Oscillation combustion mechanism of LPP combustor and suppression of oscillation by secondary fuel. J. Eng. Therm. Energy Power 2018, 33, 36–42. (In Chinese) [Google Scholar]
- Kim, D.; Joo, S.; Yoon, Y. Effects of fuel line acoustics on the self-excited combustion instability mode transition with hydrogen-enriched laboratory-scale partially premixed combustor. Int. J. Hydrogen Energy 2020, 45, 19956–19964. [Google Scholar] [CrossRef]
- Yoon, J.; Joo, S.; Kim, J. Effects of convection time on the high harmonic combustion instability in a partially premixed combustor. Proc. Combust. Inst. 2017, 36, 3753–3761. [Google Scholar] [CrossRef]
- Anisimov, V.; Chiarioni, A.; Rofi, C.; Ozzano, S.; Hermeth, G.; Hannebique, G.; Staffelbach, G.; Poinsot, T. Bi-stable flame behavior of heavy duty gas turbine burner, RANS, LES and experiment comparison. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. Paper No. GT2015-42536. [Google Scholar]
- Rofi, L.; Campa, G.; Anisimov, V.; Dacca, F.; Bertolotto, E.; Gottardo, E.; Bonazni, F. Numerical procedure for the investigation of combustion dynamics in industrial gas turbines: LES, RANS and thermoacoustics. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. Paper No. GT2015-42168. [Google Scholar]
- Rayleigh, J.S.W. The Theory of Sound; Dover Publications: New York, NY, USA, 1945. [Google Scholar]
Swirler Parameters | Swirler A | Swirler B | Swirler C | |||
---|---|---|---|---|---|---|
First Stage | Second Stage | First Stage | Second Stage | First Stage | Second Stage | |
Inner radius/mm | 10 | 18 | 10 | 18 | 10 | 18 |
Outer radius/mm | 16.5 | 22.5 | 16.5 | 22.5 | 16.5 | 22.5 |
Blade angle/° | 45 | 50 | 40 | 45 | 35 | 40 |
Number of blades | 8 | 12 | 8 | 12 | 8 | 12 |
Swirl number | 0.82 | 1.08 | 0.69 | 0.9 | 0.57 | 0.76 |
Swirler | n | τ/ms |
---|---|---|
A | 4.702 | 6.230 |
B | 4.710 | 7.138 |
C | 4.949 | 6.846 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Ding, Y.; Yang, C.; Wang, X.; Zhang, X.; Liu, Y.; Jin, F. Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes. Energies 2022, 15, 8972. https://doi.org/10.3390/en15238972
Hao J, Ding Y, Yang C, Wang X, Zhang X, Liu Y, Jin F. Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes. Energies. 2022; 15(23):8972. https://doi.org/10.3390/en15238972
Chicago/Turabian StyleHao, Jiangang, Yang Ding, Chen Yang, Xuhuai Wang, Xiang Zhang, Yong Liu, and Feng Jin. 2022. "Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes" Energies 15, no. 23: 8972. https://doi.org/10.3390/en15238972
APA StyleHao, J., Ding, Y., Yang, C., Wang, X., Zhang, X., Liu, Y., & Jin, F. (2022). Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes. Energies, 15(23), 8972. https://doi.org/10.3390/en15238972