# Data Analytics for Admittance Matrix Estimation of Poorly Monitored Distribution Grids

^{1}

^{2}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Background

#### 2.1. Exact Power-Flow Equations

#### 2.2. Extended DC Power Flow Approximation

## 3. Solution Methodology

#### 3.1. Regression Model

#### 3.2. Proposed Solution

Algorithm 1 Construction of the matrices of (8). |

Step 1: Compute the Voltage Drop Vector |

${\left(\right)}^{\left(\right)}={\left(\right)}_{\begin{array}{c}\Delta \left(\right)open="|"\; close="|">{V}_{01}\end{array}}^{\Delta \left(\right)open="|"\; close="|">{V}_{02}}\vdots \\ \Delta \left(\right)open="|"\; close="|">{V}_{0i}$ |

where: |

(1) $i=1,2,\dots ,{N}_{bus}-1$; |

(2) $t=1,2,\dots ,\mathrm{number}\phantom{\rule{4.pt}{0ex}}\mathrm{of}\phantom{\rule{4.pt}{0ex}}\mathrm{periods}$; |

Step 2: Define the R-X Vector |

(1) R = ${\left[\begin{array}{ccccccccccc}{R}_{11}& \cdots & {R}_{1i}& {R}_{22}& \cdots & {R}_{2i}& {R}_{33}& \cdots & {R}_{3i}& \cdots & {R}_{ii}\end{array}\right]}^{\top}$ |

(2) X = ${\left[\begin{array}{ccccccccccc}{X}_{11}& \cdots & {X}_{1i}& {X}_{22}& \cdots & {X}_{2i}& {X}_{33}& \cdots & {X}_{3i}& \cdots & {X}_{ii}\end{array}\right]}^{\top}$ |

where: $i=1,2,\dots ,{N}_{bus}-1$; |

Step 3: Compute the Measurements Matrix |

$\left[\begin{array}{cc}\Delta P/\left|V\right|& \Delta Q/\left|V\right|\end{array}\right]$ = $\left[\begin{array}{cc}{\left[\Delta {P}_{i}/\left|{V}_{i}\right|\right]}_{1}& {\left[\Delta {Q}_{i}/\left|{V}_{i}\right|\right]}_{1}\\ {\left[\Delta {P}_{i}/\left|{V}_{i}\right|\right]}_{2}& {\left[\Delta {Q}_{i}/\left|{V}_{i}\right|\right]}_{2}\\ \vdots & \vdots \\ {\left[\Delta {P}_{i}/\left|{V}_{i}\right|\right]}_{t}& {\left[\Delta {Q}_{i}/\left|{V}_{i}\right|\right]}_{t}\end{array}\right]$ |

where: |

(1) $i=1,2,\dots ,{N}_{bus}-1$; |

(2) Element’s position on sub-matrices $[\Delta {P}_{i}/|{V}_{i}{\left|\right]}_{t}$ and $[\Delta {Q}_{i}/|{V}_{i}{\left|\right]}_{t}$ must be coherent with |

the R-X vector defined in Step 2, maintaining the same linear structure of (7). |

#### 3.3. Feeder Laterals and Non-Metered Buses

## 4. Data and Results

#### 4.1. Data Set Generation

#### 4.2. Results

## 5. Conclusions and Future Work

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ilić, M.D.; Carvalho, P.M. From hierarchical control to flexible interactive electricity services: A path to decarbonisation. Electr. Power Syst. Res.
**2022**, 212, 108554. [Google Scholar] [CrossRef] - Ardakanian, O.; Keshav, S.; Rosenberg, C. Integration of Renewable Generation and Elastic Loads into Distribution Grids; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Machado, J.A.C.; Carvalho, P.M.S.; Ferreira, L.A.F.M. Building Stochastic Non-Stationary Daily Load/Generation Profiles for Distribution Planning Studies. IEEE Trans. Power Syst.
**2018**, 33, 911–920. [Google Scholar] [CrossRef] - Yuan, Y.; Low, S.H.; Ardakanian, O.; Tomlin, C.J. Inverse power flow problem. IEEE Trans. Control. Netw. Syst. 2022; early access. [Google Scholar] [CrossRef]
- Ritzmann, D.; Wright, P.S.; Holderbaum, W.; Potter, B. A method for accurate transmission line impedance parameter estimation. IEEE Trans. Instrum. Meas.
**2016**, 65, 2204–2213. [Google Scholar] [CrossRef] - Mousavi-Seyedi, S.S.; Aminifar, F.; Afsharnia, S. Parameter estimation of multiterminal transmission lines using joint PMU and SCADA data. IEEE Trans. Power Deliv.
**2014**, 30, 1077–1085. [Google Scholar] [CrossRef] - Sivanagaraju, G.; Chakrabarti, S.; Srivastava, S.C. Uncertainty in transmission line parameters: Estimation and impact on line current differential protection. IEEE Trans. Instrum. Meas.
**2013**, 63, 1496–1504. [Google Scholar] [CrossRef] - Farajollahi, M.; Shahsavari, A.; Mohsenian-Rad, H. Topology identification in distribution systems using line current sensors: An MILP approach. IEEE Trans. Smart Grid
**2019**, 11, 1159–1170. [Google Scholar] [CrossRef] - Wu, Z.; Du, X.; Gu, W.; Ling, P.; Liu, J.; Fang, C. Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks. Energies
**2018**, 11, 1917. [Google Scholar] [CrossRef] [Green Version] - Yu, J.; Weng, Y.; Rajagopal, R. PaToPaEM: A data-driven parameter and topology joint estimation framework for time-varying system in distribution grids. IEEE Trans. Power Syst.
**2018**, 34, 1682–1692. [Google Scholar] [CrossRef] [Green Version] - Park, S.; Deka, D.; Chcrtkov, M. Exact topology and parameter estimation in distribution grids with minimal observability. In Proceedings of the 2018 IEEE Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–6. [Google Scholar]
- Ardakanian, O.; Wong, V.W.; Dobbe, R.; Low, S.H.; von Meier, A.; Tomlin, C.J.; Yuan, Y. On identification of distribution grids. IEEE Trans. Control. Netw. Syst.
**2019**, 6, 950–960. [Google Scholar] [CrossRef] - Zhang, J.; Wang, P.; Zhang, N. Distribution network admittance matrix estimation with linear regression. IEEE Trans. Power Syst.
**2021**, 36, 4896–4899. [Google Scholar] [CrossRef] - Singh, R.; Manitsas, E.; Pal, B.C.; Strbac, G. A Recursive Bayesian Approach for Identification of Network Configuration Changes in Distribution System State Estimation. IEEE Trans. Power Syst.
**2010**, 25, 1329–1336. [Google Scholar] [CrossRef] - Stott, B.; Jardim, J.; Alsaç, O. DC power flow revisited. IEEE Trans. Power Syst.
**2009**, 24, 1290–1300. [Google Scholar] [CrossRef] - Guggilam, S.S.; Dall’Anese, E.; Chen, Y.C.; Dhople, S.V.; Giannakis, G.B. Scalable optimization methods for distribution networks with high PV integration. IEEE Trans. Smart Grid
**2016**, 7, 2061–2070. [Google Scholar] [CrossRef] - Yang, J.; Zhang, N.; Kang, C.; Xia, Q. A state-independent linear power flow model with accurate estimation of voltage magnitude. IEEE Trans. Power Syst.
**2016**, 32, 3607–3617. [Google Scholar] [CrossRef] - Weisberg, S. Applied Linear Regression; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 528. [Google Scholar]
- Dolatabadi, S.H.; Ghorbanian, M.; Siano, P.; Hatziargyriou, N.D. An enhanced IEEE 33 bus benchmark test system for distribution system studies. IEEE Trans. Power Syst.
**2020**, 36, 2565–2572. [Google Scholar] [CrossRef] - Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]

**Figure 1.**Feeder lateral example where i and k correspond to standard network load buses and j corresponds to a node to which feeder laterals are connected to supply consumers $1,2,\dots ,n$.

**Figure 3.**Sensitivity Analysis: (

**a**) Parameter error evolution with total active power losses. (

**b**) Matrix condition number evolution with the number of network buses.

**Figure 4.**Sub-grid topology decomposition. Reference nodes of each sub-grid are circled in red. Sub-grids (

**a**–

**c**) are connected to the grey circles of sub-grid (

**d**) whose reference node is bus 1.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Leal, P.C.; Ferreira, D.M.V.P.; Carvalho, P.M.S.
Data Analytics for Admittance Matrix Estimation of Poorly Monitored Distribution Grids. *Energies* **2022**, *15*, 8961.
https://doi.org/10.3390/en15238961

**AMA Style**

Leal PC, Ferreira DMVP, Carvalho PMS.
Data Analytics for Admittance Matrix Estimation of Poorly Monitored Distribution Grids. *Energies*. 2022; 15(23):8961.
https://doi.org/10.3390/en15238961

**Chicago/Turabian Style**

Leal, Pedro C., Diogo M. V. P. Ferreira, and Pedro M. S. Carvalho.
2022. "Data Analytics for Admittance Matrix Estimation of Poorly Monitored Distribution Grids" *Energies* 15, no. 23: 8961.
https://doi.org/10.3390/en15238961