Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Composition of BA
3.2. Mineral Composition of BA
3.3. Form of Occurrence of Aluminium in BA
Figure (Sample) | Spot | Si | Al | Fe | Ti | Mg | Ca | Mn | Ba | K | Na | O | S | Cl | P | Zr | Cu | Cr | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 2A (RZ11) | 1 | 66.69 | - | 0.20 | - | - | 0.22 | - | - | - | - | 32.89 | - | - | - | - | - | - | - |
2 | 66.08 | - | - | - | - | - | - | - | - | - | 33.92 | - | - | - | - | - | - | - | |
3 | 45.81 | 1.66 | 0.87 | 0.13 | 1.67 | 12.48 | - | 1.37 | 1.67 | 7.56 | 26.6 | 0.18 | - | - | - | - | - | - | |
4 | 16.88 | - | - | - | - | - | - | - | - | 0.22 | 15.4 | - | - | - | 67.50 | - | - | - | |
Figure 2B (RZ2) | 1 | 30.47 | - | - | - | - | 48.83 | - | - | - | - | 20.70 | - | - | - | - | - | - | - |
2 | 39.83 | 3.65 | 1.19 | 0.91 | 1.08 | 12.21 | 4.08 | 10.85 | 25.61 | - | - | 0.59 | - | - | - | - | |||
Figure 2C (RZ9) | 1 | 0.11 | 71.05 | 1.77 | - | - | 0.29 | 0.36 | - | - | - | 25.78 | - | - | 0.64 | - | - | - | - |
2 | 0.56 | 61.65 | - | - | - | 12.44 | - | - | - | - | 25.35 | - | - | - | - | - | - | - | |
3 | 21.57 | 15.80 | 5.33 | 9.18 | 0.31 | 12.17 | 1.86 | - | 0.78 | 0.61 | 13.1 | 0.13 | - | 9.19 | - | 9.97 | - | - | |
4 | 28.09 | 40.05 | 25.72 | - | - | 0.20 | 5.94 | - | - | - | - | - | - | - | - | - | - | - | |
5 | 15.08 | 26.26 | 2.30 | 1.01 | 1.15 | 27.37 | - | - | 0.74 | 1.39 | 24.09 | - | - | 0.61 | - | - | - | - | |
6 | 1.06 | 60.62 | - | - | - | 11.40 | - | - | - | - | 26.92 | - | - | - | - | - | - | - | |
7 | 7.80 | 46.10 | - | - | - | 25.75 | - | - | - | - | 19.07 | 0.19 | - | 1.09 | - | - | - | - | |
8 | 1.23 | 61.54 | - | - | - | 10.01 | - | - | - | - | 27.22 | - | - | - | - | - | - | - | |
Figure 2D (RZ9) | 1 | - | 62.46 | - | - | - | 10.75 | - | - | - | - | 26.79 | - | - | - | - | - | - | - |
2 | 0.07 | 60.02 | - | - | - | 8.71 | - | - | - | - | 31.20 | - | - | - | - | - | - | - | |
3 | 26.91 | 12.55 | 2.43 | 4.18 | 1.77 | 23.38 | - | - | 1.01 | 2.67 | 24.65 | - | - | 0.45 | - | - | - | - | |
4 | 25.56 | 12.55 | 2.86 | 4.08 | 2.01 | 24.53 | - | - | 0.82 | 2.57 | 24.43 | - | - | - | 0.59 | - | - | - | |
Figure 5A (RZ10) | 1 | - | 98.93 | - | - | - | 0.24 | - | - | - | - | 0.83 | - | - | - | - | - | - | - |
2 | 1.14 | 52.66 | - | 0.91 | - | 0.65 | - | - | 0.60 | 1.37 | 40.53 | 0.71 | 1.29 | - | 0.14 | - | - | - | |
3 | 0.88 | 51.60 | 1.36 | - | - | 6.81 | - | - | 0.26 | 0.52 | 36.49 | 1.24 | 0.84 | - | - | - | - | - | |
4 | 1.25 | 8.29 | - | - | - | 38.75 | - | - | - | - | 35.34 | 15.93 | 0.44 | - | - | - | - | - | |
5 | 0.13 | 12.89 | - | - | - | 50.61 | - | - | - | - | 20.52 | 0.16 | 15.69 | - | - | - | - | - | |
Figure 5B (RZ11) | 1 | 1.44 | 92.97 | - | - | - | - | - | - | - | - | 5.59 | - | - | - | - | - | - | - |
2 | 6.54 | 61.73 | 10.79 | - | - | - | 19.88 | - | - | - | 0.45 | - | - | - | - | - | 0.61 | - | |
3 | 2.22 | 36.07 | - | - | - | 3.69 | 0.44 | - | - | - | 54.73 | 0.42 | - | - | - | - | - | 2.43 | |
4 | - | 40.85 | - | - | - | 0.53 | - | - | - | - | 58.62 | - | - | - | - | - | - | - | |
Figure 5C (RZ3) | 1 | 0.60 | 42.31 | 1.98 | 0.36 | - | 11.97 | - | - | 0.30 | 0.19 | 36.92 | 3.14 | 2.23 | - | - | - | - | - |
2 | - | 56.81 | 0.81 | - | - | 3.20 | - | - | 0.23 | - | 36.84 | 0.37 | 1.74 | - | - | - | - | - | |
3 | 1.06 | 13.54 | - | - | - | 48.21 | - | - | - | - | 21.30 | 0.29 | 15.6 | - | - | - | - | - | |
4 | 0.43 | 35.74 | - | - | - | 17.73 | - | - | - | - | 41.48 | 0.28 | 4.34 | - | - | - | - | - | |
5 | 7.29 | 5.71 | 43.79 | 1.62 | 0.80 | 22.56 | 0.93 | - | - | - | 16.84 | - | 0.46 | - | - | - | - | - | |
6 | 18.03 | 11.49 | 0.63 | - | 1.23 | 48.07 | - | - | - | - | 20.55 | - | - | - | - | - | - | - | |
Figure 5D (RZ3) | 1 | 0.41 | 13.36 | - | - | - | 47.39 | - | - | - | - | 26.72 | 0.38 | 11.74 | - | - | - | - | - |
2 | 2.17 | 8.30 | - | - | 0.58 | 42.17 | - | - | 1.10 | 1.10 | 29.35 | 12.37 | 2.57 | 0.29 | - | - | - | - |
4. Conclusions
- Aluminium-rich components occurring in the studied MSWI BA contain both the melt phase and quench phase.
- Aluminium-rich components occurring in the solid phase formed from melt (i.e., in glass) are often oxidised and occur in platy or irregular forms. The Al content in the glass phase is low (usually below 2 wt%).
- Aluminium components in the quench phase are significantly transformed with an abundance of Cl and SO42− phases, which is a result of the reaction with water in a tank during cooling. The volume of metallic or slightly oxidised cores is strongly reduced.
- The broad variation in the composition of aluminium components makes its recovery challenging and inefficient.
- The high degree of transformation of metallic aluminium fragments indicates that the potential for hydrogen generation is limited.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Müller, D.B. Addressing sustainability in the aluminum industry: A critical review of life cycle assessments. J. Clean. Prod. 2012, 35, 108–117. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M. Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods. Environ. Sci. Technol. 2013, 47, 3057–3064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökelma, M.; Vallejo-Olivares, A.; Tranell, G. Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash. Waste Manag. 2021, 130, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mehr, J.; Haupt, M.; Skutan, S.; Morf, L.; Adrianto, L.R.; Weibel, G.; Hellweg, S. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Waste Manag. 2021, 119, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development, World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Calder, G.V.; Stark, T.D. Aluminum reactions and problems in municipal solid waste landfills. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2010, 14, 258–265. [Google Scholar] [CrossRef]
- Buryan, P.; Hlinčík, T. Aluminium-containing municipal-waste ash and the greenhouse effect. Pol. J. Environ. Stud. 2020, 29, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, S.P.M.; Oudenhoven, B.P.M.; Rem, P.C. Optimizing non-ferrous metal value from MSWI bottom ashes. J. Environ. Prot. 2011, 2, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Šyc, M.; Simon, F.G.; Hykš, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef]
- Grosso, M.; Biganzoli, L.; Rigamonti, L. A quantitative estimate of potential aluminium recovery from incineration bottom ashes. Resour. Conserv. Recycl. 2011, 55, 1178–1184. [Google Scholar] [CrossRef]
- Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; Van Gerven, T.; Van Zomeren, A. Treatment and reuse of Incineration bottom ash. In Environmental Materials and Waste, Resource Recovery and Pollution Prevention; Prasad, M.N.V., Shih, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 607–645. [Google Scholar] [CrossRef]
- Biganzoli, L.; Grosso, M. Aluminium recovery from waste incineration bottom ash, and its oxidation level. Waste Manag. Res. 2013, 31, 954–959. [Google Scholar] [CrossRef]
- Alam, Q.; Hendrix, Y.; Thijs, L.; Lazaro, A.Q.; Schollbach, K.; Brouwers, H.J.H. Novel low temperature synthesis of sodium silicate and ordered mesoporous silica from incineration bottom ash. J. Clean. Prod. 2019, 211, 874–883. [Google Scholar] [CrossRef]
- Czop, M.; Łaźniewska-Piekarczyk, B.; Kajda-Szczęsniak, M. Analysis of the Possibility of Using Slags from the Thermal Treatment of Municipal Waste as Potential Component of Cement—Case Study. Materials 2021, 14, 6491. [Google Scholar] [CrossRef] [PubMed]
- Heuss-Aßbichler, S.; Magel, G.; Fehr, K.T. Abiotic hydrogen production in fresh and altered MSWI-residues: Texture and microstructure investigation. Waste Manag. 2010, 30, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, L.; Ilyas, A.; van Praagh, M.; Persson, K.M.; Grosso, M. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction. Waste Manag. 2013, 33, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Saffarzadeh, A.; Arumugam, N.; Shimaoka, T. Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: A potential source for the production of hydrogen gas. Int. J. Hydrogen Energy 2016, 41, 820–831. [Google Scholar] [CrossRef]
- Nithiya, A.; Saffarzadeh, A.; Shimaoka, T. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash. Waste Manag. 2017, 73, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Ramírez, J.M.; Marroquín de Jesús, Á.; Jiménez-Sandoval, O.; Pless, R.C. Hydrogen Generation by Treatment of Aluminium Metal with Aqueous Solutions: Procedures and Uses. In Hydrogen Energy-Challenges and Perspectives; Minic, D., Ed.; InTech: London, UK, 2012; pp. 55–76. [Google Scholar] [CrossRef]
- Larsson, R. Energy Recovery of Metallic Aluminium in MSWI Bottom Ash Different Approaches to Hydrogen Production from MSWI Bottom Ash: A Case Study. Masters’s Thesis, Tekniska Högskolan Umeå Universitet, Umeå, Sweden, 2014; 24p. [Google Scholar]
- Mizutani, S.; Sakai, S.; Takatsuki, H. Investigation of hydrogen generation from municipal solid waste incineration fly ash. J. Mater. Cycles Waste Manag. 2000, 2, 16–23. [Google Scholar]
- Rumayor, M.; Corredor, J.; Rivero, M.J.; Ortiz, I. Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming. J. Clean. Prod. 2022, 336, 130430. [Google Scholar] [CrossRef]
- Arm, M.; Lindeberg, J.; Rodin, Å.; Öhrström, A.; Backman, R.; Öhman, M.; Boström, D. Gasbildning i Aska (Gas Generation in Incinerator Ash); Värmeforsk Service AB: Stockholm, Sweden, 2006; 158p. [Google Scholar]
- Joseph, A.M.; Snellings, R.; van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal SolidWaste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; Kenai, S.; Sonebi, M. A Review on Cementitious Materials Including Municipal Solid Waste Incineration Bottom Ash (MSWI-BA) as Aggregates. Buildings 2021, 11, 179. [Google Scholar] [CrossRef]
- Suryavanshi, A.; Scantlebury, J.D.; Lyon, S.B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cem. Concr. Res. 1996, 26, 717–727. [Google Scholar] [CrossRef]
- Birnin-Yauri, U.A.; Glasser, F.P. Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: Its solid solutions and their role in chloride binding. Cem. Concr. Res. 1998, 28, 1713–1723. [Google Scholar] [CrossRef]
- Inkaew, K.; Saffarzadeh, A.; Shimaoka, T. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash. Waste Manag. 2016, 52, 159–168. [Google Scholar] [CrossRef]
- Saffarzadeh, A.; Arumugam, N.; Shimaoka, T. Hydrogen generation from aluminum-water reactions in municipal solid waste incineration (MSWI) bottom ash. In Proceedings of the 6th International Symposium on Energy from Biomass and Waste, Venice, Italy, 14–17 November 2016; CISA Publisher: Venice, Italy, 2016. [Google Scholar]
- Yang, S.; Saffarzadeh, A.; Shimaoka, T.; Kawano, T.; Kakuta, Y. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl. Environ. Technol. 2016, 37, 2564–2571. [Google Scholar] [CrossRef] [PubMed]
- Hjelmar, O.; Holma, J.; Crillesen, K. Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site. J. Hazard. Mater. 2007, A139, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.H.; Nam, B.H.; An, J.; Youn, H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials 2020, 13, 3143. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.; Rübner, K. The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem. Concr. Res. 2006, 36, 1434–1443. [Google Scholar] [CrossRef]
- Matos, A.M.; Sousa-Coutinho, J. Municipal solid waste incineration bottom ash recycling in concrete: Preliminary approach with Oporto wastes. Constr. Building Mater. 2022, 323, 126548. [Google Scholar] [CrossRef]
- Vaičienė, M.; Simanavičius, E. The Effect of Municipal Solid Waste Incineration Ash on the Properties and Durability of Cement Concrete. Materials 2022, 15, 4486. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- Alderete, N.M.; Joseph, A.M.; Van den Heede, P.; Matthys, S.; De Belie, N. Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resour. Conserv. Recycl. 2021, 167, 105356. [Google Scholar] [CrossRef]
Sample | Sampling Site |
---|---|
RZ1 | BA from bunker |
RZ2 | BA after crushing |
RZ3 | BA after ferrous metals’ separation |
RZ4 | BA after non-ferrous metals’ separation |
RZ5 | BA after sieving (0–16 mm) |
RZ6 | BA after sieving (16–63 mm) |
RZ7 | BA—fine-grained material mixed from two lines; three months of ageing |
RZ8 | BA—coarse-grained material mixed from two lines; three months of ageing |
RZ9 | BA—fresh material collected from conveyor belt |
RZ10 | BA after (0–16 mm); two months of ageing |
RZ11 | BA—slag collected without quenching |
RZ12 | BA from bunker |
RZ13 | BA from bunker |
RZ1W–RZ11W | Samples RZ1–RZ11 after hand picking of glass, ceramics, and metallic fragments |
Component | RZ1 | RZ2 | RZ3 | RZ4 | RZ5 | RZ6 | RZ7 | RZ8 | RZ9 | RZ10 | RZ11 | RZ12 | RZ13 | RZ1W | RZ2W | RZ3W | RZ4W | RZ5W | RZ6W | RZ7W | RZ09W | RZ10W | RZ11W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 63.08 | 57.97 | 60.38 | 60.14 | 57.87 | 62.67 | 60.44 | 57.41 | 60.00 | 61.88 | 59.47 | 56.02 | 57.80 | 50.69 | 53.51 | 54.93 | 56.39 | 52.45 | 59.47 | 56.00 | 50.22 | 52.98 | 46.24 |
TiO2 | 0.32 | 0.63 | 0.54 | 0.53 | 0.51 | 0.49 | 0.50 | 0.55 | 0.59 | 0.52 | 1.03 | 0.67 | 0.60 | 0.69 | 0.82 | 0.78 | 0.73 | 0.71 | 0.68 | 0.65 | 1.03 | 0.85 | 2.39 |
Al2O3 | 4.87 | 6.67 | 6.69 | 5.97 | 5.74 | 8.38 | 5.75 | 8.27 | 6.42 | 5.38 | 9.03 | 9.00 | 5.30 | 11.15 | 9.12 | 7.90 | 7.31 | 8.02 | 7.00 | 7.62 | 10.37 | 9.03 | 14.48 |
Fe2O3 | 2.34 | 4.14 | 2.85 | 3.27 | 4.43 | 4.26 | 3.48 | 5.02 | 4.92 | 3.73 | 2.39 | 3.38 | 3.96 | 5.85 | 4.23 | 4.45 | 3.73 | 4.73 | 5.64 | 4.74 | 3.65 | 4.40 | 3.96 |
MgO | 1.44 | 1.74 | 1.80 | 1.75 | 1.68 | 1.47 | 1.78 | 1.73 | 1.59 | 1.70 | 2.25 | 1.85 | 1.94 | 1.83 | 1.94 | 1.94 | 1.79 | 1.86 | 1.88 | 1.71 | 1.70 | 1.95 | 2.39 |
CaO | 13.82 | 14.77 | 13.78 | 14.28 | 14.69 | 11.56 | 13.89 | 14.54 | 13.60 | 13.25 | 15.36 | 15.24 | 15.30 | 16.27 | 16.56 | 16.10 | 16.24 | 16.54 | 13.99 | 14.90 | 19.01 | 15.91 | 20.41 |
MnO | 0.14 | 0.08 | 0.06 | 0.10 | 0.08 | 0.06 | 0.06 | 0.10 | 0.08 | 0.07 | 0.06 | 0.07 | 0.08 | 0.25 | 0.08 | 0.08 | 0.08 | 0.09 | 0.10 | 0.09 | 0.06 | 0.08 | 0.09 |
Na2O | 9.39 | 6.66 | 7.63 | 7.35 | 7.32 | 6.95 | 7.33 | 3.87 | 7.68 | 8.10 | 7.59 | 7.34 | 7.63 | 5.10 | 4.81 | 5.36 | 5.83 | 5.10 | 7.52 | 5.57 | 4.36 | 4.74 | 3.25 |
K2O | 0.85 | 1.03 | 1.04 | 0.97 | 0.98 | 1.19 | 0.92 | 1.18 | 1.00 | 0.98 | 1.13 | 0.92 | 0.85 | 1.06 | 1.09 | 1.13 | 1.01 | 1.07 | 0.94 | 1.02 | 1.11 | 1.17 | 1.26 |
P2O5 | 0.62 | 0.81 | 0.70 | 0.67 | 0.73 | 0.34 | 0.69 | 0.32 | 0.67 | 0.58 | 0.64 | 0.83 | 0.66 | 1.27 | 1.08 | 1.16 | 0.91 | 1.17 | 0.60 | 0.96 | 0.69 | 0.43 | 0.62 |
LOI | 2.50 | 4.60 | 3.80 | 3.90 | 5.10 | 1.80 | 4.50 | 6.50 | 2.70 | 3.20 | 0.10 | 3.70 | 5.20 | 5.10 | 5.90 | 5.20 | 5.10 | 7.20 | 1.50 | 5.90 | 6.10 | 7.00 | 2.60 |
Total | 99.52 | 99.36 | 99.48 | 99.17 | 99.34 | 99.41 | 99.50 | 99.63 | 99.37 | 99.52 | 99.34 | 99.27 | 99.49 | 99.38 | 99.36 | 99.28 | 99.36 | 99.08 | 99.52 | 99.30 | 99.34 | 99.30 | 98.75 |
C | 0.64 | 1.11 | 0.93 | 1.00 | 1.35 | 0.49 | 1.15 | 2.20 | 0.63 | 0.94 | 0.72 | 0.99 | 0.84 | 1.58 | 1.53 | 1.21 | 1.21 | 1.64 | 0.50 | 1.38 | 1.82 | 2.40 | 0.64 |
S | 0.51 | 0.59 | 0.51 | 0.52 | 0.55 | 0.29 | 0.47 | 0.25 | 0.30 | 0.31 | 0.33 | 0.47 | 0.49 | 1.05 | 0.79 | 0.70 | 0.69 | 0.79 | 0.33 | 0.59 | 0.65 | 1.03 | 0.59 |
Al | 2.58 | 3.53 | 3.54 | 3.16 | 3.04 | 4.43 | 3.04 | 4.38 | 3.40 | 2.85 | 4.78 | 4.76 | 2.80 | 5.90 | 4.83 | 4.18 | 3.87 | 4.24 | 3.70 | 4.03 | 5.49 | 4.78 | 7.66 |
Fe | 1.64 | 2.90 | 1.99 | 2.29 | 3.10 | 2.98 | 2.43 | 3.51 | 3.44 | 2.61 | 1.67 | 2.36 | 2.77 | 4.09 | 2.96 | 3.11 | 2.61 | 3.31 | 3.94 | 3.32 | 2.55 | 3.08 | 2.77 |
Cu | 1017 | 1072 | 1016 | 1968 | 1156 | 358 | 451 | 939 | 1500 | 799 | 1135 | 1101 | 604 | 983 | 827 | 1121 | 711 | 1331 | 734 | 904 | 1209 | 1149 | 1948 |
Pb | 132 | 686 | 253 | 893 | 436 | 111 | 365 | 181 | 434 | 240 | 311 | 624 | 322 | 1288 | 421 | 698 | 648 | 448 | 148 | 293 | 211 | 455 | 1626 |
Zn | 470 | 929 | 970 | 2373 | 986 | 838 | 1232 | 282 | 1054 | 1003 | 1285 | 1269 | 1239 | 1707 | 1367 | 1370 | 1537 | 2201 | 990 | 1833 | 1574 | 1511 | 3168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalik, M.; Kasina, M.; Kajdas, B.; Kowalski, P. Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost. Energies 2022, 15, 8186. https://doi.org/10.3390/en15218186
Michalik M, Kasina M, Kajdas B, Kowalski P. Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost. Energies. 2022; 15(21):8186. https://doi.org/10.3390/en15218186
Chicago/Turabian StyleMichalik, Marek, Monika Kasina, Bartłomiej Kajdas, and Piotr Kowalski. 2022. "Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost" Energies 15, no. 21: 8186. https://doi.org/10.3390/en15218186
APA StyleMichalik, M., Kasina, M., Kajdas, B., & Kowalski, P. (2022). Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost. Energies, 15(21), 8186. https://doi.org/10.3390/en15218186