Fault Detection of UHV Converter Valve Based on Optimized Cost-Sensitive Extreme Random Forest
Abstract
:1. Introduction
2. Particle Swarm Optimization Algorithm
2.1. Basic Theory of PSO Algorithm
2.2. PSO Algorithm Formula Implementation
- 1.
- Speed update formula:
- 2.
- Position update formula:
2.3. Improved PSO Algorithm
- Set the inertia factor, acceleration parameters, number of particles, and other parameters;
- Randomly initialize the velocity and position of each particle to obtain the optimal position and optimal adaptation value of the individual and the population;
- Perform n update iterations to update the velocity and position of each particle;
- Calculate and update the optimal position and optimal adaptation value of each particle, obtain the optimal position and optimal adaptation value of the population, and update the current parameters as necessary;
- Output the global optimal solution and the corresponding position variables.
3. Extreme Random Forests Based on Cost Sensitivity
3.1. Extreme Random Forest
3.2. Principle of Extreme Random Forest Algorithm Structure Based on Cost Sensitivity
4. Optimized CS-ERF Converter Valve Fault Detection
4.1. Data Preprocessing
4.2. Model Building Process
5. Experimental Analysis
5.1. Data Description
5.2. Sample Feature Selection
5.3. Experimental Results
5.4. Limitations Discussion
6. Conclusions
- With the technical upgrade of the transmission system, the dimensionality and complexity of the features contained in the original dataset grow rapidly, different data pre-processing methods of model evaluation will have a large impact, and the data pre-processing methods that are more suitable for this paper can be further studied.
- The particle swarm optimization algorithm can be combined with other optimization algorithms to build a new location iteration method, which makes the model optimal hyperparameters more accurate and improves the accuracy of model detection.
- The proposed method can be applied to other fault detection fields.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar] [CrossRef]
- Lu, J.; Yuan, X.; Zhang, M.; Hu, J. Supplementary Control for Mitigation of Successive Commutation Failures Considering the Influence of PLL Dynamics in LCC-HVDC Systems. CSEE J. Power Energy Syst. 2022, 8, 872–879. [Google Scholar]
- Jiang, T.; Yu, Y.; Jahanger, A.; Balsalobre-Lorente, D. Structural emissions reduction of China’s power and heating industry under the goal of “double carbon”: A perspective from input-output analysis. Sustain. Prod. Consum. 2022, 31, 346–356. [Google Scholar] [CrossRef]
- Mehdi, A.; Kim, C.-H.; Hussain, A.; Kim, J.-S.; Hassan, S.J.U. A Comprehensive Review of Auto-Reclosing Schemes in AC, DC, and Hybrid (AC/DC) Transmission Lines. IEEE Access 2021, 9, 74325–74342. [Google Scholar] [CrossRef]
- National Grid Co. Guidelines for Condition Evaluation of High Voltage DC Transmission Converter Valves; China Electric Power Publishing House: Beijing, China, 2011. [Google Scholar]
- Mei, F.; Li, X.; Zheng, J.; Sha, H.; Li, D. A data-driven approach to state assessment of the converter valve based on oversampling and Shapley additive explanations. IET Gener. Transm. Distrib. 2022, 16, 1607–1619. [Google Scholar] [CrossRef]
- Li, F.; Shi, P.; Lim, C.-C.; Wu, L. Fault Detection Filtering for Nonhomogeneous Markovian Jump Systems via a Fuzzy Approach. IEEE Trans. Fuzzy Syst. 2016, 26, 131–141. [Google Scholar] [CrossRef]
- Zhang, S.; Lang, Z.-Q. SCADA-data-based wind turbine fault detection: A dynamic model sensor method. Control Eng. Pract. 2020, 102, 104546. [Google Scholar] [CrossRef]
- Badihi, H.; Zhang, Y.; Jiang, B.; Pillay, P.; Rakheja, S. A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis. Proc. IEEE 2022, 110, 754–806. [Google Scholar] [CrossRef]
- Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE Access 2018, 6, 21020–21031. [Google Scholar] [CrossRef]
- Hussain, A.; Kim, C.; Admasie, S. An intelligent islanding detection of distribution networks with synchronous machine DG using ensemble learning and canonical methods. IET Gener. Transm. Distrib. 2021, 15, 3242–3255. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Ding, S.X.; Peng, T.; Yang, C.; Gui, W.; Shardt, Y.A.W. A Just-In-Time-Learning-Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection. IEEE Trans. Ind. Electron. 2020, 68, 5259–5270. [Google Scholar] [CrossRef]
- Qin, Y.; Yan, Y.; Ji, H.; Wang, Y. Recursive Correlative Statistical Analysis Method With Sliding Windows for Incipient Fault Detection. IEEE Trans. Ind. Electron. 2021, 69, 4185–4194. [Google Scholar] [CrossRef]
- Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.A.; Togneri, R. Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3573–3587. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.-Y.; Zhang, X.; Zhu, X.; Wu, F.; You, X.; Gao, Y.; Shan, S.; Yang, J.-Y. Multiset Feature Learning for Highly Imbalanced Data Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 139–156. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Zhang, C.; Zhang, S. Efficient Utilization of Missing Data in Cost-Sensitive Learning. IEEE Trans. Knowl. Data Eng. 2019, 33, 2425–2436. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.-G.; Gandomi, A.H. A Survey of Learning-Based Intelligent Optimization Algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Zhan, Z.-H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 51, 1175–1188. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Yuan, Y.; Zeng, N.; Hone, K.; Liu, X. A Novel Sigmoid-Function-Based Adaptive Weighted Particle Swarm Optimizer. IEEE Trans. Cybern. 2019, 51, 1085–1093. [Google Scholar] [CrossRef]
- Wen, L.; Xu, M.; Jiao, J.; Wu, T.; Tang, M.; Cai, S. A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection. Expert Syst. Appl. 2022, 201, 117217. [Google Scholar]
- Tang, M.; Yi, J.; Wu, H.; Wang, Z. Fault Detection of Wind Turbine Electric Pitch System Based on IGWO-ERF. Sensors 2021, 21, 6215. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Cao, C.; Wu, H.; Zhu, H.; Tang, J.; Peng, Z. Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF. Sensors 2022, 22, 6826. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, W.; Jiao, J.; Liang, X.; Wu, T.; Xu, M.; Cai, S. Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Appl. Soft Comput. 2021, 103, 107146. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Liang, X.; Xu, M.; Tang, M.; Cai, S. Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy 2022, 249, 123760. [Google Scholar] [CrossRef]
- Khan, M.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [Google Scholar] [CrossRef]
- Abualigah, L. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Comput. Appl. 2020, 32, 12381–12401. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2019, 77, 1201–1215. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
Actual Category | Prediction Category | |
---|---|---|
Normal | Fault | |
Normal | ||
Fault |
Data Type | Number of Samples | Number of Training | Test Samples | Unbalance Degree |
---|---|---|---|---|
Normal | 809 | 539 | 270 | 1.58 |
Attention | 398 | 265 | 133 | 2.08 |
Abnormal | 165 | 110 | 55 | 4.89 |
Severe | 59 | 39 | 20 | 13.29 |
Total number of samples | 1431 | 953 | 478 | 5.46 |
Fault Category | Features | |
---|---|---|
Thyristor assembly | -Family defects and rectification | -Electrical component support cross-arms |
-The degree of corrosion of thyristor body | -Cracking of long rod insulator | |
-Temperature of thyristor body/ | -Functional tripping | |
-Number of faults indicating pulses/pc | -Control unit (TE, TCU, or GU) situation | |
-Valve tripping | ||
Valve cooling components | -Family defects and rectification | -Leakage monitoring device situation |
-Leakage of main water circuit of valve tower | -Rusting and discoloration of radiator | |
Valve lightning arrester | -Family defects and rectification | -Valve arrester body temperature/℃ |
-Valve arrester body rusting | -Loose grounding lead wire | |
-Valve arrester discharge corona | -Counting alarm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, F.; Cao, C.; Tang, M.; Wang, Z.; Tang, J.; Yi, J. Fault Detection of UHV Converter Valve Based on Optimized Cost-Sensitive Extreme Random Forest. Energies 2022, 15, 8059. https://doi.org/10.3390/en15218059
Xiong F, Cao C, Tang M, Wang Z, Tang J, Yi J. Fault Detection of UHV Converter Valve Based on Optimized Cost-Sensitive Extreme Random Forest. Energies. 2022; 15(21):8059. https://doi.org/10.3390/en15218059
Chicago/Turabian StyleXiong, Fuqiang, Chenhuan Cao, Mingzhu Tang, Zhihong Wang, Jun Tang, and Jiabiao Yi. 2022. "Fault Detection of UHV Converter Valve Based on Optimized Cost-Sensitive Extreme Random Forest" Energies 15, no. 21: 8059. https://doi.org/10.3390/en15218059
APA StyleXiong, F., Cao, C., Tang, M., Wang, Z., Tang, J., & Yi, J. (2022). Fault Detection of UHV Converter Valve Based on Optimized Cost-Sensitive Extreme Random Forest. Energies, 15(21), 8059. https://doi.org/10.3390/en15218059