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Abstract: Most power transformer faults are caused by iron core and winding faults. At present,
the method that is most widely used for transformer iron core and winding faults identification
is the vibration analysis method. The vibration analysis method generally determines the degree
of fault by analyzing the energy spectrum of the transformer vibration signal. However, the noise
reduction step in this method is complicated and costly, and the effect of denoising needs to be further
improved to make the fault identification results more accurate. In addition, it is difficult to perform
an accurate determination of the early mild failure of the transformer due to the effect of noise on
the results. This paper presents a novel mathematical statistics method based on the vibration signal
to optimize the vibration analysis method for the short-circuit failure of the transformer winding.
The proposed method was used for linear analysis of the transformer vibration signal with different
degrees of short-circuit failure of the transformer winding. By comparing the slope value of the
transformer vibration signal cumulative probability distribution curve and analyzing the energy
spectrum of the signal, the degree of short-circuit failure of the transformer winding was identified
quickly and accurately. This method also simplified the signal denoising process in transformer fault
detection, improved the accuracy of fault detection, reduced the time of fault detection, and provided
good predictability for early mild faults of the transformer, thereby reducing the hidden hazards of
operating the power transformer. The proposed optimization procedure offers a new research idea in
transformer fault identification.

Keywords: mathematical statistics method; energy spectrum; vibration signal; winding short-circuit
fault; power transformer

1. Introduction

After a transformer has been used for a long time, various losses cause the transformer to
malfunction due to its complicated internal structure. Only monitoring the operating state of the
transformer accurately and timely can ensure the reliable and safe operation of the power system [1,2].
Transformer fault is primarily caused by iron core and winding faults. The winding fault is mainly
due to the winding deformation and the iron core failure is mainly caused by the looseness of the core.
The winding coil is one of the main components that caused the transformer fault [3–5].

Traditional methods for identifying transformer winding and iron core faults are low voltage pulse
method and frequency response analysis method. The former method overcomes the shortcomings of
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the impedance analysis method, but this method is not ideal for anti-interference and repeatability in
the practical application. In addition, factors, such as the double-shielded cable, the grounding wire
arrangement, and surrounding objects, etc., all have influences on the test results. Compared with the
low-voltage pulse method, the frequency response analysis method has a strong anti-interference ability
and good measurement repeatability, which gives relatively higher sensitivity than the low-voltage
pulse analysis method. However, it also requires a large amount of historical data. The lack of historical
data of the transformer makes the promotion of this method difficult. These methods are based on the
electrical model of the transformer windings. Accurate judgment can be made when the transformer
windings are significantly deformed, but the sensitivity is not high when detecting windings that are
loose or slightly deformed [6].

The vibration method has been an emerging method of transformer fault identification technology
in recent years. By examining the vibration signals of the iron core and winding, this method can
promptly and accurately monitor the working conditions of a transformer [7–9]. The components of
a power transformer that can generate vibrations mainly include iron cores, windings, and cooling
devices. Iron core vibration is attributed to the magnetostrictive silicon steel sheet and winding
vibration is normally caused by the load current and magnetic flux loss [10,11]. When the vibration
method is used to monitor transformer operation, an energy spectrum analysis of the collected vibration
signals should be performed. In this process, the signal must be noise-reduced, and the effective signal
can be separated and analyzed. However, several filter units are required to process the noise and
facilitate its reduction, resulting in a relatively high cost of noise reduction. In addition, the current
signal separation technology is complicated to implement in practical technical applications [12].
If noise reduction is unsatisfactory, then an energy spectrum analysis of the signal using the vibration
method cannot quickly and accurately detect the faulty degree of the transformer. The safety hazard of
the transformer then cannot process in a timely manner, which also reduces the safety and reliability of
network operation. In order to solve these problems, Reference [13] proposed an improved algorithm
for solving the band interleaving and aliasing of wavelet packet algorithm. The wavelet packet
energy feature analysis obtained by this algorithm is used to determine the transformer winding
deformation. However, this method requires multiple short-circuit current surges on the transformer
windings, resulting in errors in the results, and the degree of deformation of the windings cannot be
recognized. Reference [14] provided a blind source separation method for transformer winding and
iron core vibration signal based on subband decomposition independent component analysis (SDICA).
The method can directly separate the winding and iron core vibration signals, which can determine
the phase of the transformer where the fault occurs. However, the error is large and the degree of
failure cannot be identified. Reference [15] established a fault diagnosis model of transformer winding
deformation, and proposed the diagnosis method based on the model. It can not only diagnose the fault
inside the transformer winding but also judge the fault type and perform preliminary fault location. Yet,
this method cannot identify the fault degree of the transformer. Reference [16–18] proposed the concept
of a health index to assess the degree of aging of transformers and used the health index to effectively
assess the physical health of the transformer, thus determining the probability of a transformer failure.
However, the health index does not actually determine the degree of transformer failure that has failed.
The health index is used more to provide justification for a capital plan which includes end-of-life asset
replacement. Reference [19–21] proposed effective transformer fault identification methods, but these
transformer fault identification methods mainly identify the type of transformer faults rather than the
degree of faults. These methods can identify transformer faults, such as discharge fault, thermal fault,
and partial discharge. However, these methods cannot determine the degree of transformer failure nor
the transformer winding and core failure. The transformer fault identification method proposed in
these articles, which identifies the actual type of transformer fault, is only effective in improving the
accuracy based on the original dissolved gas analysis method.

The current study examined an optimized method of fault identification in power transformers.
First, the vibration signal of the transformer was measured during transformer operation via a
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transformer short-circuit test. Second, the mathematical statistics method was used to analyze the
probability distribution of the vibration signal. We observed that the fault degree of the transformer
could be identified by comparing the slope of the vibration signal with the probability distribution
after noise reduction. The optimization process could simplify signal noise reduction and optimize the
transformer fault identification process. The proposed method was sensitive to the short-circuit fault
detection of the winding and could quickly identify short-circuit faults of the power transformer at an
early stage. The study’s results are of considerable importance for the development of transformer
fault detection techniques.

2. Transformer Vibration Signal Characteristics

2.1. Characterization of Transformer Vibration Signals

The vibration of the transformer iron core depends on the magnetostriction of the silicon steel
sheet. Therefore, under the condition that the iron core material and working temperature are constant,
vibration acceleration ac of the iron core is proportional to the square of power supply voltage us [6,16].

ac ∝ u2
s (1)

In Equation (1), we observed that the vibration of the iron core is independent of the winding
current and related only to the applied voltage.

The vibration of the winding is caused by the electromagnetic force of the energized conductor in
the leakage magnetic field. The vibration acceleration signal aw of the transformer winding operating
stably under ideal conditions is proportional to the square of winding current Im:

aw ∝ I2
m. (2)

The phase difference of the vibration acceleration generated by the transformer winding and iron
core is calculated in Equation (3) [5]:

φ = 2φ0 + β− π

2
(3)

φ0 and β represent the initial value of the load current of the power transformer winding and the
winding parameters under fixed conditions, respectively.

The ac (iron core vibration acceleration) and aw (winding vibration acceleration) are used as
vibration sources. The vibration acceleration amplitude of the vibration source radiation is calculated
as:

a =
(

a2
c + a2

w + 2acawcosφ
)1/2

(4)

A relationship exists between the vibration acceleration amplitude and aw and ac:

|ac| − |aw| ≤ a ≤ |ac|+ |aw| (5)

The vibration acceleration level can be expressed as the intensity of the vibration, and the same
analogy can be applied to the noise level. The vibration acceleration level is expressed as:

La = 20 log
a
a0

. (6)

a0 is the reference value of vibration acceleration, and the detection accuracy is set to 10−4 m/s2

according to the nature of the transformer.
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2.2. Measurement of the Transformer Vibration Signal

The frequency spectrum of iron core vibration is wide, and the frequency component of winding
vibration is relatively simple. In the signal measurement process, the frequency components of the
winding and iron core are often mixed together, which makes it difficult to determine the type of fault.

In a transformer short-circuit test, the low-voltage side of the transformer is shorted under normal
operating conditions, and a certain voltage is applied to the high-voltage side of the transformer to
allow the winding current to reach the rated value. In Equation (1), we observed that the amplitude
of the vibration acceleration generated by the iron core is small when no voltage is present on the
low-voltage side. When the transformer has a short-circuit fault, the winding current sharply increases
and occasionally increases to 20 to 30 times than the rated current amplitude, which increases the
electromagnetic force of the winding and its fundamental frequency vibration. Therefore, the iron
core vibration signal is negligible relative to the amplitude of the winding vibration signal in the
short-circuit test [22]. Blind source separation technology can usually be used to eliminate the influence
of iron core vibration on the winding signal during the measurement process. However, due to the
complexity of the technical algorithm preparation process, the transformer short-circuit test was
used to directly measure the vibration signal of the transformer winding, thereby simplifying signal
acquisition. S-11-M-500/35 type transformer was used in this study to perform transformer short
circuit test. The transformer connection group is Yyn0, the capacitance is 500 kVA, and the rated
current is 8.25 A.

The vibration acceleration signal can be measured by the vibration sensor attached to the wall of
the transformer tank. The transformer vibration acceleration signals of a no winding short-circuit fault,
a slight winding short-circuit fault, a moderate winding short-circuit defect, and a severe winding
short-circuit fault in the transformer short-circuit test were measured to obtain transformer vibration
with different fault degrees and analyze the transformer fault condition. The signal amplitude is
shown in Figure 1.
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Figure 1. Transformer vibration signals of four types of fault.

2.3. Transformer Vibration Signal Energy Spectrum Analysis

The conventional vibration method requires the determination of the energy threshold of each
frequency band of the transformer vibration signal with different fault degrees, after which the
transformer fault degree is identified by analyzing the energy variation of the signal. Therefore,
a wavelet signal multi-frequency analysis is performed on the vibration signal. During the analysis,
the scale is adjusted to quantify the energy of different frequency bands, and the frequency energy
spectrum of the transformer vibration signal with different fault degrees is obtained [23].
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Given that the result of decomposing the three-layer wavelet packet of the vibration signal can
effectively decompose the frequency bands of the signal, the vibration signal of the normal state of
the transformer and the various fault levels are completely denoised, and the three-stage wavelet
coefficient is decomposed. In order to better analyze the signal, 100Hz~600Hz is evenly distributed
into six frequency bands, 600-800Hz is set as one frequency band, and 800Hz is also set as one
frequency band. The division method is determined by the characteristics of the transformer vibration
signal [24]. Then an energy analysis is performed, and the Frequency-Band-Energy (FBE) occupation
ratio threshold of the transformer vibration signal is determined in the transformer short-circuit test.
Table 1 shows the threshold values of the energy content of each frequency band of the transformer
vibration signal in the critical state with different fault degrees under the completely denoised condition
obtained by the energy spectrum analysis. According to the method proposed in Reference [25], the
transformer winding deformation degree is divided into normal state, mild winding short-circuit fault,
moderate winding short-circuit fault, and severe winding short-circuit fault.

Table 1. Energy consumption ratio threshold values of each frequency band corresponding to
transformer vibration signals of different fault levels.

Transformer
Status

1st FBE
Ratio
(%)

2nd FBE
Ratio
(%)

3rd FBE
Ratio
(%)

4th FBE
Ratio
(%)

5th FBE
Ratio
(%)

6th FBE
Ratio
(%)

7th FBE
Ratio
(%)

8th FBE
Ratio
(%)

Normal
status 82.36 4.60 1.97 3.99 1.49 1.33 2.08 2.18

Mild fault 84.96 4.36 1.59 3.63 1.08 0.92 1.64 1.82
Moderate

fault 85.84 4.29 1.44 3.51 0.94 0.80 1.51 1.67

Severe fault 88.89 3.87 0.97 3.18 0.43 0.38 1.07 1.21

A frequency band energy diagram of the transformer vibration signal is plotted in Table 1 and
shown in Figure 2. From left to right and from top to bottom, parts of this figure show the frequency
band energy diagram of the transformer, representing the critical state of the normal state, middle
winding short-circuit fault, moderate winding short-circuit fault, and severe winding short-circuit
fault, respectively. The bars from left to right in the figure indicate the energy percentage in the
different frequency ranges from low to high vibration signals. The vibration signal energy generated
by the transformer is mostly in the low-frequency range of 100–500 Hz. When the winding of the
power transformer has a short-circuit fault, the amplitude of the low-frequency vibration in the time
domain distribution increases and the amplitude of the high-frequency vibration in the frequency
domain distribution increases. The 100 Hz main frequency vibration exhibits the most evident increase.
The distribution of the high- and low-frequency energy of the vibration signal changes considerably and
the proportion of low-frequency energy increases [25]. In transformer fault identification, the fault is
mainly identified by the change in the energy ratio of the fundamental frequency (1st frequency band).

However, the energy spectrum analysis of the signal in the conventional vibration method places
high demands on noise reduction and separation technology. If the denoising effect or the signal
separation result is not good, the vibration signal will be mixed with more high-frequency signals,
resulting in incorrect recognition results. Therefore, the method must be optimized to achieve the
purpose of the technical application.
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Figure 2. Transformer vibration signal Frequency-Band-Energy (FBE) Histogram.

3. Optimization Method for Transformer Fault Identification

3.1. Distribution Characteristics of Transformer Vibration Signals

Assuming that the vibration signal of the transformer and the distribution of the vibration
signal at different signal intervals are random makes it difficult to analyze the vibration signal trend.
The cumulative probability distribution characteristics of the transformer vibration signal are analyzed
because the cumulative probability distribution function can be used to observe the signal variation
trend [26,27].

Figure 3 shows a difference in the cumulative probability distribution curves of the transformer
vibration signal at various critical degrees of failure. The properties of the cumulative probability
distribution curves were analyzed using the mathematical statistics method. The main content of
the mathematical statistics method is the least-squares solution corresponding to the straight line of
the vibration signal curve. With the cumulative probability distribution curve of the vibration signal,
the least-squares straight line is used as the characteristic of the vibration signal distribution. It can
intuitively observe the difference in the vibration signal under different working conditions of the
transformer and conduct a preliminary judgment of the extent of transformer failure.
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Figure 3. Cumulative probability distribution curves of vibration signal in different working states of
the transformer.

3.2. Basic Theory of Mathematical Statistics Methods

In a discrete random variable, the probability of each possible value xi (1, 2 . . . N) of the variable
is calculated, and the obtained result is the law of distribution. During the vibration signal acquisition
for the transformer, the vibration signal distribution law is satisfied by Equation (7) [28]:

N
∑

i=1
p(xi) = 1

0 ≤ p(xi) ≤ 1
(7)

At this time, the transformer vibration signal is a random variable and can be any real number
within the set threshold range. The cumulative probability distribution function F(x) satisfies the
vibration signal in Equation (8), and the cumulative probability distribution function of the vibration
signal is not reduced in the function: {

F(x) = P{X ≤ x}
0 ≤ F(x) ≤ 1

. (8)

After obtaining a cumulative probability distribution map of the signal, the least-squares method is
used to find the fitting straight line (FSL) of the signal cumulative probability distribution function and
to intuitively observe whether the transformer vibration signal is abnormal or not. The least-squares
method is normally used to solve the fitting curve when considering over-determined equations (the
over-determined unknown is smaller than the number of equations), as in Equation (9):

∑n
j=1 xijβi = yi, (i = 1, 2, 3, . . . , m) (9)

where m represents m equations and n represents n unknowns β (m > n) after vectorization, as indicated
in Equation (10):

xβ = y (10)

In Equation (10): x =


x11 x12

x21 x22

· · · x1n
· · · x2n

...
...

xm1 xm2

...
· · · xmn

, β =


β1

β2
...

βn

, y =


y1

y2
...

yn

.



Mathematics 2019, 7, 288 8 of 16

Evidently, the equation system generally has no solution. Thus, the function of the residual
sum of the squares, S, is introduced in Equation (11) to select the most appropriate β to make the
equation “possible”:

S(β) = ‖xβ− y‖2. (11)

When β = β̂, S(β) takes the minimum value and can be recorded as:

β̂ = argmin(S(β)). (12)

By deriving the maximum value of S(β), we can obtain:

xTxβ̂ = xTy. (13)

If the matrix xTx is non-singular, then β has a unique solution, as:

β̂ = (xTx)
−1

xTy. (14)

According to the cumulative probability distribution function of the vibration signal, the FSL
needs to be z = kx + b. From the aforementioned least-squares general solution, the FSL general solution
formula can be obtained, where n is the number of sampling points, as:{

∑(x− x)(y− y) = ∑ xy− nxy
∑(x− x)2 = ∑ x2 − nx2 (15)

Using Equation (15), the fitted line slope k can be calculated as:

k =
xy− xy

x2 − (x)2 (16)

After calculating the slope, the intercepted b is obtained by the undetermined coefficient method
according to the determined (x, y) and slope k. Then, the FSL of the cumulative probability distribution
function of the vibration signal can be determined.

3.3. Feasibility Analysis of Simplifying Noise Reduction

The difference of the FSL of the cumulative probability distribution function of the vibration
signal under the condition of complete and incomplete denoising must be analyzed to check the
feasibility of the mathematical statistics method for simplifying the noise reduction link. Take the
transformer without fault as an example, where the vibration signals are processed by incomplete
and complete denoising and analyzed by mathematical statistics methods. By using Equation (14)
and (15), the least-squares FSLs of the vibration signals are obtained after incomplete denoising,
as shown in Figure 4. Table 2 presents a comparison of the corresponding fundamental frequency
energy ratio and the least-squares FSL slope in the case of incomplete and complete denoising of the
faultless transformer.
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Table 2. Incomplete denoising signal and complete denoising signal characteristics comparison.

Denoising Condition Base Frequency Energy Ratio (%) Fitting Straight line (FSL) Slope

Incomplete denoising signal 87.14 24.7081
Complete denoising signal 82.36 24.5230

According to Figure 4 and Table 2, the transformer fault can be identified when the signal was
incompletely denoised, according to the change in the proportion of the fundamental frequency
energy of the vibration signal. The conclusion is that the transformer was in the moderate winding
short-circuit fault at this time. According to the method of mathematical statistics, the fault of the slope
of the FSL between incomplete and complete denoising is only 0.755%. At this time, the two curves
were substantially coincident because the transformer was fault-free. The comparison results show
that noise interference did not cause much deviation in adjusting the linear slope of the cumulative
probability distribution of the vibration signal. This finding proves that the mathematical statistics
method can clearly represent the cumulative probability distribution characteristics of the vibration
signal itself and avoid noise interference when the denoising effect is unsatisfactory. Therefore, using
the mathematical statistics method to analyze the characteristics of vibration signals can simplify the
denoising link and ensure the accuracy of transformer fault identification.

3.4. Feasibility Analysis of the Mathematical Statistics Methods

After determining the energy threshold of each frequency band of the transformer vibration
signal with different fault degrees, the transformer vibration signal is analyzed with a mathematical
statistics method. Followed by the calculation of the corresponding slope of the FSL. Table 3 provides
the threshold frequency range of the fundamental frequency (a frequency band) energy corresponding
to the different short-circuit fault degrees of the transformer windings and the threshold range of
least-squares FSL slope of the cumulative probability distribution function to conveniently and quickly
assess the fault degree of the transformer.

Table 3. Transformer winding short circuit fault degree criterion.

Transformer Status Base Frequency Energy Ratio (%) FSL Slope

Normal status 82.36~84.96 13.7605~24.5230
Mild fault 84.96~85.84 10.5501~13.7605

Moderate fault 85.84~88.89 7.3297~10.5501
Severe fault ≥88.89 ≤7.3297
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According to Table 3, the least-squares FSL of the cumulative vibration distribution of the
transformer vibration signal is plotted at various critical degrees of failure, as shown in Figure 5.
When the degree of transformer failure is identified, it can be determined based on the least-squares
fitting of the vibration signal cumulative probability distribution function. The use of mathematical
statistics to analyze the trend of the vibration signal can help accurately identify the fault level of the
transformer and detect the transformer’s early short-circuit fault in power grid maintenance.
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4. Mathematical Statistics Method Application Examples

At present, the algorithms that can be used for transformer vibration signal processing mainly
include Fourier transform, short-time Fourier transform, and empirical mode decomposition, except for
wavelet transform. Due to the defect of the its decomposition rule, the result of signal decomposition
after empirical mode decomposition (EMD) processing has the wrong intrinsic mode function (IMF)
component, especially the low-frequency error IMF component, which will have a great influence on
the extraction analysis and the processing of the fault characteristic signal [29,30]. It makes the error
of transformer fault identification large, so the empirical mode decomposition method is usually not
used to process the transformer vibration signal. Since the Fourier transform depicts the frequency
characteristics over the entire time period, it is a global transformation that does not characterize
the signal characteristics at a particular time or in a particular frequency band, which limits the
application of this method. Transformer vibration signal processing requires the real-time acquisition
of real-time processing, while the Fourier transform requires the analysis of a complete cycle of signals.
This will inevitably lead to very serious processing delays and lags and further results hysteresis
and limitations in the identification, so the current Fourier transform is usually not used for fault
identification of transformers.

In order to improve the defect and hysteresis of the Fourier transform, the signal can be segmented
by a short-time Fourier transform and calculated and represented to perform time-frequency analysis
on the signal. This method decomposes the time domain signal simultaneously in the time-frequency
domain. After this decomposition, the time domain signal can be characterized as the sum of the
signals over multiple time periods in the time-frequency domain. At present, the short-time Fourier
transform is widely used to process transformer vibration signals, which was used to process the
vibration signal of the transformer with different fault levels and the power spectral density of the
transformer vibration signal was obtained, as shown in Figure 6.
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From Figure 6, it can be confirmed that when the transformer is in a normal state, the low-band
power spectral density of the vibration signal is larger than the higher one. Compared with the
vibration signal of the normal transformer, when the transformer winding has a moderate short-circuit
fault and a severe short-circuit fault, the power spectral density of the high-frequency component
and the low-frequency component of the faulty transformer vibration signal gradually increase and
decrease, respectively, with the deepening of the transformer fault degree. Furthermore, the power
spectral density near the fundamental frequency band increases significantly. However, when the
transformer winding has a mild short-circuit fault, the result of the short-time Fourier transform process
indicates that the power spectral density of the high-frequency component of the vibration signal
only increases slightly. The result slightly deviates from the result obtained by the wavelet transform.
This is due to the limitation that the short-time Fourier transform cannot meet the requirements of
both frequency and time resolution. When the transformer vibration signal is processed by using the
short-time Fourier transform, the window function has a high time resolution requirement for the
high-frequency component and has a high-frequency resolution requirement for the low-frequency
component. The transformer fault identification requires high-frequency resolution, and the short-time
Fourier transform can only analyze the calculated signal power spectral density with one resolution.
So, using a short-time Fourier transform algorithm is prone to large errors when identifying the
mild short-circuit fault of the transformer winding. According to Section 3.4, we can observe that
the mathematical statistics method is more accurate for the identification of transformer winding
short-circuit faults compared with the short-time Fourier transform.

Mathematical Statistics Method Application Examples

Short-circuit tests were performed on two S-11-M-500/35 type transformers to verify the
mathematical statistics method. The connection group is Yyn0, the capacity is 500 kVA, and the
rated current is 8.25 A. In the test, the low-voltage side of the transformer was short-circuited, and the
voltage was applied to the high-voltage side of the transformer to allow the winding current to reach
the rated value. Then, the vibration signal of the transformer was measured, and the mathematical
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statistics method used for the analysis. Figures 7 and 8 show a comparison between the FSL of the
cumulative probability distribution of two transformer vibration signal with unknown degrees of
faults and that with different critical fault degrees.
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comparison diagram.
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Figure 8. The second transformer’s vibration signal cumulative probability distribution curve FSL
comparison diagram.

In Figure 7, the cumulative probability distribution curve FSL slope of the vibration signal of the
first unknown-fault transformer in the short-circuit test is calculated to be 10.1912, which is in the range
of the linear slope of the transformer during the short-circuit fault of the neutral winding. Therefore,
the transformer has a moderate winding short-circuit fault. And in Figure 8, when the short-circuit
test on the second transformer is performed, the slope is 14.8853. According to Table 3, the transformer
is in a normal state, and there is no short-circuit fault. The measured two sets of vibration signals are
completely denoised to verify the accuracy of the conclusion. Then, the denoised vibration signals are
decomposed by three-layered wavelet packet, and its band energy histograms are obtained and shown
in Figures 9 and 10.
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Figure 10. The second transformer vibration signal FBE Histogram.

Figure 9 indicates that the fundamental frequency energy ratio of the transformer is 86.8%, and
the ratio in Figure 10 is 84.13%. As shown in Table 3, the first transformer has a moderate winding
short-circuit fault. Similarly, the second transformer is in a normal state and there is no winding short
circuit fault. Comparative analysis results show that the calculation results of the frequency band
energy method are same as those of the mathematical statistics method. However, the frequency
band energy method requires a complicated noise reduction procedure and the accuracy of the fault
identification method is slightly insufficient. The mathematical statistics method has good response
characteristics and fault judgment scale, which demonstrates superiority in the accuracy and sensitivity
of transformer fault identification. It can simplify the noise reduction process very well, which can be
regarded as a good optimization method for the vibration method and a supplementary method of the
band energy method for verification.

5. Summary

Vibration signals from power transformers can be used to identify transformer faults, but it is
hard to achieve a complete denoising effect for vibration signals in conventional vibration techniques.
Moreover, the cost of denoising is high, which reduces the accuracy of detecting faults and the stability
of the power grid operation. This paper presented a mathematical statistical method to identify
short-circuit faults degree of transformers. The main conclusions can be drawn as follows:



Mathematics 2019, 7, 288 14 of 16

1. When the mathematical statistics method is used to analyze the vibration signal of the transformer,
the noise exerts little influence on the accuracy of transformer fault identification. Simplification
of the noise reduction of the signal reduces noise reduction costs and the fault identification time.

2. The vibration signal of the transformer is analyzed by a mathematical statistics method
and the cumulative probability distribution curve of the vibration signal is illustrated. Then,
the least-squares fitting line of the cumulative probability distribution function of the vibration
signal is solved by the least-squares method. According to the wavelet transform of different
scales, the proportion of the high-frequency component to the low-frequency energy is obtained
by combining wavelet theory to quantify the frequency band energy of the vibration signal. Thus,
the energy threshold of each frequency band of the transformer vibration signal with different
fault degrees can be calculated, and the cumulative probability distribution corresponding to the
vibration signal of the transformer with different fault degrees can be fitted to the straight line.
The slope threshold can then be determined.

3. Transformer winding produces a short-circuit fault can be determined by comparing the slope
of the cumulative probability distribution of the vibration signal with the fault threshold of the
FSL. Therefore, the purpose of power transformer fault identification can be achieved and the
feasibility of the mathematical statistics method can be verified. The mathematical statistics
method can quickly determine the fault state of power transformers, reduce the safety hazards of
transformers, and improve the safety and reliability of grid operation. This method also optimizes
transformer fault identification to a certain extent and provides a new idea for the development
of transformer fault identification techniques.

4. Since the short-time Fourier transform is more applicable to transformer vibration signal
processing than the Fourier transform and the empirical modal decomposition algorithm, we
used short-time Fourier transform to analyze the transformer vibration signal and, compared
with the mathematical statistics methods proposed in this paper, it can be seen that the short-time
Fourier transform can identify moderate and severe short-circuit faults of transformer winding,
but the early mild faults of the transformer winding cannot be accurately identified, which is due
to the time and frequency resolution of the window function cannot be determined by the optimal
limitation at the same time in short-time Fourier transform. In comparison, the mathematical
statistics method proposed in this paper is more accurate in identifying the short-circuit fault
degree of the transformer winding.
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