Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia
Abstract
:1. Introduction
2. Roles of Ammonia in a Hydrogen Economy
3. Catalytic Thermal Decomposition of NH3
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
4. Recent Insights into Low-Surface-Area Catalysts for Catalytic Thermal Decomposition of NH3
4.1. Ruthenium-Based Catalysts
4.1.1. Novel Silicon Carbide Support
4.1.2. Rare-Earth Oxide Supports
4.1.3. ABO3 Perovskites as Ru Supports
4.1.4. Metal Oxide Supports
Catalyst | Ru Loading (wt.%) | SBET (m2 g−1) | GHSV (mL·gcat−1·h−1) | NH3 Inlet Flow (%) | T (°C) | NH3 Conversion (%) | H2 Formation Rate (mmol H2 gcat−1 min−1) | Ref. |
---|---|---|---|---|---|---|---|---|
2.5Ru/SiC-600-N2 flow | 2.5 | 25.9 | 60,000 | 5 | 350 | 80.2 | 2.53 | [40] |
2.5Ru/SiC-600-air flow | 2.5 | 26.9 | 60,000 | 5 | 350 | 72.3 | 2.37 | |
2.5Ru/SiC-600-static air | 2.5 | 25.6 | 60,000 | 5 | 350 | 67.5 | 2.06 | |
2.5Ru/SiC-600-non-calcined | 2.5 | 29.3 | 60,000 | 5 | 350 | 69.8 | 2.17 | |
1Ru/SiC-400-N2 flow | 1.0 | 28.8 | 60,000 | 5 | 350 | 59.6 | 2.00 | |
2.5Ru/SiC-400-N2 flow | 2.5 | 26.3 | 60,000 | 5 | 350 | 98.7 | 3.30 | |
5Ru/SiC-400-N2 flow | 5.0 | 25.5 | 60,000 | 5 | 350 | 86.6 | 2.90 | |
1Ru/SiC-600-N2 flow | 1.0 | 28.8 | 60,000 | 5 | 350 | 41.5 | 1.31 | |
5Ru/SiC-600-N2 flow | 5.0 | 25.5 | 60,000 | 5 | 350 | 89.9 | 2.91 | |
Ru/CeO2-NR | 7.0 | 15.0 | 6000 | 29 | 350 | 23.0 | 1.54 | [56] |
Ru-Na/CeO2-NR | 7.0 | 10.0 | 6000 | 29 | 350 | 25.0 | 1.67 | |
Ru/CeO2 | 5.0 | 14.6 | 2000 | 100 | 350 | 60.0 | 26.80 | [57] |
Ru-Cs/CeO2 | 5.0 | 13.1 | 2000 | 100 | 350 | 98.0 | 44.00 | |
Ru/La2O3-700-i | 4.8 | 20.9 | 18,000 | 100 | 400 | 40.0 | 8.04 | [58] |
Ru/La2O3-700-p | 4.8 | 8.0 | 18,000 | 100 | 400 | 35.0 | 5.02 | |
Ru/La2O3-700-i-K | 4.8 | - | 18,000 | 100 | 400 | 50.0 | 10.04 | |
Ru/Y2O3 | 2.0 | 29.2 | 6000 | 100 | 500 | 82.6 | 5.53 | [59] |
Ru/La2O3 | 2.1 | 22.2 | 6000 | 100 | 500 | 95.6 | 6.40 | |
Ru/PrxOy | 2.0 | 15.3 | 6000 | 100 | 500 | 93.0 | 6.23 | |
Ru/Sm2O3 | 2.1 | 9.4 | 6000 | 100 | 500 | 85.6 | 5.73 | |
Ru/Gd2O3 | 2.0 | 11.6 | 6000 | 100 | 500 | 85.2 | 5.71 | |
Ru/Yb2O3 | 1.9 | 25.6 | 6000 | 100 | 500 | 28.6 | 1.92 | |
4Ru/Sm2O3-m | 3.5 | 28.5 | 30,000 | 100 | 450 | 15.7 | 4.90 | [62] |
Ru/La0.33Ce0.67 | 1.8 | 31.0 | 6000 | 100 | 400 | 93.0 | 6.23 | [63] |
Ru/La0.5Ce0.5 | 1.8 | 28.0 | 6000 | 100 | 400 | 86.0 | 5.76 | |
Ru/La | 1.8 | 30.0 | 6000 | 100 | 400 | 41.0 | 2.75 | |
Sr0.92Y0.08Ti0.88Ru0.12O3−δ | 6.1 mol % | 33.5 | 10,000 | 100 | 350 | 2.3 | 0.25 | [64] |
Sr0.92Y0.08Ti0.74Ru0.26O3−δ | 12.4 mol % | 24.5 | 10,000 | 100 | 350 | 18.4 | 2.05 | |
Sr1Y0Ti0.91Ru0.09O3−δ | 4.22 mol % | 31.1 | 10,000 | 100 | 350 | 3.2 | 0.36 | |
Ru/LaAlO3 | 3 | 18.1 | 30,000 | 100 | 500 | 50.0 | 75.00 | [65] |
Ru/La0.9Sr0.1AlO3 | 3 | 18.4 | 30,000 | 100 | 500 | 60.0 | 90.00 | |
Ru/La0.8Sr0.2AlO3 | 3 | 18.8 | 30,000 | 100 | 500 | 71.6 | 107.40 | |
Ru/La0.7Sr0.3AlO3 | 3 | 18.5 | 30,000 | 100 | 500 | 55.7 | 83.55 | |
Ru/Li2SiO3 | 3.4 | 8.5 | 30,000 | 100 | 450 | 30.0 | 10.4 | [66] |
Ru/Na2SiO3 | 3.5 | 9.6 | 30,000 | 100 | 450 | 52.0 | 17.8 | |
Ru/K2SiO3 | 3.2 | 3.6 | 30,000 | 100 | 450 | 60.5 | 20.3 | |
Ru/CaAlOx-e | 3.5 | 11.3 | 6000 | 100 | 400 | 8.5 | 0.57 | [67] |
Ru/CaAlOx-w | 3.5 | 11.8 | 6000 | 100 | 400 | 38.0 | 2.54 | |
Ru/ZrO2 | 3.0 | 38.6 | 3000 | 100 | 500 | 20.0 | 1.34 | [68] |
Ru/Ba-ZrO2 | 3.0 | 25.4 | 3000 | 100 | 500 | 100.0 | 3.35 | |
Ru-Ba/ZrO2 | 3.0 | 6.3 | 3000 | 100 | 500 | 10.0 | 0.67 | |
0.8Ru/MPC-ZrO2 | 0.8 | 8.0 | 6000 | 29 | 350 | 0.0 | 0.00 | [69] |
2Ru/MPC-ZrO2 | 2.0 | 20.0 | 6000 | 29 | 350 | 1.1 | 0.07 | |
3.5Ru/MPC-ZrO2 | 3.5 | 18.0 | 6000 | 29 | 350 | 3.9 | 0.26 | |
5Ru/MPC-ZrO2 | 5.0 | 12.0 | 6000 | 29 | 350 | 6.5 | 1.59 | |
6.5Ru/MPC-ZrO2 | 6.5 | 10.0 | 6000 | 29 | 350 | 2.1 | 0.14 | |
5Ru2.5Cs/MPC-ZrO2 | 5.0 | 11.0 | 6000 | 29 | 350 | 4.1 | 0.27 | |
5Ru5Cs/MPC-ZrO2 | 5.0 | 7.5 | 6000 | 29 | 350 | 19.4 | 4.47 | [69] |
5Ru10Cs/MPC-ZrO2 | 5.0 | 3.0 | 6000 | 29 | 350 | 5.8 | 0.39 | |
Ru/ZrO2 | 0.5 | 28.0 | 4600 | 100 | 400 | 60.4 | 5.13 | [70] |
Ru/ZrO2 | 2.0 | 4.9 | 6000 | 100 | 500 | 0 | 0 | [59] |
Ru/La(50)-Al2O3 or LaAlO3 | 0.7 | 23.3 | 2300 | 10 | 400 | 68.5 | 1.76 | [71] |
5Ru10K/MgO | 4.8 | 32.0 | 9000 | 100 | 400 | 39.4 | 3.96 | [54] |
1Ru10K/CaO | 0.9 | 6.0 | 9000 | 100 | 400 | 8.5 | 0.85 | |
2Ru10K/CaO | 1.8 | 7.0 | 9000 | 100 | 400 | 40.0 | 4.02 | |
3Ru10K/CaO | 2.8 | 5.0 | 9000 | 100 | 400 | 61.0 | 6.13 | |
5Ru10K/CaO | 4.7 | 4.0 | 9000 | 100 | 400 | 53.7 | 5.39 | |
7Ru10K/CaO | 6.6 | 8.0 | 9000 | 100 | 400 | 35.0 | 3.52 | |
3Ru/CaO | 2.9 | 10.0 | 9000 | 100 | 400 | 5.0 | 0.50 | |
3Ru5K/CaO | 2.8 | 5.0 | 9000 | 100 | 400 | 20.0 | 2.01 | |
3Ru15K/CaO | 2.7 | 5.0 | 9000 | 100 | 400 | 60.0 | 6.03 |
4.2. Non-Noble-Metal-Based Catalysts
4.2.1. Novel Silicon Carbide Support
4.2.2. Rare-Earth Oxide Supports
4.2.3. ABO3 Perovskites as Supports and Catalytic Precursors
4.2.4. Metal Oxide Supports
4.2.5. Metal Imide Supports
4.2.6. Other Low-Surface-Area Supports
4.3. Bimetallic Catalysts and Metal Catalysts
Catalyst | Metal Loading (wt.%) | SBET (m2 g−1) | GHSV (mL·gcat−1·h−1) | NH3 Inlet Flow (%) | T (°C) | NH3 Conversion (%) | H2 Formation Rate (mmol H2 gcat−1 min−1) | Ref. |
---|---|---|---|---|---|---|---|---|
5Co/SiC | 5.0 | 24.0 | 60,000 | 5 | 350 | 27.20 | 0.90 | [42] |
1Ca-5Co/SiC | 5.0 | 29.0 | 60,000 | 5 | 350 | 22.80 | 0.76 | |
1Mg-5Co/SiC | 5.0 | 30.0 | 60,000 | 5 | 350 | 29.60 | 0.99 | |
1La-5Co/SiC | 5.0 | 24.0 | 60,000 | 5 | 350 | 27.40 | 0.92 | |
1K-5Co/SiC | 5.0 | 19.0 | 60,000 | 5 | 350 | 33.10 | 1.12 | |
1Cs-5Co/SiC | 5.0 | 17.0 | 60,000 | 5 | 350 | 25.10 | 0.84 | |
1Ce-5Co/SiC | 5.0 | 24.0 | 60,000 | 5 | 350 | 20.30 | 0.68 | |
0.5K-5Co/SiC | 5.0 | 16.0 | 60,000 | 5 | 350 | 31.90 | 1.07 | |
1.5K-5Co/SiC | 5.0 | 15.0 | 60,000 | 5 | 350 | 28.50 | 0.95 | |
Ni-Ca/Y2O3 | 40.0 | 32.0 | 6000 | 100 | 500 | 44.00 | 2.95 | [72] |
10Ni/La2O3-450 | 10.0 | 25.0 | 30,000 | 100 | 550 | 59.0 | 19.75 | [73] |
10Ni/La2O3-550 | 10.0 | 23.0 | 30,000 | 100 | 550 | 79.0 | 26.45 | |
10Ni/La2O3-650 | 10.0 | 14.0 | 30,000 | 100 | 550 | 60.0 | 20.09 | |
10Ni/La2O3-750 | 10.0 | 11.0 | 30,000 | 100 | 550 | 60.0 | 20.09 | |
10Ni/La2O3-850 | 10.0 | 10.0 | 30,000 | 100 | 550 | 50.0 | 16.74 | |
LaNiO3 | - | 1.0 | 30,000 | 100 | 550 | 60.0 | 20.09 | |
40Ni/5MgLa | 40.0 | 11.0 | 30,000 | 100 | 550 | 82.0 | 27.46 | |
Ni/Y2O3 | 10.0 | 7.0 | 6000 | 100 | 450 | 18.00 | 1.21 | [74] |
Ni/La2O3 | 10.0 | 5.0 | 6000 | 100 | 450 | 12.00 | 0.80 | |
Ni/CeO2 | 10.0 | 4.0 | 6000 | 100 | 450 | 5.00 | 0.33 | |
Ni/Sm2O3 | 10.0 | 9.0 | 6000 | 100 | 450 | 15.00 | 1.00 | |
Ni/Gd2O3 | 10.0 | 4.0 | 6000 | 100 | 450 | 17.00 | 1.14 | |
5CMLa-N2 | 5.0 | 33.0 | 6000 | 100 | 450 | 30.0 | 2.01 | [75] |
Co/CeO2-nanocubes | 5.0 | 20.0 | 6000 | 100 | 550 | 67.0 | 4.49 | [76] |
1 LaNiO3 650 | - | 11.7 | 75,000 | 5 | 350 | 55.90 | 2.34 | [43] |
0.5 LaNiO3 650 | - | 8.7 | 75,000 | 5 | 350 | 36.70 | 1.54 | |
0.75 LaNiO3 650 | - | 9.0 | 75,000 | 5 | 350 | 48.30 | 2.02 | |
1.25 LaNiO3 650 | - | 9.9 | 75,000 | 5 | 350 | 33.60 | 1.41 | |
1 LaNiO3 700 | - | 9.7 | 75,000 | 5 | 350 | 51.40 | 2.15 | |
1 LaNiO3 750 | - | 7.8 | 75,000 | 5 | 350 | 41.60 | 1.74 | |
1 LaNiO3 900 | - | 3.2 | 75,000 | 5 | 350 | 30.20 | 1.26 | |
1 LaCoO3 650 | - | 10.3 | 75,000 | 5 | 350 | 44.70 | 1.87 | |
2 LaCoO3 700 | - | 13.4 | 75,000 | 5 | 350 | 41.80 | 1.75 | |
3 LaCoO3 750 | - | 13.2 | 75,000 | 5 | 350 | 38.20 | 1.60 | |
4 LaCoO3 900 | - | 3.5 | 75,000 | 5 | 350 | 34.00 | 1.42 | |
LaNi80Co20O3 | - | 12.0 | 75,000 | 5 | 350 | 30.00 | 1.26 | [44] |
LaNi60Co40O3 | - | 12.0 | 75,000 | 5 | 350 | 31.70 | 1.33 | |
LaNi40Co60O3 | - | 9.0 | 75,000 | 5 | 350 | 41.10 | 1.72 | |
LaNi20Co80O3 | - | 9.0 | 75,000 | 5 | 350 | 37.10 | 1.55 | |
La90Ce10NiO3 | - | 11.0 | 75,000 | 5 | 350 | 33.20 | 1.39 | |
La10Ce90NiO3 | - | 29.0 | 75,000 | 5 | 350 | 59.10 | 2.47 | |
CeNiO3 | - | 15.0 | 75,000 | 5 | 350 | 46.80 | 1.96 | |
La90Mg10NiO3 | - | 14.0 | 75,000 | 5 | 350 | 37.70 | 1.58 | |
La10Mg90NiO3 | - | 25.0 | 75,000 | 5 | 350 | 72.30 | 3.03 | |
MgNiO3 | - | 22.0 | 75,000 | 5 | 350 | 43.00 | 1.80 | |
La-Co | - | 16.0 | 6000 | 100 | 350 | 4.00 | 0.27 | [79] |
La-Ni | - | 20.0 | 6000 | 100 | 350 | 10.00 | 0.67 | |
La-Ce-Co | - | 22.0 | 6000 | 100 | 350 | 4.00 | 0.27 | |
5Co-MgCeO | 5.0 | 16.2 | 6000 | 100 | 550 | 35.0 | 3.86 | [80] |
5Co-CaCeO | 5.0 | 11.0 | 6000 | 100 | 550 | 55.2 | 4.53 | |
5Co-SrCeO | 5.0 | 12.5 | 6000 | 100 | 550 | 41.1 | 4.67 | |
5Co-BaCeO | 5.0 | 15.7 | 6000 | 100 | 500 | 45.3 | 5.40 | |
Ni/Nb2O5 | 40.0 | 7.4 | 6000 | 100 | 550 | 34.0 | 2.34 | [81] |
Ni/NaNbO3 | 40.0 | 4.1 | 6000 | 100 | 550 | 40.0 | 2.68 | |
Ni/KNbO3 | 40.0 | 8.4 | 6000 | 100 | 550 | 36.0 | 2.41 | |
Ni/LaAlO3 | 40.0 | 9.9 | 6000 | 100 | 550 | 65.0 | 4.35 | |
Ni/SmAlO3 | 40.0 | 8.1 | 6000 | 100 | 550 | 83.0 | 5.56 | |
Ni/GdAlO3 | 40.0 | 4.6 | 6000 | 100 | 550 | 83.0 | 5.56 | |
Ni/MnO2 | 40.0 | 2.4 | 6000 | 100 | 550 | 44.0 | 2.95 | |
Ni/CaMnO3 | 40.0 | 6.6 | 6000 | 100 | 550 | 55.0 | 3.68 | |
Ni/SrMnO3 | 40.0 | 7.9 | 6000 | 100 | 550 | 50.0 | 3.35 | |
Ni/BaMnO3 | 40.0 | 7.2 | 6000 | 100 | 550 | 47.0 | 3.15 | |
Ni/TiO2 | 40.0 | 12 | 6000 | 100 | 550 | 33.0 | 2.21 | |
Ni/CaTiO2 | 40.0 | 6.5 | 6000 | 100 | 550 | 37.0 | 2.48 | |
Ni/SrTiO2 | 40.0 | 5.5 | 6000 | 100 | 550 | 80.0 | 5.36 | |
Ni/BaTiO2 | 40.0 | 4.9 | 6000 | 100 | 550 | 75.0 | 5.02 | |
Ni/ZrO2 | 40.0 | 15.0 | 6000 | 100 | 550 | 27.0 | 1.81 | |
Ni/CaZrO3 | 40.0 | 6.0 | 6000 | 100 | 550 | 50.0 | 3.35 | |
Ni/SrZrO3 | 40.0 | 6.1 | 6000 | 100 | 550 | 93.0 | 6.03 | |
Ni/BaZrO3 | 40.0 | 7.5 | 6000 | 100 | 550 | 95.0 | 6.36 | |
Ni/Mg-Al-O | 20.0 | 4.7 | 6000 | 100 | 450 | 6.7 | 0.45 | [50] |
Ni/Ca-Al-O | 20.0 | 16.7 | 6000 | 100 | 450 | 11.5 | 0.77 | |
Ni/Sr-Al-O | 20.0 | 24.4 | 6000 | 100 | 450 | 16.5 | 1.10 | |
Ni/Ba-Al-O | 20.0 | 15.0 | 6000 | 100 | 450 | 24.8 | 1.66 | |
Ni/Ca2Al1-LDHs-ST | 23.6 | 30.1 | 10,000 | 100 | 550 | 55.0 | 3.68 | [82] |
Ni/Ca2Al1-LDHs-IM | 23.6 | 13.5 | 10,000 | 100 | 550 | 25.0 | 1.67 | |
Co/CZY | 10.0 | 30.0 | 6000 | 100 | 350 | 6.5 | 0.44 | [83] |
Ni/CZY | 10.0 | 28.0 | 6000 | 100 | 350 | 6.0 | 0.40 | |
Ni1Co9/CZY | 10.0 | 23.6 | 6000 | 100 | 350 | 10.5 | 0.70 | |
20Ni/MS | 20.0 | 20.0 | 30,000 | 100 | 650 | 95.1 | 31.84 | [84] |
30Ni/MS | 22.0 | 30.0 | 30,000 | 100 | 650 | 94.8 | 31.74 | |
Ni-50/ATP | 5.8 | 38.6 | 30,000 | 100 | 650 | 89.9 | 9.03 | [85] |
Co-Mg3N2 | 5.4 | 12.0 | 36,000 | 100 | 500 | 15.0 | 6.03 | [86] |
Co-CaNH | 5.2 | 34.5 | 36,000 | 100 | 500 | 38.0 | 15.27 | |
Co-BaNH | 4.8 | 11.8 | 36,000 | 100 | 500 | 50.0 | 20.09 | |
100Co | - | 25.0 | 18,000 | 100 | 550 | 18.0 | 3.62 | [87] |
NiO | - | 25.0 | 18,000 | 100 | 550 | 3.0 | 0.60 | [88] |
NiO | - | 18.7 | 12,000 | 100 | 500 | 1.0 | 0.00 | [89] |
Fe@CF(5) | 4.4 | 19.0 | 36,000 | 100 | 550 | 5.0 | 2.01 | [90] |
Fe@CF(10) | 8.0 | 19.6 | 36,000 | 100 | 550 | 7.0 | 2.81 | |
Fe@CF(15) | 13.5 | 21.1 | 36,000 | 100 | 550 | 12.0 | 4.82 | |
Mo@CF(10) | 7.0 | 19.7 | 36,000 | 100 | 550 | 3.0 | 1.21 | |
Mo@CF(15) | 12.5 | 22.7 | 36,000 | 100 | 550 | 4.0 | 1.61 | |
CoMo-Ar-R | - | 21.0 | 36,000 | 100 | 650 | 71.2 | 28.61 | [91] |
CoMo-Air-R | - | 23.7 | 36,000 | 100 | 650 | 73.4 | 29.49 | |
Cs-Co3Mo3N | - | 8.2 | 6000 | 100 | 450 | 48.0 | 3.21 | [92] |
Co3Mo3N | - | 6.1 | 6000 | 100 | 450 | 30.0 | 2.01 | [93] |
Ni3Mo3N | - | 2.2 | 6000 | 100 | 450 | 18.0 | 1.21 | |
Fe3Mo3N | - | 8.8 | 6000 | 100 | 450 | 16.0 | 1.07 |
5. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madurai Elavarasan, R.; Pugazhendhi, R.; Irfan, M.; Mihet-Popa, L.; Khan, I.A.; Campana, P.E. State-of-the-Art Sustainable Approaches for Deeper Decarbonization in Europe—An Endowment to Climate Neutral Vision. Renew. Sustain. Energy Rev. 2022, 159, 112204. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and Opportunities for Carbon Neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the Role of Hydrogen in the 21st Century Energy Transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Niaz, S.; Manzoor, T.; Pandith, A.H. Hydrogen Storage: Materials, Methods and Perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- Bockris, J.O.; Veziroglu, T.N. A Solar-Hydrogen Energy System for Environmental Compatibility. Environ. Conserv. 1985, 12, 105–118. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, H.A.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Bio-Hydrogen Production from Waste Materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Bockris, J.O.M. The Hydrogen Economy: Its History. Int. J. Hydrogphys. Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Bassani, A.; Previtali, D.; Pirola, C.; Bozzano, G.; Colombo, S.; Manenti, F. Mitigating Carbon Dioxide Impact of Industrial Steam Methane Reformers by Acid Gas to Syngas Technology: Technical and Environmental Feasibility. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 71–87. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogphys. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Pawelczyk, E.; Łukasik, N.; Wysocka, I.; Rogala, A.; Gębicki, J. Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers. Energies 2022, 15, 4964. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, H.; Wang, C.G.; Ye, E.; Xu, J.W.; Loh, X.J.; Li, Z. Current Research Progress and Perspectives on Liquid Hydrogen Rich Molecules in Sustainable Hydrogen Storage. Energy Storage Mater. 2021, 35, 695–722. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen Separation and Purification. Int. J. Hydrogphys. Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to Power: Forecasting the Levelized Cost of Electricity from Green Ammonia in Large-Scale Power Plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- Ristig, S.; Poschmann, M.; Folke, J.; Gómez-Cápiro, O.; Chen, Z.; Sanchez-Bastardo, N.; Schlögl, R.; Heumann, S.; Ruland, H. Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply. Chem. Ing. Tech. 2022, 94, 1413–1425. [Google Scholar] [CrossRef]
- Chehade, G.; Dincer, I. Progress in Green Ammonia Production as Potential Carbon-Free Fuel. Fuel 2021, 299, 120845. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; De Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Aziz, M.; TriWijayanta, A.; Nandiyanto, A.B.D. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Arnaiz del Pozo, C.; Cloete, S. Techno-Economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-Carbon Future. Energy Convers. Manag. 2022, 255, 115312. [Google Scholar] [CrossRef]
- Morlanés, N.; Katikaneni, S.P.; Paglieri, S.N.; Harale, A.; Solami, B.; Sarathy, S.M.; Gascon, J. A Technological Roadmap to the Ammonia Energy Economy: Current State and Missing Technologies. Chem. Eng. J. 2021, 408, 127310. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; Shao, J.; Zhang, Y.; You, H. Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells. Energy Convers. Manag. 2021, 228, 113729. [Google Scholar] [CrossRef]
- López-Fernández, E.; Sacedón, C.G.; Gil-Rostra, J.; Yubero, F.; González-Elipe, A.R.; de Lucas-Consuegra, A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021, 26, 6326. [Google Scholar] [CrossRef]
- Barisano, D.; Canneto, G.; Nanna, F.; Villone, A.; Fanelli, E.; Freda, C.; Grieco, M.; Lotierzo, A.; Cornacchia, G.; Braccio, G.; et al. Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II. Energies 2022, 15, 4580. [Google Scholar] [CrossRef]
- Mutch, G.A. Electrochemical Separation Processes for Future Societal Challenges. Cell Rep. Phys. Sci. 2022, 3, 100844. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and Future Role of Haber-Bosch Ammonia in a Carbon-Free Energy Landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Soloveichik, G. Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber–Bosch Process. Nat. Catal. 2019, 2, 377–380. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen–Analysis-IEA. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 3 November 2021).
- Ciucci, M. Energy Policy: General Principles | Fact Sheets on the European Union. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/68/energy-policy-general-principles (accessed on 26 July 2022).
- Mateti, S.; Saranya, L.; Sathikumar, G.; Cai, Q.; Yao, Y.; Chen, Y.I. Nanomaterials Enhancing the Solid-State Storage and Decomposition of Ammonia. Nanotechnology 2022, 33, 222001. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Armenise, S.; Roldán, L. Toward Practical Application Of H2 Generation From Ammonia Decomposition Guided by Rational Catalyst Design. Catal. Rev. 2014, 56, 220–237. [Google Scholar] [CrossRef]
- Armenise, S.; García-Bordejé, E.; Valverde, J.L.; Romeo, E.; Monzón, A. A Langmuir–Hinshelwood Approach to the Kinetic Modelling of Catalytic Ammonia Decomposition in an Integral Reactor. Phys. Chem. Chem. Phys. 2013, 15, 12104. [Google Scholar] [CrossRef] [PubMed]
- Le, T.A.; Do, Q.C.; Kim, Y.; Kim, T.W.; Chae, H.J. A Review on the Recent Developments of Ruthenium and Nickel Catalysts for COx-Free H2 Generation by Ammonia Decomposition. Korean J. Chem. Eng. 2021, 38, 1087–1103. [Google Scholar] [CrossRef]
- Ganley, J.C.; Thomas, F.S.; Seebauer, E.G.; Masel, R.I. A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catal. Lett. 2004, 96, 117–122. [Google Scholar] [CrossRef]
- Chellappa, A.S.; Fischer, C.M.; Thomson, W.J. Ammonia Decomposition Kinetics over Ni-Pt/Al2O3 for PEM Fuel Cell Applications. Appl. Catal. A Gen. 2002, 227, 231–240. [Google Scholar] [CrossRef]
- BOISEN, A.; DAHL, S.; NORSKOV, J.; CHRISTENSEN, C. Why the Optimal Ammonia Synthesis Catalyst Is Not the Optimal Ammonia Decomposition Catalyst. J. Catal. 2005, 230, 309–312. [Google Scholar] [CrossRef]
- García-García, F.R.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Role of B5-Type Sites in Ru Catalysts Used for the NH3 Decomposition Reaction. Top. Catal. 2009, 52, 758–764. [Google Scholar] [CrossRef]
- Karim, A.M.; Prasad, V.; Mpourmpakis, G.; Lonergan, W.W.; Frenkel, A.I.; Chen, J.G.; Vlachos, D.G. Correlating Particle Size and Shape of Supported Ru/γ-Al2O3 Catalysts with NH3 Decomposition Activity. J. Am. Chem. Soc. 2009, 131, 12230–12239. [Google Scholar] [CrossRef]
- Pinzón, M.; Romero, A.; de Lucas Consuegra, A.; de la Osa, A.R.; Sánchez, P. Hydrogen Production by Ammonia Decomposition over Ruthenium Supported on SiC Catalyst. J. Ind. Eng. Chem. 2021, 94, 326–335. [Google Scholar] [CrossRef]
- Pinzón, M.; Avilés-García, O.; de la Osa, A.R.; de Lucas-Consuegra, A.; Sánchez, P.; Romero, A. New Catalysts Based on Reduced Graphene Oxide for Hydrogen Production from Ammonia Decomposition. Sustain. Chem. Pharm. 2022, 25, 100615. [Google Scholar] [CrossRef]
- Pinzón, M.; Romero, A.; de Lucas-Consuegra, A.; de la Osa, A.R.; Sánchez, P. COx-Free Hydrogen Production from Ammonia at Low Temperature Using Co/SiC Catalyst: Effect of Promoter. Catal. Today 2022, 390–391, 34–47. [Google Scholar] [CrossRef]
- Pinzón, M.; Sánchez-Sánchez, A.; Sánchez, P.; de la Osa, A.R.; Romero, A. Ammonia as a Carrier for Hydrogen Production by Using Lanthanum Based Perovskites. Energy Convers. Manag. 2021, 246, 114681. [Google Scholar] [CrossRef]
- Pinzón, M.; Sánchez-Sánchez, A.; Romero, A.; de la Osa, A.R.; Sánchez, P. Self-Combustion Ni and Co-Based Perovskites as Catalyst Precursors for Ammonia Decomposition. Effect of Ce and Mg Doping. Fuel 2022, 323, 124384. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Ali, A.M.; Duan, M.; Zhu, W.; Zhang, H.; Chen, C.; Li, Y. Size Structure–Catalytic Performance Correlation of Supported Ni/MCF-17 Catalysts for COx-Free Hydrogen Production. Chem. Commun. 2018, 54, 6364–6367. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.E.; Ménard, H.; González Carballo, J.-M.; Tooze, R.; Torrente-Murciano, L. Hydrogen Production from Ammonia Decomposition Using Co/γ-Al2O3 Catalysts—Insights into the Effect of Synthetic Method. Int. J. Hydrogphys. Energy 2020, 45, 27210–27220. [Google Scholar] [CrossRef]
- Duan, X.; Qian, G.; Liu, Y.; Ji, J.; Zhou, X.; Chen, D.; Yuan, W. Structure Sensitivity of Ammonia Decomposition over Ni Catalysts: A Computational and Experimental Study. Fuel Process. Technol. 2013, 108, 112–117. [Google Scholar] [CrossRef]
- Bell, T.E.; Torrente-Murciano, L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top. Catal. 2016, 59, 1438–1457. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.-C.; Wang, W.-W.; Jin, Z.; Wang, X.; Si, R.; Jia, C.-J. Transition Metal Nanoparticles Supported La-Promoted MgO as Catalysts for Hydrogen Production via Catalytic Decomposition of Ammonia. J. Energy Chem. 2019, 38, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Nickel Catalysts Supported on Alkaline Earth Metal Aluminate for H2 Production. Int. J. Hydrogphys. Energy 2020, 45, 26979–26988. [Google Scholar] [CrossRef]
- Zhao, Z.; Zou, H.; Lin, W. Effect of Rare Earth and Other Cationic Promoters on Properties of CoMoNx/CNTs Catalysts for Ammonia Decomposition. J. Rare Earths 2013, 31, 247–250. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, J.; Ge, Q.; Xu, H.; Li, W. Effects of CeO2 Addition on Ni/Al2O3 Catalysts for the Reaction of Ammonia Decomposition to Hydrogen. Appl. Catal. B Environ. 2008, 80, 98–105. [Google Scholar] [CrossRef]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.F.; Wu, G. Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Appl. Catal. B Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Sayas, S.; Morlanés, N.; Katikaneni, S.P.; Harale, A.; Solami, B.; Gascon, J. High Pressure Ammonia Decomposition on Ru-K/CaO Catalysts. Catal. Sci. Technol. 2020, 10, 5027–5035. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, Q.; Zhao, D.; Cao, T.; Sha, H.; Zhang, C.; Song, H.; Da, Z. Ammonia as Hydrogen Carrier: Advances in Ammonia Decomposition Catalysts for Promising Hydrogen Production. Renew. Sustain. Energy Rev. 2022, 169, 112918. [Google Scholar] [CrossRef]
- Hu, Z.; Mahin, J.; Datta, S.; Bell, T.E.; Torrente-Murciano, L. Ru-Based Catalysts for H2 Production from Ammonia: Effect of 1D Support. Top. Catal. 2019, 62, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Furusawa, T.; Kuribara, H.; Kimura, K.; Sato, T.; Itoh, N. Development of a Cs-Ru/CeO2 Spherical Catalyst Prepared by Impregnation and Washing Processes for Low-Temperature Decomposition of NH3: Characterization and Kinetic Analysis Results. Ind. Eng. Chem. Res. 2020, 59, 18460–18470. [Google Scholar] [CrossRef]
- Huang, C.; Yu, Y.; Yang, J.; Yan, Y.; Wang, D.; Hu, F.; Wang, X.; Zhang, R.; Feng, G. Ru/La2O3 Catalyst for Ammonia Decomposition to Hydrogen. Appl. Surf. Sci. 2019, 476, 928–936. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Investigation on Catalytic Performance and Desorption Behaviors of Ruthenium Catalysts Supported on Rare-Earth Oxides for NH3 Decomposition. Int. J. Hydrogphys. Energy 2022, 47, 32543–32551. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, X.; Wang, J.; Ju, X.; Liu, L.; Chen, P. Applications of Rare Earth Oxides in Catalytic Ammonia Synthesis and Decomposition. Catal. Sci. Technol. 2021, 11, 6330–6343. [Google Scholar] [CrossRef]
- Muroyama, H.; Matsui, T.; Eguchi, K. Production and Utilization of Hydrogen Carriers by Using Supported Nickel Catalysts. J. Jpn. Pet. Inst. 2021, 64, 123–131. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Feng, J.; Ju, X.; Wang, J.; He, T.; Chen, P. Metal–Support Interaction-Modulated Catalytic Activity of Ru Nanoparticles on Sm2O3 for Efficient Ammonia Decomposition. Catal. Sci. Technol. 2021, 11, 2915–2923. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.U.; Kim, J.R.; Kim, T.W.; Lee, Y.J.; Chae, H.J. Ru-Supported Lanthania-Ceria Composite as an Efficient Catalyst for COx-Free H2 Production from Ammonia Decomposition. Appl. Catal. B Environ. 2021, 285, 119831. [Google Scholar] [CrossRef]
- Doh, H.; Kim, H.Y.; Kim, G.S.; Cha, J.; Park, H.S.; Ham, H.C.; Yoon, S.P.; Han, J.; Nam, S.W.; Song, K.H.; et al. Influence of Cation Substitutions Based on ABO3 Perovskite Materials, Sr1-XYxTi1-YRuyO3-δ, on Ammonia Dehydrogenation. ACS Sustain. Chem. Eng. 2017, 5, 9370–9379. [Google Scholar] [CrossRef]
- Cao, C.F.; Wu, K.; Zhou, C.; Yao, Y.H.; Luo, Y.; Chen, C.Q.; Lin, L.; Jiang, L. Electronic Metal-Support Interaction Enhanced Ammonia Decomposition Efficiency of Perovskite Oxide Supported Ruthenium. Chem. Eng. Sci. 2022, 257, 117719. [Google Scholar] [CrossRef]
- Zhiqiang, F.; Ziqing, W.; Dexing, L.; Jianxin, L.; Lingzhi, Y.; Qin, W.; Zhong, W. Catalytic Ammonia Decomposition to COx-Free Hydrogen over Ruthenium Catalyst Supported on Alkali Silicates. Fuel 2022, 326, 125094. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, S.; Wu, H.; You, Z.; Deng, L.; Qiu, X. Metal-Support Interactions on Ru/CaAlO: X Catalysts Derived from Structural Reconstruction of Ca-Al Layered Double Hydroxides for Ammonia Decomposition. Chem. Commun. 2019, 55, 14410–14413. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, Y.; Shen, X.; Cai, Z. Ruthenium Catalyst Supported on Ba Modified ZrO2 for Ammonia Decomposition to COx-Free Hydrogen. Int. J. Hydrogphys. Energy 2019, 44, 7300–7307. [Google Scholar] [CrossRef]
- Hu, Z.; Mahin, J.; Torrente-Murciano, L. A MOF-Templated Approach for Designing Ruthenium–Cesium Catalysts for Hydrogen Generation from Ammonia. Int. J. Hydrogphys. Energy 2019, 44, 30108–30118. [Google Scholar] [CrossRef]
- Miyamoto, M.; Hamajima, A.; Oumi, Y.; Uemiya, S. Effect of Basicity of Metal Doped ZrO2 Supports on Hydrogen Production Reactions. Int. J. Hydrogphys. Energy 2018, 43, 730–738. [Google Scholar] [CrossRef]
- Chung, D.B.; Kim, H.Y.; Jeon, M.; Lee, D.H.; Park, H.S.; Choi, S.H.; Nam, S.W.; Jang, S.C.; Park, J.H.; Lee, K.Y.; et al. Enhanced Ammonia Dehydrogenation over Ru/La(x)-Al2O3 (x = 0–50 Mol%): Structural and Electronic Effects of La Doping. Int. J. Hydrogphys. Energy 2017, 42, 1639–1647. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Additive Effect of Alkaline Earth Metals on Ammonia Decomposition Reaction over Ni/Y2O3 Catalysts. RSC Adv. 2016, 6, 85142–85148. [Google Scholar] [CrossRef]
- Yu, Y.; Gan, Y.; Huang, C.; Lu, Z.; Wang, X.; Zhang, R.; Feng, G. Ni/La2O3 and Ni/MgO–La2O3 Catalysts for the Decomposition of NH3 into Hydrogen. Int. J. Hydrogphys. Energy 2020, 45, 16528–16539. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen. ChemCatChem 2016, 8, 2988–2995. [Google Scholar] [CrossRef]
- Podila, S.; Driss, H.; Zaman, S.F.; Alhamed, Y.A.; Alzahrani, A.A.; Daous, M.A.; Petrov, L.A. Hydrogen Generation by Ammonia Decomposition Using Co/MgO-La2O3 Catalyst: Influence of Support Calcination Atmosphere. J. Mol. Catal. A Chem. 2016, 414, 130–139. [Google Scholar] [CrossRef]
- Huang, C.; Yu, Y.; Tang, X.; Liu, Z.; Zhang, J.; Ye, C.; Ye, Y.; Zhang, R. Hydrogen Generation by Ammonia Decomposition over Co/CeO2 Catalyst: Influence of Support Morphologies. Appl. Surf. Sci. 2020, 532, 147335. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Promotion Effect of Rare-Earth Elements on the Catalytic Decomposition of Ammonia over Ni/Al2O3 Catalyst. Appl. Catal. A Gen. 2015, 505, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Muroyama, H.; Saburi, C.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Ni/La2O3 Catalyst for on-Site Generation of Hydrogen. Appl. Catal. A Gen. 2012, 443–444, 119–124. [Google Scholar] [CrossRef]
- Podila, S.; Driss, H.; Ali, A.M.; Al-Zahrani, A.A.; Daous, M.A. Influence of Ce Substitution in LaMO3 (M = Co/Ni) Perovskites for COx-Free Hydrogen Production from Ammonia Decomposition. Arab. J. Chem. 2022, 15, 103547. [Google Scholar] [CrossRef]
- Al-attar, O.A.; Podila, S.; Al-Zahrani, A.A. Preparation and Study of XCeO3 (X: Mg, Ca, Sr, Ba) Perovskite-Type Oxide Supported Cobalt Catalyst for Hydrogen Production by Ammonia Decomposition. Arab. J. Sci. Eng. 2022, 1–11. [Google Scholar] [CrossRef]
- Okura, K.; Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Ni Catalysts Supported on Perovskite-Type Oxides for the on-Site Generation of Hydrogen. RSC Adv. 2018, 8, 32102–32110. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Deng, L.; Zheng, W.; Xu, S.; Yu, Q.; Qiu, X. Nickel-Induced Structure Transformation in Hydrocalumite for Enhanced Ammonia Decomposition. Int. J. Hydrogphys. Energy 2020, 45, 12244–12255. [Google Scholar] [CrossRef]
- Huang, C.; Li, H.; Yang, J.; Wang, C.; Hu, F.; Wang, X.; Lu, Z.-H.; Feng, G.; Zhang, R. Ce0.6Zr0.3Y0.1O2 Solid Solutions-Supported Ni Co Bimetal Nanocatalysts for NH3 Decomposition. Appl. Surf. Sci. 2019, 478, 708–716. [Google Scholar] [CrossRef]
- Hu, Z.P.; Weng, C.C.; Yuan, G.G.; Lv, X.W.; Yuan, Z.Y. Ni Nanoparticles Supported on Mica for Efficient Decomposition of Ammonia to COx-Free Hydrogen. Int. J. Hydrogphys. Energy 2018, 43, 9663–9676. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Shao, J.; Dai, Y.; Ding, J.; Tang, Z. Attapulgite Clay Supported Ni Nanoparticles Encapsulated by Porous Silica: Thermally Stable Catalysts for Ammonia Decomposition to COx Free Hydrogen. Int. J. Hydrogphys. Energy 2016, 41, 21157–21165. [Google Scholar] [CrossRef]
- Yu, P.; Wu, H.; Guo, J.; Wang, P.; Chang, F.; Gao, W.; Zhang, W.; Liu, L.; Chen, P. Effect of BaNH, CaNH, Mg3N2 on the Activity of Co in NH3 Decomposition Catalysis. J. Energy Chem. 2020, 46, 16–21. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Fu, X.-P.; Wang, W.-W.; Jin, Z.; Song, Q.-S.; Jia, C.-J. Promoted Porous Co3O4-Al2O3 Catalysts for Ammonia Decomposition. Sci. China Chem. 2018, 61, 1389–1398. [Google Scholar] [CrossRef]
- Yan, H.; Xu, Y.J.; Gu, Y.Q.; Li, H.; Wang, X.; Jin, Z.; Shi, S.; Si, R.; Jia, C.J.; Yan, C.H. Promoted Multimetal Oxide Catalysts for the Generation of Hydrogen via Ammonia Decomposition. J. Phys. Chem. C 2016, 120, 7685–7696. [Google Scholar] [CrossRef]
- Nakamura, I.; Fujitani, T. Role of Metal Oxide Supports in NH3 Decomposition over Ni Catalysts. Appl. Catal. A Gen. 2016, 524, 45–49. [Google Scholar] [CrossRef]
- Guler, M.; Korkusuz, C.; Varisli, D. Catalytic Decomposition of Ammonia for Hydrogen Production over Carbon Nanofiber Supported Fe and Mo Catalysts in a Microwave Heated Reactor. Int. J. Chem. React. Eng. 2019, 17, 20180162. [Google Scholar] [CrossRef]
- Duan, X.; Ji, J.; Yan, X.; Qian, G.; Chen, D.; Zhou, X. Understanding Co-Mo Catalyzed Ammonia Decomposition: Influence of Calcination Atmosphere and Identification of Active Phase. ChemCatChem 2016, 8, 938–945. [Google Scholar] [CrossRef]
- Srifa, A.; Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Hydrogen Production by Ammonia Decomposition over Cs-Modified Co3Mo3N Catalysts. Appl. Catal. B Environ. 2017, 218, 1–8. [Google Scholar] [CrossRef]
- Srifa, A.; Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. COx-Free Hydrogen Production via Ammonia Decomposition over Molybdenum Nitride-Based Catalysts. Catal. Sci. Technol. 2016, 6, 7495–7504. [Google Scholar] [CrossRef]
- Chen, C.; Wu, K.; Ren, H.; Zhou, C.; Luo, Y.; Lin, L.; Au, C.; Jiang, L. Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review. Energy Fuels 2021, 35, 11693–11706. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón, M.; Sánchez, P.; de la Osa, A.R.; Romero, A.; de Lucas-Consuegra, A. Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia. Energies 2022, 15, 8143. https://doi.org/10.3390/en15218143
Pinzón M, Sánchez P, de la Osa AR, Romero A, de Lucas-Consuegra A. Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia. Energies. 2022; 15(21):8143. https://doi.org/10.3390/en15218143
Chicago/Turabian StylePinzón, Marina, Paula Sánchez, Ana Raquel de la Osa, Amaya Romero, and Antonio de Lucas-Consuegra. 2022. "Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia" Energies 15, no. 21: 8143. https://doi.org/10.3390/en15218143
APA StylePinzón, M., Sánchez, P., de la Osa, A. R., Romero, A., & de Lucas-Consuegra, A. (2022). Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia. Energies, 15(21), 8143. https://doi.org/10.3390/en15218143