Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions
Abstract
:1. Introduction
2. Theoretical Background
2.1. Transformer Vibration
2.2. Contrast
2.2.1. Unser Contrast
2.2.2. Tamura Contrast
- Dynamic range of gray levels;
- Polarization of the distribution of black and white on the histogram of gray levels or the ratio between the black and white areas.
2.3. Artificial Neural Networks
3. Proposed Methodology
4. Experimental Setup and Results
4.1. Experimental Setup
4.2. Results
4.2.1. Gray-Scale Normalization
4.2.2. Unser and Tamura Contrast Estimations
4.2.3. Classification Results
5. Discussion
6. Conclusions
- The proposed method can diagnose early SCT fault conditions, i.e., 0, 1, and 2 SCTs. Detection of early SCT faults helps to increase the transformer life, reduce the breakdown maintenance, and avoid possible catastrophic failures.
- One image processing feature used for the texture analysis, i.e., the contrast, allows characterizing the variations in a VA signal to detect early SCTs in a transformer.
- Two contrast definitions, i.e., Unser and Tamura, are tested, where the Unser definition with d = 15 demonstrated to provide the best results.
- The contrast measure is unaffected by the different load combinations connected to the transformer, when early SCTs are present.
- The classification effectiveness from both the Unser contrast definition and the ANN as classifier (i.e., 89.78%) is higher than the one obtained by the SVM (i.e., 86.1%). The Tamura contrast definition with an ANN obtained 86.38% of effectiveness and with a SVM 85.96% of effectiveness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudelina, K.; Asad, B.; Vaimann, T.; Rassõlkin, A.; Kallaste, A.; Van Khang, H. Methods of Condition Monitoring and Fault Detection for Electrical Machines. Energies 2021, 14, 7459. [Google Scholar] [CrossRef]
- Huerta-Rosales, J.R.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P.; Camarena-Martinez, D.; Valtierra-Rodriguez, M. Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach. Mathematics 2020, 8, 575. [Google Scholar] [CrossRef]
- Secic, A.; Krpan, M.; Kuzle, I. Vibro-Acoustic Methods in the Condition Assessment of Power Transformers: A Survey. IEEE Access 2019, 7, 83915–83931. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, C.; Chen, Y.; Zhou, Q.; Yao, C.; Islam, S. Interpretation of Transformer Winding Deformation Fault by the Spectral Clustering of FRA Signature. Int. J. Electr. Power Energy Syst. 2021, 130, 106933. [Google Scholar] [CrossRef]
- Granados-Lieberman, D.; Razo-Hernandez, J.R.; Venegas-Rebollar, V.; Olivares-Galvan, J.C.; Valtierra-Rodriguez, M. Harmonic PMU and Fuzzy Logic for Online Detection of Short-Circuited Turns in Transformers. Electr. Power Syst. Res. 2021, 190, 106862. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J.; Huang, H. Experimental Research on Power Transformer Vibration Distribution under Different Winding Defect Conditions. Electronics 2019, 8, 842. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Huang, H.; Pan, J. Detection of Winding Faults Based on a Characterization of the Nonlinear Dynamics of Transformers. IEEE Trans. Instrum. Meas. 2018, 68, 206–214. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S. Power Transformer Voltages Classification with Acoustic Signal in Various Noisy Environments. Sensors 2022, 22, 1248. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B. Acoustic Multi-Parameter Early Warning Method for Transformer DC Bias State. Sensors 2022, 22, 2906. [Google Scholar] [CrossRef]
- Contreras-Valdes, A.; Amezquita-Sanchez, J.P.; Granados-Lieberman, D.; Valtierra-Rodriguez, M. Predictive Data Mining Techniques for Fault Diagnosis of Electric Equipment: A Review. Appl. Sci. 2020, 10, 950. [Google Scholar] [CrossRef]
- Bartoletti, C.; Desiderio, M.; Di Carlo, D.; Fazio, G.; Muzi, F.; Sacerdoti, G.; Salvatori, F. Vibro-Acoustic Techniques to Diagnose Power Transformers. IEEE Trans. Power Deliv. 2004, 19, 221–229. [Google Scholar] [CrossRef]
- Romero-Troncoso, R.D.J. Multirate Signal Processing to Improve FFT-Based Analysis for Detecting Faults in Induction Motors. IEEE Trans. Ind. Inform. 2017, 13, 1291–1300. [Google Scholar] [CrossRef]
- Borucki, S.; Cichoń, A.; Majchrzak, H.; Zmarzły, D. Evaluation of the Technical Condition of the Active Part of the High Power Transformer Based on Measurements and Analysis of Vibroacoustic Signals. Arch. Acoust. 2017, 42, 313–320. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M.; Rivera-Guillen, J.R.; Basurto-Hurtado, J.A.; Jesus De-Santiago-Perez, J.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P. Convolutional Neural Network and Motor Current Signature Analysis during the Transient State for Detection of Broken Rotor Bars in Induction Motors. Sensors 2020, 20, 3721. [Google Scholar] [CrossRef]
- Goyal, D.; Pabla, B.S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [Google Scholar] [CrossRef]
- Borucki, S.; Cichon, A. Wavelet Analysis of Vibroacoustic Signals Registered during the Transformer Start-Up. In Proceedings of the IEEE 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 17–20 September 2012; pp. 579–582. [Google Scholar]
- Zhao, M.; Xu, G. Feature Extraction of Power Transformer Vibration Signals Based on Empirical Wavelet Transform and Multiscale Entropy. IET Sci. Meas. Technol. 2018, 12, 63–71. [Google Scholar] [CrossRef]
- Wu, X.; Li, L.; Zhou, N.; Lu, L.; Hu, S.; Cao, H.; He, Z. Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method. Energies 2018, 11, 1775. [Google Scholar] [CrossRef] [Green Version]
- Amezquita-Sanchez, J.P.; Adeli, H. A New Music-Empirical Wavelet Transform Methodology for Time-Frequency Analysis of Noisy Nonlinear and Non-Stationary Signals. Digit. Signal Process. A Rev. J. 2015, 45, 55–68. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M. Fractal Dimension and Data Mining for Detection of Short-Circuited Turns in Transformers from Vibration Signals. Meas. Sci. Technol. 2020, 31, 025902. [Google Scholar] [CrossRef]
- Huerta-Rosales, J.R.; Granados-Lieberman, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on Fpga. Sensors 2021, 21, 3958. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Zhang, R.; Jiang, P.; Liu, G.; Ahmed, S.; Dong, Z. Novel Transformer Fault Identification Optimization Method Based on Mathematical Statistics. Mathematics 2019, 7, 288. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yu, W.; Tian, J.; Chen, L.; Zhou, Z. Image Contrast Enhancement Using an Artificial Bee Colony Algorithm. Swarm Evol. Comput. 2018, 38, 287–294. [Google Scholar] [CrossRef]
- Cai, J.; Gu, S.; Zhang, L. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef]
- Ferrucho-Alvarez, E.R.; Martinez-Herrera, A.L.; Cabal-Yepez, E.; Rodriguez-Donate, C.; Lopez-Ramirez, M.; Mata-Chavez, R.I. Broken Rotor Bar Detection in Induction Motors through Contrast Estimation. Sensors 2021, 21, 7446. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Xiao, R.; Jiang, P.; Dong, Z.; Deng, J. Operation State Identification Method for Converter Transformers Based on Vibration Detection Technology and Deep Belief Network Optimization Algorithm. Actuators 2021, 10, 56. [Google Scholar] [CrossRef]
- Zhang, F.; Ji, S.; Shi, Y.; Zhan, C.; Zhu, L. Investigation on Vibration Source and Transmission Characteristics in Power Transformers. Appl. Acoust. 2019, 151, 99–112. [Google Scholar] [CrossRef]
- Bagheri, M.; Nezhivenko, S.; Naderi, M.S.; Zollanvari, A. A New Vibration Analysis Approach for Transformer Fault Prognosis over Cloud Environment. Int. J. Electr. Power Energy Syst. 2018, 100, 104–116. [Google Scholar] [CrossRef]
- García, B.; Burgos, J.C.; Alonso, Á.M. Transformer Tank Vibration Modeling as a Method of Detecting Winding Deformations—Part I: Theoretical Foundation. IEEE Trans. Power Deliv. 2006, 21, 157–163. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Unser, M. Sum and Difference Histograms for Texture Classification. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 118–125. [Google Scholar] [CrossRef]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man. Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Camarena-Martinez, D.; Granados-Lieberman, D.; Romero-Troncoso, R.J.; Dominguez-Gonzalez, A. Fractal Dimension-Based Approach for Detection of Multiple Combined Faults on Induction Motors. J. Vib. Control 2016, 22, 3638–3648. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Q.; Wu, X.; Zhao, Z. A Novel Measuring Method of Interfacial Tension of Transformer Oil Combined PSO Optimized SVM and Multi Frequency Ultrasonic Technology. IEEE Access 2019, 7, 182624–182631. [Google Scholar] [CrossRef]
- Mejia-Barron, A.; Valtierra-Rodriguez, M.; Granados-Lieberman, D.; Olivares-Galvan, J.C.; Escarela-Perez, R. The Application of EMD-Based Methods for Diagnosis of Winding Faults in a Transformer Using Transient and Steady State Currents. Meas. J. Int. Meas. Confed. 2018, 117, 371–379. [Google Scholar] [CrossRef]
- Borucki, S. Diagnosis of Technical Condition of Power Transformers Based on the Analysis of Vibroacoustic Signals Measured in Transient Operating Conditions. IEEE Trans. Power Deliv. 2012, 27, 670–676. [Google Scholar] [CrossRef]
Unser Contrast, d = 15 | Tamura Contrast | ||||||||
---|---|---|---|---|---|---|---|---|---|
S0 | S1 | S2 | S3 | S0 | S1 | S2 | S3 | ||
0 SCTs | μ | 3862.5413 | 3426.7146 | 3597.4812 | 3511.6746 | 38.1231 | 35.4044 | 36.5590 | 36.0443 |
σ | 683.7739 | 690.3487 | 652.7069 | 848.0176 | 4.6503 | 4.6849 | 4.4967 | 5.4222 | |
1 SCTs | μ | 6732.2393 | 6363.5508 | 6543.8623 | 6294.7972 | 53.8102 | 51.9030 | 53.0096 | 51.8991 |
σ | 1441.4742 | 1220.7590 | 1301.9952 | 1195.6256 | 7.5780 | 6.6916 | 6.9990 | 6.5757 | |
2 SCTs | μ | 8699.9884 | 8304.6975 | 8529.3658 | 8147.1655 | 62.6589 | 60.8933 | 62.1086 | 60.5648 |
σ | 1084.0015 | 1022.1635 | 1049.8129 | 1016.2967 | 4.3483 | 4.1768 | 4.2930 | 4.2054 |
Unser Contrast, d = 15 | Tamura Contrast | |||||
---|---|---|---|---|---|---|
0 SCTs | 1 SCTs | 2 SCTs | 0 SCTs | 1 SCTs | 2 SCTs | |
μ | 3599.6029 | 6483.6124 | 8420.3043 | 36.5327 | 52.6555 | 61.5564 |
σ | 740.9540 | 130.6383 | 1064.5340 | 4.9304 | 7.0183 | 4.3420 |
Unser with d = 15 | Tamura | |
---|---|---|
ANN (%) | 89.78 | 86.38 |
SVM (%) | 86.1 | 85.96 |
SCTs | 0 | 1 | 2 | |
---|---|---|---|---|
0 | 16 | 0 | 0 | |
1 | 0 | 14 | 2 | |
2 | 0 | 2 | 14 | |
Accuracy | 100% | 87.5% | 87.5% | Average = 91.7% |
Work | Method | Signal | Fault Detected in Windings | Early Detection/Severities (SCTs) | Load Conditions | Automatic Classification |
---|---|---|---|---|---|---|
Proposed Work | Contrast index | Vibrations | SCTs | Yes 1, 2 | 4 | ANN |
[17] | Empirical Wavelet transform, HT, and entropies | Vibrations | Winding deformation | No | - | - |
[20] | Fractal algorithms, ANOVA, Data mining | Vibrations | SCTs | No 5, 10, …, 35 | No load | Decision trees, Naïve Bayes, k-nearest neighbor |
[28] | FFT and total harmonic distortion | Vibrations | SCTs | Yes Initiation | 1 | - |
[35] | Complete ensemble empirical mode decomposition, Shannon entropy, RMS, and energy index | Current | SCTs | No 5, 10, …, 40 | - | - |
[36] | Short time Fourier transform and RMS | Vibrations | Winding loosening | No | 1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Rosales, J.R.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P.; Garcia-Perez, A.; Bueno-Lopez, M.; Valtierra-Rodriguez, M. Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions. Energies 2022, 15, 8508. https://doi.org/10.3390/en15228508
Huerta-Rosales JR, Granados-Lieberman D, Amezquita-Sanchez JP, Garcia-Perez A, Bueno-Lopez M, Valtierra-Rodriguez M. Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions. Energies. 2022; 15(22):8508. https://doi.org/10.3390/en15228508
Chicago/Turabian StyleHuerta-Rosales, Jose R., David Granados-Lieberman, Juan P. Amezquita-Sanchez, Arturo Garcia-Perez, Maximiliano Bueno-Lopez, and Martin Valtierra-Rodriguez. 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions" Energies 15, no. 22: 8508. https://doi.org/10.3390/en15228508
APA StyleHuerta-Rosales, J. R., Granados-Lieberman, D., Amezquita-Sanchez, J. P., Garcia-Perez, A., Bueno-Lopez, M., & Valtierra-Rodriguez, M. (2022). Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions. Energies, 15(22), 8508. https://doi.org/10.3390/en15228508