Advancement of Tidal Current Generation Technology in Recent Years: A Review
Abstract
:1. Introduction
2. Tidal Energy Harvesting
2.1. Study of HATCT
2.1.1. HATCT Performance Study
2.1.2. HATCT Array Research
2.2. Study of VATCT
2.3. Special Tidal Energy Harvesting Device
3. Power Generation unit Study
3.1. Design of Power Generator
3.2. Power Generation Control
4. Summary and Analysis of Future Trend
Author Contributions
Funding
Conflicts of Interest
References
- Melikoglu, M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018, 148, 563–573. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Luna, C.; Calero, J.; Romero, A.A.; Bautista, F.M.; Luna, D. Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. Energies 2022, 15, 3173. [Google Scholar] [CrossRef]
- Basha, J.S.; Jafary, T.; Vasudevan, R.; Bahadur, J.K.; Al Ajmi, M.; Al Neyadi, A.; Soudagar, M.E.M.; Mujtaba, M.; Hussain, A.; Ahmed, W.; et al. Potential of Utilization of Renewable Energy Technologies in Gulf Countries. Sustainability 2021, 13, 10261. [Google Scholar] [CrossRef]
- Yamamoto, I.; Rong, G.; Shimomoto, Y.; Lawn, M. Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology. Appl. Sci. 2017, 7, 1070. [Google Scholar] [CrossRef]
- Fiore, U.; Munapo, E.; Vasant, P.; Thomas, J.; Panchenko, V. Applied Optimization in Clean and Renewable Energy: New Trends. Appl. Sci. 2022, 12, 6572. [Google Scholar] [CrossRef]
- Nengroo, S.H.; Jin, H.; Lee, S. Management of Distributed Renewable Energy Resources with the Help of a Wireless Sensor Network. Appl. Sci. 2022, 12, 6908. [Google Scholar] [CrossRef]
- Simões, M.G.; Farret, F.A.; Khajeh, H.; Shahparasti, M.; Laaksonen, H. Future Renewable Energy Communities Based Flexible Power Systems. Appl. Sci. 2021, 12, 121. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting. Appl. Sci. 2017, 8, 28. [Google Scholar] [CrossRef][Green Version]
- Ioinovici, A. Special Issue “Renewable and Sustainable Energy Conversion Systems”. Appl. Sci. 2022, 12, 3905. [Google Scholar] [CrossRef]
- Younis, A.; Dong, Z.; ElBadawy, M.; AlAnazi, A.; Salem, H.; AlAwadhi, A. Design and Development of Bladeless Vibration-Based Piezoelectric Energy–Harvesting Wind Turbine. Appl. Sci. 2022, 12, 7769. [Google Scholar] [CrossRef]
- Esteban, M.D.; Espada, J.M.; Ortega, J.M.; López-Gutiérrez, J.-S.; Negro, V. What about Marine Renewable Energies in Spain? J. Mar. Sci. Eng. 2019, 7, 249. [Google Scholar] [CrossRef][Green Version]
- Todeschini, G. Review of Tidal Lagoon Technology and Opportunities for Integration within the UK Energy System. Inventions 2017, 2, 14. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Li, W.; Li, J.; Fu, Q.; Wang, T. Evolution Trend Research of Global Ocean Power Generation Based on a 45-Year Scientometric Analysis. J. Mar. Sci. Eng. 2021, 9, 218. [Google Scholar] [CrossRef]
- Ko, D.-H.; Chung, J.; Lee, K.-S.; Park, J.-S.; Yi, J.-H. Current Policy and Technology for Tidal Current Energy in Korea. Energies 2019, 12, 1807. [Google Scholar] [CrossRef][Green Version]
- Moon, S.-H.; Park, B.-G.; Kim, J.-W.; Kim, J.-M. Effective algorithms of a power converter for tidal current power generation system. J. Power Electron. 2020, 20, 823–833. [Google Scholar] [CrossRef]
- Vennell, R.; Major, R.; Zyngfogel, R.; Beamsley, B.; Smeaton, M.; Scheel, M.; Unwin, H. Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents. Renew. Energy 2020, 162, 1890–1905. [Google Scholar] [CrossRef]
- Coles, D.; Angeloudis, A.; Goss, Z.; Miles, J. Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems. Energies 2021, 14, 1106. [Google Scholar] [CrossRef]
- Rashid, F.; Joardder, M.U.H. Future options of electricity generation for sustainable development: Trends and prospects. Eng. Rep. 2022, 4, e12508. [Google Scholar] [CrossRef]
- Hazra, S.; Kamat, P.; Bhattacharya, S.; Ouyang, W.; Englebretson, S. Power Conversion With a Magnetically-Geared Permanent Magnet Generator for Low-Speed Wave Energy Converter. IEEE Trans. Ind. Appl. 2020, 56, 5308–5318. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D. Tidal Power Generation Process Control Based on Differential Game Theory. J. Coast. Res. 2018, 83, 959–963. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H.; Lin, Y.; Gu, Y.; Ni, Y. Hydrodynamic Analysis of Tidal Current Turbine under Water-Sediment Conditions. J. Mar. Sci. Eng. 2022, 10, 515. [Google Scholar] [CrossRef]
- Touimi, K.; Benbouzid, M.; Chen, Z. Optimal Design of a Multibrid Permanent Magnet Generator for a Tidal Stream Turbine. Energies 2020, 13, 487. [Google Scholar] [CrossRef][Green Version]
- Preziuso, D.; García-Medina, G.; O’Neil, R.; Yang, Z.; Wang, T. Evaluating the Potential for Tidal Phase Diversity to Produce Smoother Power Profiles. J. Mar. Sci. Eng. 2020, 8, 246. [Google Scholar] [CrossRef][Green Version]
- Masters, I.; Williams, A.; Croft, T.N.; Togneri, M.; Edmunds, M.; Zangiabadi, E.; Fairley, I.; Karunarathna, H. A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis. Energies 2015, 8, 7833–7853. [Google Scholar] [CrossRef][Green Version]
- Jo, C.H.; Hwang, S.J. Review on Tidal Energy Technologies and Research Subjects. China Ocean Eng. 2020, 34, 137–150. [Google Scholar] [CrossRef]
- Arunraj, P.V.; Ali, T.; Kumar, A.; Prakash, V.; Kashyap, N. Design and analysis of submerged tidal turbine. Int. J. Ambient Energy 2020, 43, 2563–2567. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Park, H.C.; Kang, T.; Ko, J.H. Structural design and analysis of composite blade for horizontal-axis tidal turbine. Sci. Eng. Compos. Mater. 2017, 25, 1075–1083. [Google Scholar] [CrossRef]
- Zhu, F.-W.; Ding, L.; Huang, B.; Bao, M.; Liu, J.-T. Blade design and optimization of a horizontal axis tidal turbine. Ocean Eng. 2020, 195, 106652. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Pang, X. Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering Blade Length and Hub Height. Appl. Sci. 2018, 8, 1202. [Google Scholar] [CrossRef][Green Version]
- Ortega, A.; Tomy, J.; Shek, J.; Paboeuf, S.; Ingram, D. An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines. Energies 2020, 13, 5389. [Google Scholar] [CrossRef]
- Ehrich, S.; Schwarz, C.M.; Rahimi, H.; Stoevesandt, B.; Peinke, J. Comparison of the Blade Element Momentum Theory with Computational Fluid Dynamics for Wind Turbine Simulations in Turbulent Inflow. Appl. Sci. 2018, 8, 2513. [Google Scholar] [CrossRef][Green Version]
- Yeo, E.J.; Kennedy, D.M.; O’Rourke, F. Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm. Energy 2022, 250, 123720. [Google Scholar] [CrossRef]
- Liu, H.; Gu, Y.; Lin, Y.-G.; Li, Y.-J.; Li, W.; Zhou, H. Improved Blade Design for Tidal Current Turbines. Energies 2020, 13, 2642. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhang, Z.; Chen, J.; Chen, D. Influence of blade number on performance of multistage hydraulic turbine in turbine mode. Energy Sci. Eng. 2022, 10, 903–917. [Google Scholar] [CrossRef]
- Mullings, H.; Stallard, T. Analysis of tidal turbine blade loading due to blade scale flow. J. Fluids Struct. 2022, 114, 103698. [Google Scholar] [CrossRef]
- De Arcos, F.Z.; Vogel, C.R.; Willden, R.H. A parametric study on the hydrodynamics of tidal turbine blade deformation. J. Fluids Struct. 2022, 113, 103626. [Google Scholar] [CrossRef]
- Pourrajabian, A. Effect of blade profile on the external/internal geometry of a small horizontal axis wind turbine solid/hollow blade. Sustain. Energy Technol. Assess. 2022, 51, 101918. [Google Scholar] [CrossRef]
- Alipour, R.; Alipour, R.; Fardian, F.; Tahan, M.H. Optimum performance of a horizontal axis tidal current turbine: A numerical parametric study and experimental validation. Energy Convers. Manag. 2022, 258, 115533. [Google Scholar] [CrossRef]
- Alipour, R.; Alipour, R.; Koloor, S.S.R.; Petrů, M.; Ghazanfari, S.A. On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine. Sustainability 2020, 12, 5985. [Google Scholar] [CrossRef]
- Wang, B.-Z.; Hu, T.-Y.; Guo, Y.; Zhang, Y.-F. Research on Pitch Control Strategies of Horizontal Axis Tidal Current Turbine. China Ocean Eng. 2020, 34, 223–231. [Google Scholar] [CrossRef]
- Van Ness, K.; Hill, C.; Burnett, J.; Aliseda, A.; Polagye, B. Experimental comparison of blade pitch and speed control strategies for horizontal-axis current turbines. J. Ocean Eng. Mar. Energy 2021, 7, 83–96. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Han, C.; Yan, S.; Hong, Z. Numerical Investigation of Turbine Blades with Leading-Edge Tubercles in Uniform Current. Water 2021, 13, 2205. [Google Scholar] [CrossRef]
- Tran, B.N.; Jeong, H.; Kim, J.-H.; Park, J.-S.; Yang, C. Effects of Tip Clearance Size on Energy Performance and Pressure Fluctuation of a Tidal Propeller Turbine. Energies 2020, 13, 4055. [Google Scholar] [CrossRef]
- Glennon, C.; Finnegan, W.; Kaufmann, N.; Meier, P.; Jiang, Y.; Starzmann, R.; Goggins, J. Tidal stream to mainstream: Mechanical testing of composite tidal stream blades to de-risk operational design life. J. Ocean Eng. Mar. Energy 2022, 8, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Le, T.Q.; Ko, J.H. Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations. Renew. Energy 2015, 80, 275–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Han, J.; Sun, G.; Xie, Y. Effects of hydrofoil motion parameters and swing arm parameters on power extraction of a flexible hydrofoil in swing arm mode. Ocean Eng. 2022, 245, 110543. [Google Scholar] [CrossRef]
- Simani, S.; Castaldi, P. Robust Control Examples Applied to a Wind Turbine Simulated Model. Appl. Sci. 2017, 8, 29. [Google Scholar] [CrossRef][Green Version]
- Gavriilidis, I.; Huang, Y. Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals. Energies 2021, 14, 7208. [Google Scholar] [CrossRef]
- Gonabadi, H.; Oila, A.; Yadav, A.; Bull, S. Structural performance of composite tidal turbine blades. Compos. Struct. 2021, 278, 114679. [Google Scholar] [CrossRef]
- Porter, K.E.; Ordonez-Sanchez, S.E.; Murray, R.E.; Allmark, M.; Johnstone, C.M.; O’Doherty, T.; Mason-Jones, A.; Doman, D.A.; Pegg, M.J. Flume testing of passively adaptive composite tidal turbine blades under combined wave and current loading. J. Fluids Struct. 2020, 93, 102825. [Google Scholar] [CrossRef]
- Dirieh, N.D.; Thiébot, J.; Guillou, S.; Guillou, N. Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race. Energies 2022, 15, 3475. [Google Scholar] [CrossRef]
- Lin, J.; Lin, B.; Sun, J.; Chen, Y. Wake structure and mechanical energy transformation induced by a horizontal axis tidal stream turbine. Renew. Energy 2021, 171, 1344–1356. [Google Scholar] [CrossRef]
- Vinod, A.; Han, C.; Banerjee, A. Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow. Renew. Energy 2021, 175, 840–852. [Google Scholar] [CrossRef]
- Oppong, S.; Lam, W.-H.; Guo, J.; Tan, L.M.; Ong, Z.C.; Tey, W.Y.; Lee, Y.F.; Ujang, Z.; Dai, M.; Robinson, D.; et al. Predictions of Wake and Central Mixing Region of Double Horizontal Axis Tidal Turbine. KSCE J. Civ. Eng. 2020, 24, 1983–1995. [Google Scholar] [CrossRef]
- Goss, Z.; Coles, D.; Kramer, S.; Piggott, M. Efficient economic optimisation of large-scale tidal stream arrays. Appl. Energy 2021, 295, 116975. [Google Scholar] [CrossRef]
- Kaufmann, N.; Carolus, T.; Starzmann, R. Turbines for modular tidal current energy converters. Renew. Energy 2019, 142, 451–460. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Álvarez-Álvarez, E.; López, M.; Fouz, M.; López, I.; Gharib-Yosry, A.; Claus, R.; Carballo, R. Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig. Energies 2021, 14, 6686. [Google Scholar] [CrossRef]
- Damota, J.B.; García, J.D.D.R.; Casanova, A.C.; Miranda, J.T.; Caccia, C.G.; Galdo, M.I.L. Analysis of a Nature-Inspired Shape for a Vertical Axis Wind Turbine. Appl. Sci. 2022, 12, 7018. [Google Scholar] [CrossRef]
- Mosbahi, M.; Lajnef, M.; Derbel, M.; Mosbahi, B.; Aricò, C.; Sinagra, M.; Driss, Z. Performance Improvement of a Drag Hydrokinetic Turbine. Water 2021, 13, 273. [Google Scholar] [CrossRef]
- Stansby, P.K.; Ouro, P. Modelling marine turbine arrays in tidal flows. J. Hydraul. Res. 2022, 60, 187–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zheng, Y.; Yang, C.; Zang, W.; Fernandez-Rodriguez, E. Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine. Energies 2017, 10, 2057. [Google Scholar] [CrossRef][Green Version]
- Hill, C.; Neary, V.S.; Guala, M.; Sotiropoulos, F. Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter. Energies 2020, 13, 5145. [Google Scholar] [CrossRef]
- Nago, V.G.; dos Santos, I.F.S.; Gbedjinou, M.J.; Mensah, J.H.R.; Filho, G.L.T.; Camacho, R.G.R.; Barros, R.M. A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Eng. 2022, 259, 111863. [Google Scholar] [CrossRef]
- Hilewit, D.; Matida, E.A.; Fereidooni, A.; El Ella, H.A.; Nitzsche, F. Power coefficient measurements of a novel vertical axis wind turbine. Energy Sci. Eng. 2019, 7, 2373–2382. [Google Scholar] [CrossRef]
- Zhao, W.D.; Li, Y.; Li, Y.T. Mechanism Design and Modal Analysis of Vertical-axis Tidal turbine. In Key Engineering Materials; Su, V.D., Zhu, S., Eds.; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2014; pp. 433–436. [Google Scholar]
- Harrold, M.; Ouro, P. Rotor Loading Characteristics of a Full-Scale Tidal Turbine. Energies 2019, 12, 1035. [Google Scholar] [CrossRef][Green Version]
- Sun, J.; Huang, D. Numerical investigation on aerodynamic performance improvement of vertical-axis tidal turbine with super-hydrophobic surface. Ocean Eng. 2020, 217, 107995. [Google Scholar] [CrossRef]
- Sun, K.; Yi, Y.; Zhang, J.; Zhang, J.; Zaidi, S.S.H.; Sun, S. Influence of blade numbers on start-up performance of vertical axis tidal current turbines. Ocean Eng. 2021, 243, 110314. [Google Scholar] [CrossRef]
- Heavey, S.C.; Leen, S.B.; McGarry, J.P. Hydrodynamic Design and Analysis of a Novel Vertical Axis Turbine. Int. J. Offshore Polar Eng. 2018, 28, 393–401. [Google Scholar] [CrossRef][Green Version]
- Chen, B.; Su, S.; Viola, I.M.; Greated, C.A. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades. Ocean Eng. 2018, 155, 75–87. [Google Scholar] [CrossRef][Green Version]
- Delafin, P.-L.; Deniset, F.; Astolfi, J.A.; Hauville, F. Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch. Energies 2021, 14, 667. [Google Scholar] [CrossRef]
- Suhri, G.E.; Rahman, A.A.; Dass, L.; Rajendran, K.; Rahman, A.A. INTERACTIONS BETWEEN TIDAL TURBINE WAKES: NUMERICAL STUDY FOR SHALLOW WATER APPLICATION. J. Teknol. 2022, 84, 91–101. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, S.; Ma, Y.; Hu, C.; Li, Z. Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines. Energy 2022, 247, 123376. [Google Scholar] [CrossRef]
- Tian, L.; Song, Y.; Zhao, N.; Shen, W.; Zhu, C.; Wang, T. Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions. Energy 2020, 208, 118440. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, W.; Shen, W.; Sørensen, J.N.; Wang, T. Development of a CFD-Based Wind Turbine Rotor Optimization Tool in Considering Wake Effects. Appl. Sci. 2018, 8, 1056. [Google Scholar] [CrossRef][Green Version]
- Ma, Y.; Hu, C.; Li, Y.; Deng, R. Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation. Energies 2018, 11, 3349. [Google Scholar] [CrossRef][Green Version]
- Ma, Y.; Hu, C.; Li, L. Hydrodynamics and wake flow analysis of a Π-type vertical axis twin-rotor tidal current turbine in surge motion. Ocean Eng. 2021, 224, 108625. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, C.; Li, Y.; Li, L.; Deng, R.; Jiang, D. Hydrodynamic Performance Analysis of the Vertical Axis Twin-Rotor Tidal Current Turbine. Water 2018, 10, 1694. [Google Scholar] [CrossRef][Green Version]
- Li, G.; Chen, Q.; Gu, H. Study of Hydrodynamic Interference of Vertical-Axis Tidal Turbine Array. Water 2018, 10, 1228. [Google Scholar] [CrossRef]
- Ma, Y.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Wang, S.; Lam, S.S.; Hamill, G. Theoretical vertical-axis tidal-current-turbine wake model using axial momentum theory with CFD corrections. Appl. Ocean Res. 2018, 79, 113–122. [Google Scholar] [CrossRef][Green Version]
- Müller, S.; Muhawenimana, V.; Wilson, C.A.; Ouro, P. Experimental investigation of the wake characteristics behind twin vertical axis turbines. Energy Convers. Manag. 2021, 247, 114768. [Google Scholar] [CrossRef]
- Li, G.; Chen, Q.; Gu, H. An Unsteady Boundary Element Model for Hydrodynamic Performance of a Multi-Blade Vertical-Axis Tidal Turbine. Water 2018, 10, 1413. [Google Scholar] [CrossRef][Green Version]
- Jiang, J.; Ju, Q.; Yang, Y. Finite Element Vortex Method for Hydrodynamic Analysis of Vertical Axis Cycloidal Tidal Turbine. J. Coast. Res. 2019, 93, 988–997. [Google Scholar] [CrossRef]
- Jégo, L.; Guillou, S.S. Study of a Bi-Vertical Axis Turbines Farm Using the Actuator Cylinder Method. Energies 2021, 14, 5199. [Google Scholar] [CrossRef]
- Arini, N.R.; Turnock, S.R.; Tan, M. Two-dimensional fluid–structure interaction analysis of a vertical axis tidal turbine blade using periodic inflow equivalence model. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2018, 232, 5–18. [Google Scholar] [CrossRef][Green Version]
- Clary, V.; Oudart, T.; Larroudé, P.; Sommeria, J.; Maître, T. An optimally-controlled RANS Actuator force model for efficient computations of tidal turbine arrays. Ocean Eng. 2020, 212, 107677. [Google Scholar] [CrossRef]
- Neagoe, M.; Saulescu, R.; Jaliu, C.; Munteanu, O.; Cretescu, N. A Comparative Performance Analysis of Four Wind Turbines with Counter-Rotating Electric Generators. Appl. Sci. 2022, 12, 4233. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Ding, B.; Wang, S.; Bai, Y. Energy harvesting efficiency analysis of counter-rotating horizontal-axis tidal turbines. Ships Offshore Struct. 2021, 17, 1891–1900. [Google Scholar] [CrossRef]
- Guo, B.; Wang, D.; Zhou, X.; Shi, W.; Jing, F. Performance Evaluation of a Tidal Current Turbine with Bidirectional Symmetrical Foils. Water 2019, 12, 22. [Google Scholar] [CrossRef][Green Version]
- Mademlis, G.; Liu, Y.; Chen, P.; Singhroy, E. Design of Maximum Power Point Tracking for Dynamic Power Response of Tidal Undersea Kite Systems. IEEE Trans. Ind. Appl. 2020, 56, 2048–2060. [Google Scholar] [CrossRef]
- Song, K.; Yang, B. A Comparative Study on the Hydrodynamic-Energy Loss Characteristics between a Ducted Turbine and a Shaftless Ducted Turbine. J. Mar. Sci. Eng. 2021, 9, 930. [Google Scholar] [CrossRef]
- Tunio, I.A.; Shah, M.A.; Hussain, T.; Harijan, K.; Mirjat, N.H.; Memon, A.H. Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine. Renew. Energy 2020, 153, 143–154. [Google Scholar] [CrossRef]
- Borg, M.; Xiao, Q.; Allsop, S.; Incecik, A.; Peyrard, C. A Numerical Swallowing-Capacity Analysis of a Vacant, Cylindrical, Bi-Directional Tidal Turbine Duct in Aligned & Yawed Flow Conditions. J. Mar. Sci. Eng. 2021, 9, 182. [Google Scholar] [CrossRef]
- Nachtane, M.; Tarfaoui, M.; Saifaoui, D.; El Moumen, A.; Hassoon, O.; Benyahia, H. Evaluation of durability of composite materials applied to renewable marine energy: Case of ducted tidal turbine. Energy Rep. 2018, 4, 31–40. [Google Scholar] [CrossRef]
- Maduka, M.; Li, C. Numerical study of ducted turbines in bi-directional tidal flows. Eng. Appl. Comput. Fluid Mech. 2021, 15, 194–209. [Google Scholar] [CrossRef]
- Zanforlin, S.; Buzzi, F.; Francesconi, M. Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations. Energies 2019, 12, 272. [Google Scholar] [CrossRef][Green Version]
- Fituri, A.; Aly, H.H.; El-Hawary, M. Unsteady surface wave influence on tidal current power forecasting. Ocean Eng. 2020, 218, 108231. [Google Scholar] [CrossRef]
- Im, H.; Hwang, T.; Kim, B. Duct and blade design for small-scale floating tidal current turbine development and CFD-based analysis of power performance. J. Mech. Sci. Technol. 2020, 34, 1591–1602. [Google Scholar] [CrossRef]
- Borg, M.G.; Xiao, Q.; Allsop, S.; Incecik, A.; Peyrard, C. A numerical performance analysis of a ducted, high-solidity tidal turbine. Renew. Energy 2020, 159, 663–682. [Google Scholar] [CrossRef]
- Ma, P.; Wang, Y.; Xie, Y.; Huo, Z. Numerical analysis of a tidal current generator with dual flapping wings. Energy 2018, 155, 1077–1089. [Google Scholar] [CrossRef]
- Ma, P.; Wang, Y.; Xie, Y.; Zhang, J. Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration. Energy 2018, 143, 273–283. [Google Scholar] [CrossRef]
- Khan, J.; Bhuyan, G.; Moshref, A.; Morison, K.; Pease, J.H.; Gurney, J. Ocean wave and tidal current conversion technologies and their interaction with electrical networks. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Enrique, J.M.; Barragán, A.J.; Durán, E.; Andújar, J.M. Theoretical Assessment of DC/DC Power Converters’ Basic Topologies. A Common Static Model. Appl. Sci. 2017, 8, 19. [Google Scholar] [CrossRef][Green Version]
- Sun, D.; Meng, F.; Shen, W. Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System. Appl. Sci. 2022, 12, 8344. [Google Scholar] [CrossRef]
- Sur, U.; Biswas, A.; Bera, J.N.; Sarkar, G. Holomorphic Embedding Power Flow Analysis of Hybrid-Tidal-Farm-Integrated Power Distribution System. IEEE Syst. J. 2022, 16, 2277–2288. [Google Scholar] [CrossRef]
- Alemi-Rostami, M.; Rezazadeh, G.; Alipour-Sarabi, R.; Tahami, F. Design and Optimization of a Large-Scale Permanent Magnet Synchronous Generator. Sci. Iran. 2022, 29, 217–229. [Google Scholar] [CrossRef][Green Version]
- Guo, K.; Guo, Y. Design Optimization of Linear-Rotary Motion Permanent Magnet Generator With E-Shaped Stator. IEEE Trans. Appl. Supercond. 2021, 31, 0600705. [Google Scholar] [CrossRef]
- Zhang, J.; Moreau, L.; Aubry, J.; Machmoum, M. Sizing Optimization Methodology of Tidal Energy Conversion Chain Based on Double Stator Permanent Magnet Generator. Electr. Power Compon. Syst. 2019, 47, 940–954. [Google Scholar] [CrossRef]
- Shen, F.; Li, Z.; Guo, H.; Yang, Z.; Wu, H.; Wang, M.; Luo, J.; Xie, S.; Peng, Y.; Pu, H. Recent Advances towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators. Adv. Electron. Mater. 2021, 7, 2100277. [Google Scholar] [CrossRef]
- Yang, H.; Wang, M.; Deng, M.; Guo, H.; Zhang, W.; Yang, H.; Xi, Y.; Li, X.; Hu, C.; Wang, Z. A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 2019, 56, 300–306. [Google Scholar] [CrossRef]
- Dobzhanskyi, O.; Hossain, E.; Amiri, E.; Gouws, R.; Grebenikov, V.; Mazurenko, L.; Pryjmak, M.; Gamaliia, R. Axial-Flux PM Disk Generator With Magnetic Gear for Oceanic Wave Energy Harvesting. IEEE Access 2019, 7, 44813–44822. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Song, Z.; Wang, W.; Lubin, T. A Dual-Modulator Magnetic-Geared Machine for Tidal-Power Generation. IEEE Trans. Magn. 2020, 56, 6703607. [Google Scholar] [CrossRef]
- Ho, S.L.; Wang, Q.; Niu, S.; Fu, W.N. A Novel Magnetic-Geared Tubular Linear Machine With Halbach Permanent-Magnet Arrays for Tidal Energy Conversion. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Ghefiri, K.; Bouallègue, S.; Garrido, I.; Garrido, A.J.; Haggège, J. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator. Sensors 2018, 18, 1317. [Google Scholar] [CrossRef][Green Version]
- Chen, L.; Zheng, P.; Gao, W.; Jiang, J.; Chang, J.; Wu, R.; Ai, C. Frequency Modulation Control of Hydraulic Wind Turbines Based on Ocean Used Wind Turbines and Energy Storage. Energies 2022, 15, 4086. [Google Scholar] [CrossRef]
- Dash, S.S.; Padmanaban, S.; Morati, P.K. Maximum Power Point Tracking Implementation by Dspace Controller Integrated Through Z-Source Inverter Using Particle Swarm Optimization Technique for Photovoltaic Applications. Appl. Sci. 2018, 8, 145. [Google Scholar] [CrossRef][Green Version]
- Yu, K.-N.; Yau, H.-T.; Liao, C.-K. Development of a Fractional Order Chaos Synchronization Dynamic Error Detector for Maximum Power Point Tracking of Photovoltaic Power Systems. Appl. Sci. 2015, 5, 1117–1133. [Google Scholar] [CrossRef][Green Version]
- Palanimuthu, K.; Mayilsamy, G.; Lee, S.R.; Jung, S.Y.; Joo, Y.H. Comparative analysis of maximum power extraction and control methods between PMSG and PMVG-based wind turbine systems. Int. J. Electr. Power Energy Syst. 2022, 143, 108475. [Google Scholar] [CrossRef]
- Espíndola-López, E.; Gómez-Espinosa, A.; Carrillo-Serrano, R.V.; Jáuregui-Correa, J.C. Fourier Series Learning Control for Torque Ripple Minimization in Permanent Magnet Synchronous Motors. Appl. Sci. 2016, 6, 254. [Google Scholar] [CrossRef][Green Version]
- Paducel, I.; Safirescu, C.O.; Dulf, E.-H. Fractional Order Controller Design for Wind Turbines. Appl. Sci. 2022, 12, 8400. [Google Scholar] [CrossRef]
- Vu, T.N.L.; Chuong, V.L.; Truong, N.T.N.; Jung, J.H. Analytical Design of Fractional-Order PI Controller for Parallel Cascade Control Systems. Appl. Sci. 2022, 12, 2222. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M. Construction and Evaluation of a Control Mechanism for Fuzzy Fractional-Order PID. Appl. Sci. 2022, 12, 6832. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, D.; Liao, J.; Zhu, G.; Wang, Y.; Zhang, S. Automatic Steering Control Algorithm Based on Compound Fuzzy PID for Rice Transplanter. Appl. Sci. 2019, 9, 2666. [Google Scholar] [CrossRef][Green Version]
- Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors. Appl. Sci. 2019, 9, 1224. [Google Scholar] [CrossRef][Green Version]
- Dai, J.; Wan, L.; Chang, P.; Liu, L.; Zhou, X. Reactive Voltage Control Strategy for PMSG-Based Wind Farm Considering Reactive Power Adequacy and Terminal Voltage Balance. Electronics 2022, 11, 1766. [Google Scholar] [CrossRef]
- Toumi, I.; Meghni, B.; Hachana, O.; Azar, A.T.; Boulmaiz, A.; Humaidi, A.J.; Ibraheem, I.K.; Kamal, N.A.; Zhu, Q.; Fusco, G.; et al. Robust Variable-Step Perturb-and-Observe Sliding Mode Controller for Grid-Connected Wind-Energy-Conversion Systems. Entropy 2022, 24, 731. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, Y.; Zhu, W.; Zhang, X.; Guo, J. Development of a simple power controller for horizontal-axis standalone tidal current energy generation system. Int. J. Glob. Energy Issues 2017, 40, 117. [Google Scholar] [CrossRef]
- Dali, A.; Abdelmalek, S.; Bakdi, A.; Bettayeb, M. A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine. Renew. Energy 2021, 172, 1021–1034. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, H.Q.; Dao, P.N.; Vu, N.T.-T. On Robust Control of Permanent Magnet Synchronous Generators Using Robust Integral of Error Sign. In International Conference on Green Technology and Sustainable Development; Springer: Cham, Switzerland, 2020; pp. 156–166. [Google Scholar] [CrossRef]
- Khan, M.Z.A.; Khan, H.A.; Aziz, M. Harvesting Energy from Ocean: Technologies and Perspectives. Energies 2022, 15, 3456. [Google Scholar] [CrossRef]
- Murray, R.; Ordonez-Sanchez, S.; Porter, K.E.; Doman, D.A.; Pegg, M.J.; Johnstone, C.M. Towing tank testing of passively adaptive composite tidal turbine blades and comparison to design tool. Renew. Energy 2018, 116, 202–214. [Google Scholar] [CrossRef]
- Ouro, P.; Dené, P.; Garcia-Novo, P.; Stallard, T.; Kyozuda, Y.; Stansby, P. Power density capacity of tidal stream turbine arrays with horizontal and vertical axis turbines. J. Ocean Eng. Mar. Energy 2022, 1–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Tang, X.; Wu, Y.-T.; Lyu, S.-K. Advancement of Tidal Current Generation Technology in Recent Years: A Review. Energies 2022, 15, 8042. https://doi.org/10.3390/en15218042
Qin Z, Tang X, Wu Y-T, Lyu S-K. Advancement of Tidal Current Generation Technology in Recent Years: A Review. Energies. 2022; 15(21):8042. https://doi.org/10.3390/en15218042
Chicago/Turabian StyleQin, Zhen, Xiaoran Tang, Yu-Ting Wu, and Sung-Ki Lyu. 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review" Energies 15, no. 21: 8042. https://doi.org/10.3390/en15218042